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Some properties of deformed q-numbers
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Nonextensive statistical mechanics has been a source of investigation in mathematical structures such as
deformed algebraic structures. In this work, we present some consequences of q-operations on the construction
of q-numbers for all numerical sets. Based on such a construction, we present a new product that distributes
over the q-sum. Finally, we present different patterns of q-Pascal’s triangles, based on q-sum, whose elements
are q-numbers.
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1. INTRODUCTION

The q-operations [1, 2] that emerge from nonextensive sta-
tistical mechanics [3] seem to provide a natural background
for its mathematical formulation. The definitions of q-sum
and q-product, on the realm of real numbers,

x⊕q y := x+ y+(1−q)xy, (1)

x⊗q y :=
[
x1−q + y1−q−1

] 1
1−q
+ , x > 0, y > 0, (2)

where [p]+ = max{p,0}, allow some expressions of nonex-
tensive statistical mechanics to be written with the same for-
mal simplicity of the extensive (q = 1) formalism. For in-
stance, the q-logarithm [4] of a product, and the q-exponential
of a sum are written as

lnq xy = lnq x⊕q lnq y,

ex+y
q = ex

q⊗q ey
q,

with

lnq x :=
x1−q−1

1−q
, x > 0 (3)

and

ex
q := [1+(1−q)x]

1
1−q
+ . (4)

The q-sum and the q-product are associative, commutative,
present neutral element (0 for q-sum and 1 for q-product) and
opposite and inverse elements under restrictions. A reason-
able question is whether those operations provide a structure
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of commutative ring or even field. Since the q-product does
not distribute over the q-sum, they do not define those alge-
braic structures.

There are instances of other structures that are distributive,
though do not present other properties. For instance, the trop-
ical algebra [5] — for which the T -sum of two extended real
numbers (R∪{−∞}) is the minimum between them and the
T -product is the usual sum — does not have reciprocal ele-
ments in relation to the T -sum.

On the other hand, the relevant structure of a near-ring
[6] is an example of a non-distributive ring; however, in this
case, distributivity is required in at least one side. It has been
known from long ago, as pointed out by Green [7], that prac-
tical examples of (both sides) of non-distributive algebraic
structures are not so easy to find out. So the q-algebraic struc-
ture is a good example of both-side non-distributive structure.

Recently, we have generalized the q-algebraic structure
into a biparametrized (q,q′)-algebraic structure (and, more
generally, into an n parameter algebraic structure) [8], in such
a way that the two-parameter operators (q,q′)-sum, (q,q′)-
product, and their inverses, present the same properties of the
monoparameterized q-algebraic structure.

A remarkable feature of these algebraic structures is that
the distributivity property does not hold. Though this “non-
property” is very interesting, there are some proposals in the
literature [1, 9] (that will be shown later) which change some-
how the q-algebraic structure in order to recover distributivity.
In all of those proposals [1, 2, 9], the operations are deformed
but the numbers are not. In this work, we deform the num-
bers to obtain the q-numbers xq for all numerical sets based
on q-sum in such way that

xq⊕q yq = (x+ y)q. (5)

Since the q-product is, in a sense that we will discuss later,
intrinsically non-distributive, in order to obtain the distribu-
tive structure in a very natural way, we keep the q-sum and
propose a new product such that

xq♦qyq = (xy)q. (6)
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We also set up the a-numbers and k-numbers based on
other deformed sums presented in [1, 9]. We call the at-
tention to the interesting connection between the q-natural
number and the Heine number [10]. Other mathematical ob-
jects, whose elements are q-numbers, may be generated by
deformed operations; we exemplify some q-Pascal’s trian-
gles, derived by q-sum, that correspond to different patterns.

The paper is organized as follows: Sec. 2 introduces the q-
numerical sets; Sec. 3 proposes a different product ♦q; other
mathematical objects as q-Pascal’s triangles are addressed in
Sec. 4. Finally, in Sec. 5 we draw our concluding remarks.

2. THE q-NUMERICAL SETS

The main idea is to use the classical construction of the
numerical sets [11] for which elements are the respective de-
formed numbers. We use the notation Nq, Zq, Qq, Rq for
q-natural, q-integer, q-rational and q-real numerical sets re-
spectively.

Consider an induction over an arbitrary generator g (that
we assume different from 0 and −1/(1− q) to avoid trivial
structures) q-summed n times:

g
g⊕q g = 2g+(1−q)g2

g⊕q g⊕q g = 3g+3(1−q)g2 +(1−q)2g3 (7)
...

g⊕q · · ·⊕q g︸ ︷︷ ︸
n times

=
[1+(1−q)g]n−1]

1−q
.

For simplicity of the expressions in this note, we shall
choose g = 1, and obtain the deformed q-natural number
summed n times:

nq = 1⊕q + · · ·+⊕q1︸ ︷︷ ︸
n times

=
(2−q)n−1

1−q

=
n

∑
k=1

(
n
k

)
(1−q)k−1, (8)

where
(

n
k

)
stands for the binomial coefficients. The q-

neutral element is the same as the usual one, 0q = 0 (nq⊕q
0q = nq), and also 1q = 1. Of course nq→ n as q→ 1.

The dependence on the parameter q provides a plethora of
interesting different structures. For instance, with q = 2, we
have a structure given by {1}; with q = 3, we have a structure
isomorphic to the finite field with two elements {0,1}. How-
ever, if q < 2, we have infinite structures whose elements are
all real numbers (if complex numbers are allowed, there is
more freedom on the parameter q).

It is not difficult to verify that the set Nq = {nq,n∈N}with
the map σ : Nq→ Nq ,nq 7→ nq⊕1q is a model for the Peano
axioms. Let us show, for example, some elements of the set
Nq for q = 0:

N0 = {0,1,3,7,15,31,63,127,255,511,1023, . . .}.

From the set of the deformed q-natural number, we may
construct, as in the classical way, by means of the (difference)
equivalence relation on Nq×Nq, the set of deformed q-integer
numbers Zq. We also draw some elements of this set for
q = 0:

Z0 = {. . . ,−127
128

,−63
64

,−31
32

,−15
16

,−7
8
,−3

4
,−1

2
,

0,1,3,7,15,31,63,127,255,511,1023, . . .}.

It is interesting to note that, in any case, the q-integers are
strictly greater than −1/(1−q).

The q-integer numbers were also studied by R. Cardo and
A. Corvolan [12] based on the�q operation introduced in [2]:
nq = n�1, which is defined in the same way as the notion we
introduced in (7) by induction.

Analogously, we have also constructed, as in the classi-
cal case, the deformed q-rational numbers Qq, by an (ratio)
equivalence relation on Zq×Z∗q, and the q-real numbers, Rq,
by Cauchy sequences. It would also be possible to construct
the q-real numbers using the Dedekind cuts.

We have proved that, following the classical construction
of the q-real numbers, they are given by

xq =
(2−q)x−1

1−q
. (9)

The asymptotical behavior of xq (x→ ∞) is given by:

lim
x→∞

xq =





∞, q < 1
x, q = 1
1

q−1 , 1 < q≤ 2.
(10)

For q > 2, xq may assume complex values.
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FIG. 1: q-Real number xq versus x for some typical values of q.

(9) is exactly the Heine number, by the simple change of vari-
ables q = 2−H. The connection between nonextensive statis-
tical mechanics and the Heine number (and quantum groups)
was already pointed out in [14]. It is worth to note that the
coincidence of the symbol q in all these different contexts (q-
series, q-analogues, quantum groups, and q-entropy) occurs
just by chance.

It is possible to define other generalized numbers, based
on the algebraic structures proposed on [1, 9]. In [1], two
operations a-sum (+a and +a) and a-product (×a and ×a)
were introduced. The a-sums are, respectively,

x+a y := x⊕q y with q = 1−a, (12)

x+a y :=
{

a ln
[

exp
(

xa

a

)
+ exp

(
ya

a

)]}1/a

. (13)

The a-products are, respectively,

x×a y := x⊗q y with q = 1−a, (14)

x×a y :=
exp [ln(1+ax) ln(1+ay)/a]−1

a
. (15)

Based on (13), we obtain the deformed x(a) number with gen-
erator g:

x(a) = [a lnx+ga]1/a. (16)

In [9], two operations k-sum (¢k and ¢k) and k-product (£k

and £k) were proposed. The k-sums are, respectively,

x¢k y := x⊗q y with q = 1− k, (17)

x¢k y :=
[(1+ kx)1/k +(1+ ky)1/k]k−1

k
. (18)

The k-products, are, respectively

x£k y := x⊕q=k−1 y with q = 1− k, (19)

x£k y :=
[
(xy)k− xk− yk +(k +1)

k

]1/k

. (20)

Based on (17) and (18), the deformed numbers with gen-
erator g, x[k] and x[k], associated to ¢k and ¢k, respectively,
are:

x[k] =
xk(1+ k g)−1

k
, (21)

x[k] = [xgk− (x−1)]1/k. (22)

3. DISTRIBUTIVE PROPERTY

The q-product is non-distributive, i.e.,

x⊗q (y+ z) 6= (x⊗q y)+(x⊗q z) ,∀x 6= 0 ,1 ,∀q ∈ R−{1}.
(23)

As an essential result for our work, we observe that, assum-
ing a set with more than one element and keeping reasonable
properties such as the additive neutral element and cancella-
tion to sum, then there is no deformed sum that is distributed
by the q-product. In fact:

Let t be the neutral element of such a sum. If we impose
the distributive property:

x⊗q (y⊕ t) = (x⊗q y)⊕ (x⊗q t)

x⊗q y = (x⊗q y)⊕ (x⊗q t)

Thus t = x⊗q t, using (2), we obtain

x1−q = 1,

i.e., x has to be one of the complex roots 11/(1−q); so, restricted
to real numbers, x has to be 1. Since x is any element, the set
has just one element.

Therefore the non-distributivity is an intrinsic property of
the q-product. Some authors [1, 9] tried to obtain distributive
structures based on q-operations. For instance, note that, al-
though the operation×a is distributive over +a, shown in (13),
+a does not have neutral element, as it was consistent with the
above result. Moreover ×a, shown in (15), is distributive over
+a.

Concerning the k-sums and the k-products, £k is distribu-
tive over ¢k, shown in (18), as well as £k, shown in (20), is
distributive over ¢k. Note that the distributivity results from
the curious exchange of roles of the operations: the k-sum ¢k
is indeed a q-product, and the k-product £k is a q-sum.

Since there is no deformed sum that is distributed by the q-
product, we propose a new product, signed ♦q, that emerges
naturally from the classical construction of the numerical set,
just mentioned. This new product is different from equations
(15) and (20), and distributes over the q-sum. It is defined as

x♦q y :=
(2−q)

{ ln[(1+(1−q)x] ln[1+(1−q)y]
[ln(2−q)]2

}−1
1−q

. (24)

FIG. 1: q-Real number xq versus x for some typical values of q.

It is amazing to note that in the study of the q-analogues
of the hypergeometric series [13], at the second half of the
nineteenth century, Heine introduced the deformed number
[10]

[n]H =
Hn−1
H−1

, (11)

known as the q-analogue of n. The number deformation plays
a fundamental role in combinatorics, but also has applications
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in the study of fractals, hyperbolic geometry, chaotic dynam-
ical systems, quantum groups, etc. There are also many phys-
ical applications, for instance, in exact models in statistical
mechanics. It is interesting that the deformed q-number (9) is
exactly the Heine number, by the simple change of variables
q = 2−H. The connection between nonextensive statistical
mechanics and the Heine number (and quantum groups) was
already pointed out in [14]. It is worth to note that the coinci-
dence of the symbol q in all these different contexts (q-series,
q-analogues, quantum groups, and q-entropy) occurs just by
chance.

It is possible to define other generalized numbers, based
on the algebraic structures proposed on [1, 9]. In [1], two
operations a-sum (+a and +a) and a-product (×a and ×a)
were introduced. The a-sums are, respectively,

x+a y := x⊕q y with q = 1−a, (12)

x+a y :=
{

a ln
[

exp
(

xa

a

)
+ exp

(
ya

a

)]}1/a

. (13)

The a-products are, respectively,

x×a y := x⊗q y with q = 1−a, (14)

x×a y :=
exp [ln(1+ax) ln(1+ay)/a]−1

a
. (15)

Based on (13), we obtain the deformed x(a) number with gen-
erator g:

x(a) = [a lnx+ga]1/a. (16)

In [9], two operations k-sum (�k and �k) and k-product (�k

and �k) were proposed. The k-sums are, respectively,

x�k y := x⊗q y with q = 1− k, (17)

x�k y :=
[(1+ kx)1/k +(1+ ky)1/k]k−1

k
. (18)

The k-products are, respectively

x�k y := x⊕q=k−1 y with q = 1− k, (19)

x�k y :=
[
(xy)k− xk− yk +(k +1)

k

]1/k

. (20)

Based on (17) and (18), the deformed numbers with gen-
erator g, x[k] and x[k], associated to �k and �k, respectively,
are:

x[k] =
xk(1+ k g)−1

k
, (21)

x[k] = [xgk− (x−1)]1/k. (22)

3. DISTRIBUTIVE PROPERTY

The q-product is non-distributive, i.e.,

x⊗q (y+ z) 6= (x⊗q y)+(x⊗q z) ,∀x 6= 0 ,1 ,∀q ∈ R−{1}.
(23)

As an essential result for our work, we observe that, assum-
ing a set with more than one element and keeping reasonable
properties such as the additive neutral element and cancella-
tion to sum, then there is no deformed sum that is distributed
by the q-product. In fact:

Let t be the neutral element of such a sum. If we impose
the distributive property:

x⊗q (y⊕ t) = (x⊗q y)⊕ (x⊗q t)

x⊗q y = (x⊗q y)⊕ (x⊗q t),

thus t = x⊗q t, using (2), we obtain

x1−q = 1,

i.e., x has to be one of the complex roots 11/(1−q); so, re-
stricted to real numbers, x has to be 1. Since x is any element,
the set has just one element.

Therefore the non-distributivity is an intrinsic property of
the q-product. Some authors [1, 9] tried to obtain distribu-
tive structures based on q-operations. For instance, note that,
although the operation ×a is distributive over +a, shown in
(13), +a does not have neutral element, as it was consistent
with the above result. Moreover ×a, shown in (15), is dis-
tributive over +a.

Concerning the k-sums and the k-products, �k is distribu-
tive over �k, shown in (18), as well as �k, shown in (20), is
distributive over �k. Note that the distributivity results from
the curious exchange of roles of the operations: the k-sum �k
is indeed a q-product, and the k-product �k is a q-sum.

Since there is no deformed sum that is distributed by the q-
product, we propose a new product, signed ♦q, that emerges
naturally from the classical construction of the numerical set,
just mentioned. This new product is different from equations
(15) and (20), and distributes over the q-sum. It is defined as

x♦q y :=
(2−q)

{ ln[(1+(1−q)x] ln[1+(1−q)y]
[ln(2−q)]2

}−1
1−q

. (24)

Moreover the q-sum and the q-product obey, respectively, (5)
and (6). For the q-sum, we have:

xq⊕q yq =
(2−q)x +(2−q)y−2

1−q
(25)

+
[(2−q)x−1][(2−q)y−1]

1−q

=
(2−q)x+y−1

1−q
= (x+ y)q. (26)

For the q-product, we have

xq♦qyq =
(2−q)

{ ln[(2−q)x ] ln[(2−q)y]
[ln(2−q)2]

}−1
1−q

=
(2−q)xy−1

1−q
= (xy)q. (27)
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It is obvious that, when q→ 1, x1♦1y1 = (xy)1 = xy.
Using (25) and (27), it is easy to prove that the ♦q product

distributes over the q-sum when applied to q-numbers, i.e.:

xq♦q(yq⊕q zq) = [xq♦qyq]+ [xq♦qyq]. (28)

In other words,

xq♦q(yq⊕q zq) = xq♦q(y+ z)q

= [x(y+ z)]q = [xy+ xz]q
= (xy)q⊕q (xz)q

= (xq♦qyq)⊕q (xq♦qzq). (29)

4. q-PASCAL’S TRIANGLES

The deformations of operations and numbers open ques-
tions about other mathematical objects derived from them.
An interesting class of those objects is set up by the Pascal’s
triangles. Recently, some works have connected nonextensive
statistical mechanics with Leibnitz [15] and Pascal’s triangles
derived from the q-product [16].

In order to exhibit some simple applications of such de-
formations, in this section we construct q-Pascal’s triangles
using q-sum as the deformed operation. In this way, their el-
ements are q-numbers. Different patterns are illustrated for

different values of q. For example, we present q-Pascal’s tri-
angles for q = 0, q = 1.5, q = 2 and q = 3:

a) Increasing pattern

For q = 0, we obtain:

1

1 1

1 3 1

1 7 7 1

1 15 63 15 1

1 31 1023 1023 31 1

1 63 32767 1048575 32767 63 1

Note that this increasing pattern occurs for any value of
q ≤ 1. For q = 1, we recover the usual Pascal’s trian-
gle. It is compatible with the divergent curve shown in
figure 1 for natural values of x.

b) Asymptotical pattern

For q = 1.5, we obtain:

1

1 1

1 1.5 1

1 1.75 1.75 1

1 1.875 1.968 1.875 1

1 1.937 1.998 1.998 1.937 1

1 1.968 1.999 1.999 1.999 1.968 1

1 1.984 1.999 2 2 1.999 1.984 1

1 1.992 2 2 2 2 2 1.992 1

c) Fixed pattern

For q = 2, we obtain:
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1
1 1

1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1 1

For any value of 1 < q < 2, the elements are positive greater than 1. In the limit case q = 2, it converges to the fixed
pattern shown above. In general, if 1 < q < 3, limn→∞ nq = 1/(q−1); for q = 1.5, limn→∞ n1.5 = 2; for q = 2, n2 = 1 for
any value of n.

d) Self-similar pattern
For q = 3, we obtain:

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0 1 0 1
1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

For any value of 2 < q < 3, the elements are positive
numbers smaller than 1. In the limit case q = 3, the
3-Pascal’s triangle presents a self-similar pattern due to
the isomorphism between Zq=3 and Z mod 2 shown in
last section.

5. CONCLUSIONS AND PERSPECTIVES

In this work, we explore the properties of the algebraic
structure derived from the q-sum which implies a new prod-
uct, in a natural way, that recovers the distributive property. It
is done by constructing the q-numerical sets based on q-sum.
We show that, assuming some properties, the q-product does
not distribute over any sum. Therefore, using the q-numbers,
we define a new deformed product, called ♦q, which dis-
tributes over the q-sum. Finally, different patterns of Pascal
q-triangles, whose elements are q-numbers, are shown.

Our results illustrate the diversity of mathematical struc-
tures that may be derived from the deformation of operations
and numbers. It is interesting that the nonextensive statisti-
cal mechanics called the attention to deformations that were
studied in the context of Mathematics as well as some known
mathematical objects as Heine number and Pascal’s triangles.
This work is a motivation to investigate the connections be-
tween nonextensive statistical mechanics and mathematical
structures more deeply.
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