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Central limit theorems for correlated variables: some critical remarks
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In this talk I first review at an elementary level a selection of central limit theorems, including some lesser
known cases, for sums and maxima of uncorrelated and correlated random variables. I recall why several of
them appear in physics. Next, I show that there is room for new versions of central limit theorems applicable to
specific classes of problems. Finally, I argue that we have insufficient evidence that, as a consequence of such a
theorem, q-Gaussians occupy a special place in statistical physics.
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Central limit theorems play an important role in physics,
and in particular in statistical physics. The reason is that this
discipline deals almost always with a very large number N
of variables, so that the limit N → ∞ required in the mathe-
matical limit theorems comes very close to being realized in
physical reality. Before looking at some hard questions, let us
make an inventory of a few things we know.

1. SUMS OF RANDOM VARIABLES

Gaussians and why they occur in real life

Let p(x) be an arbitrary probability distribution of zero
mean. Draw from it independently N variables x1,x2, . . . ,xN
and then ask what is the probability PN(Y ) that the scaled sum
(x1 + x2 + . . .+ xN)/N1/2 take the value Y . The answer, as
we explain to our students, is obtained by doing the convolu-
tion PN(Y ) = p(x1)∗ p(x2)∗· · · p(xN). After some elementary
rewriting one gets

PN(Y ) =
1√

2π〈x2〉
exp
(
− Y 2

2〈x2〉
+

1
N1/2

[
. . .
])

, (1)

where the dots stand for an infinite series of terms that depend
on all moments of p(x) higher than the second one, 〈x3〉, 〈x4〉,
. . . . In the limit N→∞ the miracle occurs: the dependence on
these moments disappears from (1) and we find the Gaussian
P∞(Y ) = (2π〈x2〉)1/2 exp

(
− 1

2Y 2/〈x2〉
)
.

The important point is that even if you didn’t know before-
hand about its existence, this Gaussian results automatically
from any initially given p(x) – for example a binary distri-
bution with equal probability for x = ±1. This is the Central
Limit Theorem (CLT); it says that the Gaussian is an attrac-
tor [1] under addition of independent identically distributed
random variables. An adapted version of the Central Limit
Theorem remains true for sufficiently weakly correlated vari-
ables.

This theorem of probability theory is, first of all, a
mathematical truth. In order to see why it is relevant to real
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life, we have to examine the equations of physics. It appears
that these couple their variables, in most cases, only over
short distances and times, so that the variables are effectively
independent. This is the principal reason for the ubiquitous
occurrence of Gaussians in physics (Brownian motion) and
beyond (coin tossing). Inversely, the procedure of fitting a
statistical curve by a Gaussian may be considered to have a
theoretical basis if the quantity represented can be argued to
arise from a large number of independent contributions, even
if these cannot be explicitly identified.

Lévy distributions

Symmetric Lévy distributions. Obviously the calculation
leading to (1) requires that the variance 〈x2〉 be finite. What
if it isn’t? That happens, in particular, when for x→±∞ the
distribution behaves as p(x)' c±|x|−1−α for some α∈ (0,2).

Well, then there is a different central limit theorem. The
attractor is a Lévy distribution Lα,β(Y ), where Y is again the
sum of the xn scaled with an appropriate power of N and
where β ∈ (0,1) depends on the asymmetry between the
amplitudes c+ and c−. A description of the Lα,β is given,
e.g., by Hughes ([2], see § 4.2-4.3). In the symmetric case
c+ = c− we have β = 0. Then L1,0(Y ) is the Lorentz-Cauchy
distribution P∞(Y ) = 1/[π(1 +Y 2)] and L2,0(Y ) is the Gaus-
sian discussed above.

Asymmetric Lévy distributions. If c− = 0, that is, if p(x)
has a slow power law decay only for large positive x, then
we have β = 1 and the limit distribution is the one-sided Lévy
distribution. In the special case α = 1

2 , shown in Fig. 1, we
have the Smirnov distribution L 1

2 ,1. It has the explicit analytic
expression

P∞(Y ) =
1√

4πY 3
exp
(
− 1

4Y

)
, Y > 0, (2)

and decays for large Y as ∼ Y−3/2.
All these Lévy distributions are attractors under addition

of random variables, just like the Gaussian, and each has its
own basin of attraction.

Addition of nonidentical variables

Mathematicians tell us that there do not exist any other at-
tractors, at least not for sums of independent identically dis-
tributed (i.i.d.) variables. However, suppose you add inde-
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FIG. 1: The one-sided Lévy distribution L 1
2 ,1(Y ) is one possible out-

come of a central limit theorem.

FIG. 2: A sequence of probability distributions developing a “fat
tail” proportional to ∼ τ−3/2 when k→ ∞.

pendent but non-identical variables. If they’re not too non-
identical, you still get Gauss and Lévy distributions. The pre-
cise premises (the “Lindeberg condition”), under which the
sum of a large number of nonidentical variables is Gaussian
distributed, may be found in a recent review for physicists by
Clusel and Bertin [3].

Now consider a case in which the Lindeberg condition does
not hold. Suppose a distribution p∞(τ), defined for τ > 0,
decays as τ−3/2 in the large-τ limit. Let it be approximated,
as shown in Fig. 2, by a sequence of truncated distributions
p1(τ), p2(τ), . . . , pk(τ), . . . which is such that in the limit of
large k the distribution pk(τ) has its cutoff at τ ∼ k2. Then
how will the sum tL ≡ τ1 + τ2 + . . .+ τL be distributed?

The answer is that it will be a bell-shaped distribution
which is neither Gaussian nor asymmetric Lévy, but some-
thing in between. It’s given by a complicated integral that I
will not show here. It is again an attractor: it does not depend
on the shape of p(τ) and the pk(τ) for finite τ, but only on the
asymptotic large-τ behavior of these functions as well as on
how the cutoff progresses for asymptotically large k.

An example: support of 1D simple random walk. An ex-
ample of just these distributions occurs in the following not

FIG. 3: A random walker on the positive half-line pays its first visit
to site L at time tL. The sites (squares) already visited are colored
black. The time interval between the first visits to L and to L +
1 is equal to τL+1. During this time interval the walker makes an
excursion in the direction of the origin, as indicated by the dotted
trajectory. The probability distributions pL(τL) are independent but
non-identical.

totally unrealistic situation, depicted in Fig. 3, and which was
studied by Hilhorst and Gomes [4]. A random walker on a
one-dimensional lattice with reflecting boundary conditions
in the origin visits site L for the first time at time tL. We can
then write tL = τ1 + τ2 + . . .+ τL, where τk is the time differ-
ence between the first visit to the (k−1)th site and the kth site.
As k increases, the τk tend to increase because of longer and
longer excursions inside the region already visited. The τk are
independent variables of the type described above. For L→∞

the probability distribution of tL tends to an asymmetric bell-
shaped function of the scaling variable tL/L2which is neither
Gaussian nor Lévy. It is given by an integral that we will not
present here. It is universal in the sense that it depends only
on the asymptotic large τ behavior of the functions involved.

Sums having a random number of terms

The game of summing variables still has other variations.
We may, for example, sum N i.i.d. where N itself is a random
positive integer. Let N have a distribution πN(ν) where ν is
a continuous parameter such that 〈N〉 = ν. Then for ν→ ∞

one easily derives new variants of the Central Limit Theorem.

2. MAXIMA OF RANDOM VARIABLES

Gumbel distributions

Let us again start from N independent identically dis-
tributed variables, but now ask a new question. Let there be
a given a probability law p(x) which for large x decays faster
than any power law (it might be a Gaussian). And suppose we
draw N independent random values x1, . . . ,xN from this law.
We will set Y = max1≤i≤N xi. Then what is the probability
distribution PN(Y ) of Y in the limit Y → ∞ ? The expression
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FIG. 4: The Gumbel-k distribution for various values of k.

is easily written down as an integral,

PN(Y ) =
d

dY

(
1 −

∫
∞

Y
dx p(x)

)N

. (3)

The calculation is a little harder to do than for the case of
a sum. Let us subject the variable Y to an appropriate (and
generally N-dependent) shift and scaling and again call the
result Y . Then one obtains

P∞(Y ) = e−Y e−e−Y
, (4)

which is the Gumbel distribution.
The asymptotic decay of p(x) was supposed here faster

than any power law. If it is as a power law, a different dis-
tribution appears, called Fréchet; and if p(x) is strictly zero
beyond some cutoff x = xc, a third distribution appears, called
Weibull. Again, mathematicians tell us that for this new ques-
tion these three cases exhaust all possibilities.

In Ref. [3] an interesting connection is established between
distributions of sums and of maxima.

The Gumbel-k distribution. The Gumbel distribution (4) is
depicted in Figs. 4, where it is called “Gumbel-1”. This is
because we may generalize the question and ask not how the
largest one of the xi, but how the k th largest one of them is
distributed? The answer is that it is a Gumbel distribution of
index k. Its analytic form is known and contains k as a param-
eter. For k→ ∞ it tends to a parabola, that is, to a Gaussian.

All these distributions are attractors under the maximum
operation. Even if you did not know them in advance, you
would be led to them starting from an arbitrary given distri-
bution p(x) within its basin of attraction.

Bertin and Clusel [5, 6] show that the definition of the
Gumbel-k distribution may be extended to real k. These
authors also show how Gumbel distributions of arbitrary
index k may be obtained as sums of correlated variables.
Their review article [3] is particularly interesting.

The BHP distribution

In 1998 Bramwell, Holdsworth, and Pinton (BHP) [7]
adopted a semi-empirical approach to the discovery of new

FIG. 5: The Gumbel-1 and the BHP distribution.

universal distributions. These authors noticed that, within er-
ror bars, exactly the same probability distribution is observed
for (i) the experimentally measured power spectrum fluctu-
ations of 3D turbulence; and (ii) the Monte Carlo simulated
magnetization of a 2D XY model on an L×L lattice at tem-
perature T < Tc, in spin wave approximation.

For the XY model Bramwell et al. [8, 9] were later able
to calculate this distribution. It is given by a complicated
integral that I will not reproduce here and is called since
the “BHP distribution.” Fig. 5 shows it together with the
Gumbel-1 distribution [10].

Numerical simulations. How universal exactly is the BHP
distribution? Bramwell et al. [8] were led to hypothesize that
the BHP occurs whenever you look for the maximum of, not
independent, but correlated variables. To test this hypothesis
these authors generated a random vector ~x = (x1, . . . ,xN) of
N elements distributed independently according to an expo-
nential, and acted on it with a fixed random matrix M such
as to obtain~y = M~x. By varying~x for a single fixed M they
obtained the distribution of Y = max1≤i≤N yi and concluded
that indeed it was BHP.

However, Watkins et al. [11] showed one year later by
an analytic calculation that what appears to be a BHP distri-
bution in reality crosses over to a Gumbel-1 law when N is
increased. In this case, therefore, the correlation is irrelevant
and the attractor distribution is as for independent variables.

Watkins et al. conclude that “even though subsequent re-
sults may show that the BHP curve can result from strong
correlation, it need not.” This example illustrates the danger
of trying to attribute an analytic expression to numerically ob-
tained data.

In later work Clusel and Bertin [3] present heuristic
arguments tending to explain why distributions closely
resembling the BHP distribution occur so often in physics.

Wider occurrence of Gumbel and BHP?

The Gumbel and BHP distribution have been advanced to
fit curves in situations where their occurrence is not a pri-
ori expected. Two examples from the literature that appeared
this month illustrate this. Palassini [12] performs Monte
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FIG. 6: A random walk on a finite interval with periodic boundary
conditions. The random variable x represents the maximum devia-
tion of the walk from its interval average. The probability distribu-
tion P(x) was calculated by Majumdar and Comtet [14].

Carlo simulations that yield the ground state energy of the
Sherrington-Kirkpatrick model; this author fits his data by a
Gumbel-6 distribution ([12], Fig. 4b).

Gonçalves and Pinto [13] consider the distribution of the
cp daily return of two stock exchange indices (DJIA30 and
S&P100) over a 21 year period. They find that the cubic root
of the square of this distribution is extremely well fitted by
the BHP curve ([13], Figs. 1 and 2).

In both cases the authors are right to point out the qual-
ity of the fit. But these examples also show that having a
very good fit doesn’t mean you have a theoretical explanation.

3. CORRELATED VARIABLES

In addition to the example discussed above, we will
provide here two further examples of how the maximum
of a set of correlated random variables may be distributed.
These examples will illustrate the diversity of the results that
emerge.

Airy distribution. Fig. 6 shows the trajectory of a one-
dimensional random walker in a given time interval, subject
to the condition that the starting point and end point coin-
cide. The walker’s positions on two different times are clearly
correlated. Let x denote the maximum deviation (in absolute
value) of the trajectory from its interval average.

Majumdar and Comtet [14] were able to show that this
maximum distance is described by the Airy distribution
(distinct from the well-known Airy function), which is a
weighted sum of hypergeometric functions that I will not
reproduce here. It is again universal: Schehr and Majumdar
[15] showed in analytic work, supported by numerical simu-
lations, that this same distribution appears for a wide class of
walks with short range steps. It turns out [14], however, that
the distribution changes if the periodic boundary condition
in time is replaced by free boundaries. This therefore puts a
limit on the universality class [1].

Magnetization distribution of Ising 2D at criticality. We
consider a finite L× L two-dimensional Ising model with a
set of short-range interaction constants {Jk}. Its magnetiza-
tion (per spin) will be denoted M = N−1

∑
N
i=1 si, where N = L2

and the si are the individual spins. We ask what the distri-
bution PL(M) is exactly at the critical temperature T = Tc.
This distribution can be determined, in principle at least, by a

FIG. 7: Qualitative behavior of the distribution PL(M) of the magne-
tization of the 2D Ising model on a periodic L×L lattice. The sharp
peaks for T > Tc and T < Tc are Gaussians. For T = Tc and under
suitable scaling PL(M) tends in the limit T → ∞ to a double-peaked
universal distribution P (m); see Eq. (5) and the accompanying text.

renormalization calculation which in its final stage gives

L−
1
8 PL(M) = P

(
m,{L−y`u`}

)
, (5)

where m = L
1
8 M and where {y`} is a set of positive fixed-

point indices with corresponding scaling fields {u`} (i.e. the
u` are nonlinear combinations of the Jk). In the limit L→
∞ the dependence on these scaling fields disappears and we
have, in obvious notation, that limL→∞ L−

1
8 PL(M) = P (m).

In Fig. 7 the distribution PL(M) is depicted qualitatively for
L� 1 (it has two peaks!), together with the Gaussians that
prevail when T 6= Tc. The reason for M not being Gaussian
distributed exactly at the critical point is that for T = Tc the
spin pair correlation does not have an exponential but rather
a slow power law decay with distance: the spins are strongly
correlated random variables.

The similarity between Eq. (5) and Eq. (1) is not fortuitous:
the coarse-graining of the magnetization which is implicit in
renormalization, amounts effectively to an addition of spin
variables; and the set of irrelevant scaling fields {u`} plays
the same role as the set of higher moments {〈xn〉 |n ≥ 3} in
Eq. (1).

Eq. (5) says that P (m) is an attractor under the renor-
malization group flow; it is reached no matter what set of
coupling constants {Jk} was given at the outset. Here, too,
there are limits on the basin of attraction: the shape of P (m)
depends, in particular, on the boundary conditions (periodic,
free, or otherwise [16]).

The conclusion from everything above is that attractor dis-
tributions come in all shapes and colors, and that it makes
sense to try and discover new ones.

4. q-GAUSSIANS

A q-Gaussian Gq(x) is the power of a Lorentzian,

Gq(x) =
cst

[1+ax2] p =
cst

[1+(q−1)x2]
1

q−1
, (6)
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FIG. 8: Examples of q-Gaussians. Dotted curve: the ordinary Gaus-
sian, q = 1. Solid curves: the q-Gaussians for q = 2.2 and q = −2;
the former has fat tails whereas the latter is confined to a compact
support. All three curves are normalized to unity in the origin.

where in the second equality we have set p = 1/(q− 1) and
scaled x such that a = q− 1. Examples of q-Gaussians are
shown in Fig. 8. For q = 2 the q-Gaussian is a Lorentzian;
in the limit q→ 1 it reduces to the ordinary Gaussian; for
q < 1 it is a function with compact support, defined only for
−xm < x < xm where xm = 1/

√
1−q. For q = 0 it is an arc

of a parabola and for q→−∞ (with suitable rescaling of x) it
tends to a rectangular block.

Interest in q-Gaussians in connection with central limit the-
orems stems from the fact that they have many remarkable
properties that generalize those of ordinary Gaussians. One
may consider, for example, the multivariate q-Gaussian ob-
tained by replacing x2 in (6) with ∑

n
µ,ν=1 xµAµνxν (with A a

symmetric positive definite matrix). Upon integrating this
q-Gaussian on m of its variables we find that the marginal
(n−m)-variable distribution is qm-Gaussian with qm = 1−
2(1− q)/[2 + m(1− q)] (see Vignat and Plastino [17]; this
relation seems to have first appeared in Mendes and Tsallis
[18]).

A special case is the uniform probability distribution inside
an n-dimensional sphere of radius R,

Pn(x1, . . . ,xn) = cst×θ

(
R2−

n

∑
µ=1

x2
µ

)
, (7)

where θ denotes the Heaviside step function. This is actually
a multivariate q-Gaussian with q = −∞. Integrating on m of
its variables yields a q-Gaussian with qm = 1−2/m. We see
that for large m both in the general and in the special case qm
approaches unity and hence these marginal distributions tend
under iterated tracing to an ordinary Gaussian shape.

Let us first see, now, how q-Gaussians may arise as
solutions of certain partial differential equations in physics.

Differential equations and q-Gaussians

Thermal diffusion in a potential. The standard Fokker-
Planck (FP) equation describing a particle of coordinate x dif-

fusing at a temperature T in a potential U(x) reads

∂P(x, t)
∂t

=
∂

∂x

[
U ′(x)P + kBT

∂P
∂x

]
. (8)

Its stationary distribution Pst
U (x) is the Boltzmann equilib-

rium in that potential, Pst
U (x) = cst×exp[−βU(x)], where β =

1/kBT . For the special choice of potential U ′(x) = αx/(1 +
γx2) the stationary distribution becomes the q-Gaussian

Pst
U (x) = cst×

(
1+ γx2)−αβ/γ

. (9)

This distribution is an attractor under time evolution, the lat-
ter being defined by the FP equation (8); a large class of rea-
sonable initial distributions will tend to (9) as t → ∞ [19].
It should be noted, however, that by adjusting U(x) we may
obtain any desired stationary distribution, and hence the q-
Gaussian of Eq. (9) plays no exceptional role.

The following observation is trivial but will be of interest
later on in this talk. Let x(t) be the Brownian trajectory of the
diffusing particle. Let x(0) be arbitrary and let x(t), for t > 0,
be the stochastic solution of the Langevin equation associated
[20] with the FP equation (8). Let ξn = x(nτ)− x((n− 1)τ),
where τ is a finite time interval. Then YN = ξ1 +ξ2 + . . .+ξN
(without any scaling) is a sum which for N → ∞ has the
distribution Pst

U (Y ). In particular, if U(x) is chosen such as to
yield (9), we have constructed a q-Gaussian distributed sum.

Finite difference scheme [21]. Rodrı́guez et al. [22] re-
cently studied the linear finite difference scheme

rN,n + rN,n+1 = rN−1,n , (10)

where N = 0,1,2, . . . and n = 0,1, . . . ,N. The quantity pN,n ≡(N
n

)
rN,n may be interpreted as the probability that a sum of

N identical correlated binary variables be equal to n. For
specific boundary conditions, the authors were quite remark-
ably able to find a class of analytic solutions to Eq. (10) and
observed that the N → ∞ limit of the sum law pN,n is a q-
Gaussian.

To understand better what is happening here, let us set
t = 1/N, x = 1− 2n/N, and P(x, t) = N

(N
n

)
rN,n. When ex-

panding Eq. (10) in powers of N−1 one discovers [23] that
P(x, t) satisfies the Fokker-Planck equation

∂P(x, t)
∂t

= 1
2

∂2

∂x2

[
(1− x2)P

]
(11)

for t > 0 and −1 < x < 1. The “time” t runs in the direc-
tion of decreasing N. Hence Rodrı́guez et al. have solved a
parabolic equation backward in time and determined, starting
from the small-N behavior, what is actually an initial condi-
tion at N = ∞. It is obvious that q-Gaussians are not singled
out here: there exists a solution to Eq. (11) for any other ini-
tial condition at t = 0, and concomitantly to Eq. (10) for any
desired limit function p∞,n at N = ∞.

Therefore, in this and the preceding paragraph, the oc-
currence of q-Gaussians in connection with Fokker-Planck
equations cannot be construed as an indication of a new
central limit theorem.
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The porous medium equation. Let us consider a fluid flow-
ing through a porous medium. Three equations of physics
provide the basic input for the description of this flow, namely
(i) the continuity equation for the fluid density ρ(~x, t); (ii)
Darcy’s law, which relates the fluid velocity ~v to its pressure
p by ~v = −cst×~∇p; and (iii) the adiabatic equation of state
of the ideal gas. Upon combining these one finds the porous
medium equation

∂ρ

∂t
= ∆ρ

2−q, q = 1−Cp/Cv , (12)

where Cp/Cv is the specific heat ratio. For q = 1 this equation
reduces to the ordinary diffusion equation.

Equation (12) is nonlinear and its general solution, i.e., for
an arbitrary initial condition u(~x, t), cannot be found. It is
however possible to find special classes of solutions. One
special solution is obtained by looking for solutions that are
(i) radially symmetric, i.e., dependent only on x≡ |~x|; and (ii)
scale as u(~x, t) = t−dbF(xt−b). After scaling of x and t we
obtain the similarity solution

ρ(~x, t) =
c0

tdb

[
1 + (q−1)

x2

t2b

]− 1
q−1

, (13)

in which b = 1/[d(1− q)+ 2] and where also c0 is uniquely
defined in terms of the parameters of the equation. Mathe-
maticians (see e.g. [24]) have shown that initial distributions
with compact support tend asymptotically towards this simi-
larity solution. The asymptotic behavior (13) is conceivably
robust, within a certain range, against various perturbations
of the porous medium equation. It is not clear to me if and
how this property can be connected to a central limit theorem.

q-statistical mechanics

Considerations from a q-generalized statistical mechanics
[25–27] have led Tsallis [28] to surmise that in the limit N→
∞ the sum of N correlated random variables becomes, under
appropriate conditions, q-Gaussian distributed; that is, on this
hypothesis q-Gaussians are attractors in a similar sense as or-
dinary Gaussians. Now, variables can be correlated in very
many ways. To fully describe N correlated random variables
you need the N variable distribution PN(x1, . . . ,xN). Taking
the limit N→ ∞ requires knowing the set of functions

PN(x1, . . . ,xN), N = 1,2,3, . . . (14)

In physical systems the PN are determined by the laws of
nature; the relative spatial and/or temporal coordinates of
the variables, usually play an essential role. The examples
of the Ising model and of the Airy distribution show how
widely the probability distributions of strongly correlated
variables may vary. Hence, in the absence of any elements
of knowledge about the physical system that they describe,
statements of uniform validity about correlated variables
cannot be expected to be very specific.

q-Central Limit Theorem

We now turn to a q-generalized central limit theorem (q-
CLT) formulated by Umarov et al. [29]. It says, essen-
tially, the following. Given an infinite set of random variables

x1,x2, . . . ,xn, . . . , let the first N of them be correlated accord-
ing to a certain condition CN(q), where N = 1,2,3, . . .. Then
the partial sum YN = ∑

N
n=1 xn, after appropriate scaling and

in the limit N→ ∞, is distributed according to a q-Gaussian.
The theorem is restricted to 1 < q < 2. The conditions CN(q)
are concisely referred to as “q-independence” in Ref. [29] and
for q = 1 reduce to the usual condition of random variables
being independent. Closer inspection of the theorem prompts
two questions.

First, the conditions CN(q) are difficult to handle analyt-
ically. If a theoretical model is defined by means of its
PN(x1, . . . ,xN) for N = 1,2,3, . . ., then one would have to
check that these satisfy the CN(q). I am not aware of cases
for which this has been possible. In the absence of examples
it is hard to see why nature would generate exactly this type
of correlations among its variables.

Secondly, the proof of the theorem makes use of “q-Fourier
space,” the q-Fourier transform (q-FT) having been defined in
Ref. [29] as a generalization of the ordinary FT. The q-FT has
the feature that when applied to a q-Gaussian it yields a q′-
Gaussian with q′ = (1 + q)/(3− q), for 1 ≤ q < 3. Now the
q-FT is a nonlinear mapping which appears not to have an
inverse [30]. It is therefore unclear at present how the state-
ments of the theorem derived in q-Fourier space can be trans-
lated back in a unique way to “real” space.

5. THE SEARCH FOR q-GAUSSIANS

Mean-field models

Independently of this q-CLT Thistleton et al. [31] (see also
Ref. [32]) attempted to see a q-Gaussian arise in a numerical
experiment. These authors defined a system of N variables xi,
i = 1,2, . . . ,N, equivalent under permutation. Each variable
is drawn from a uniform distribution on the interval (− 1

2 , 1
2 )

but the xi are correlated in such a way that 〈x jxk〉 = ρ〈x2
1〉

for all j 6= k, where ρ is a parameter in (0,1) [33]. They
considered the sum YN = (x1 + . . .+xN)/N and determined its
distribution P(Y ) in the limit N� 1. For ρ = 7

10 the numerical
results for P(Y ) can be fitted very well by a q-Gaussian Gq(Y )
with q =− 5

9 , shown as the dotted curve in Fig. 9. This system
of correlated variables is sufficiently simple that Hilhorst and
Schehr [34] were able to do the analytic calculation of the
distribution. They found that Y is distributed according to

P(Y ) =
(2−ρ

ρ

) 1
2

exp
(
− 2(1−ρ)

ρ

[
erf−1(2Y )

]2)
, (15)

for − 1
2 < Y < 1

2 shown as the solid curve in Fig. 9. The dif-
ference between the exact curve and the q-Gaussian approx-
imation is of the order of the thickness of the lines. More
importantly, the calculation of Ref. [34] shows that the dis-
tribution of the sum Y varies with the initially given one of
the xi. This initial distribution may be fine-tuned such as to
lead for N→ ∞ to almost any limit function P(Y ) – in partic-
ular, to a q-Gaussian. The existence of q-Gaussian distributed
sums was already pointed out below Eq. (9) and is no surprise.
However, there is, here no more than in the case of the FP
equation, any indication that distinguishes q-Gaussians from
other functions.
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FIG. 9: Comparison of the q-Gaussian Gq(Y ) (dotted curve) guessed
in Ref. [31] on the basis of numerical data and the exact distribution
P(Y ) (Eq. (15), solid curve) calculated in Ref. [34]. The curves are
for ρ = 7

10 and the q-Gaussian has q =− 5
9 . The difference between

the two curves is of the order of the thickness of the lines and just
barely visible to the eye.

The work discussed here concerns a mean-field type
model: there is full permutational symmetry between all
variables. This will be different in the last two models that
we will now take a look at.

Logistic map and HMF model

Two well-known models of statistical physics have been
evoked several times by participants [35, 36] at this meeting.
The common feature is that in each of them the variable
studied is obtained as an average along a deterministic
trajectory.

Logistic map. In their search for occurrences of q-
Gaussians in nature, Tirnakli et al. [37] considered the lo-
gistic map

x` = a− x2
`−1 , ` = 1,2, . . . (16)

A motivation for this choice is the appearance [38] of q-
exponentials in the study of this map. Starting from a uni-
formly random initial condition x = x0, Tirnakli et al. deter-
mined the probability distribution of the sum

Y =
n0+N

∑
`=n0

x` (17)

of successive iterates, scaled with an appropriate power of
N, in the limit N � 1. Their initial report of q-Gaussian
behavior at the Feigenbaum critical point (defined by a
critical value a = ac) was critized by Grassberger [39].
Inspired by a detailed study due to Robledo and Mayano
[40], who connect properties at a = ac to properties observed
on approaching this critical point, Tirnakli et al. [41] took
a renewed look at the same question and now see indica-
tions for a q-Gaussian distribution of Y near the critical point.

Hamiltonian Mean Field Model. The Hamiltonian mean-
field model (HMF), introduced in 1995 by Antoni and Ruffo
[42], describes L unit masses that move on a circle subject to
a mean field potential. The Hamiltonian is, explicitly,

H = ∑
i

p2
i

2
+

1
2L ∑

i, j
[1− cos(θi−θ j)] , (18)

where pi and θi are the momentum and the polar angle, re-
spectively, of the ith mass. The angles were originally con-
sidered to describe the state of classical XY spins, so that
~mi = (cosθi,sinθi) is the magnetization of the ith spin. The
HMF has a solvable equilibrium state. At a critical value
U = Uc = 0.75 of the total energy per particle a phase transi-
tion occurs from a high-temperature state with uniformly dis-
tributed particles to a low-temperature one with a spontaneous
value of the “magnetization” 〈|~M|〉, where ~M = L−1

∑
L
i=1 ~mi.

When launched with certain nonequilibrium initial condi-
tions, the system, before relaxing to equilibrium, appears to
enter a “quasi-stationary state” (QSS) whose lifetime diverges
with N. It is impossible to discuss here all the good work that
has been done, and is still going on, to attempt to explain the
properties of this state (see e.g. Chavanis [43–45], Tsallis et
al. [46], Antoniazzi et al. [47], Chavanis et al. [48]). One
specific type of numerical simulations, performed by differ-
ent groups of authors, is relevant for this talk. These have
been performed at the subcritical energy U = 0.69 with ini-
tially all particles located at the same point (θi = 0 for all i)
and the momenta pi distributed randomly and uniformly in an
interval [−pmax, pmax]. The QSS subsequent to these initial
conditions has many features (such as non-Gaussian single-
particle velocity distributions) that have been connected to q-
statistical mechanics. Of fairly recent interest is the sum Yi
of the single-particle momentum pi(t) sampled at regularly
spaced times t = `τ along its trajectory,

Yi =
n0+N

∑
`=n0

pi(`τ). (19)

The distribution of Yi in the limit of large N is again con-
troversial [49, 50]. For the specific initial conditions cited
above it seems to first approach a fat-tailed distribution,
interpreted by some as a q-Gaussian, before it finally tends to
an ordinary Gaussian.

Comments. The analogy between (17) and (19) is obvious.
In both cases the sequence of iterates has long-ranged
correlations in the “time” variable ` and fills phase space
in a lacunary way. It is therefore not very surprising that
Y and Yi should have non-Gaussian distributions. The
q-Gaussian shape of these distributions, however, remains
speculative. The examples of this talk have shown, on the
contrary, that in the absence of specific arguments sums of
correlated variables may have a wide variety of distributions.
It seems unlikely that haphazard trials will hit exactly on the
q-Gaussian.
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6. CONCLUSION

Universal probability laws occur all around in physics and
mathematics, and the quest for them is legitimate and inter-
esting. What lessons can we draw from what precedes?
• It is quite conceivable that new universal distributions

may be discovered, either by asking new questions about in-
dependent variables; or by asking the traditional questions
(sums, maxima,. . . ) about correlated variables.
• Variables may be correlated in an infinity of ways. In

the end some real-world input is desirable, be it from physics,
finance, or elsewhere.
• Nothing can beat a central limit theorem. A good one,

however, should give rise to analytic examples and/or simula-
tion models that reproduce the theorem with high numerical

precision.
• In the absence of theoretical arguments, assigning an-

alytic expressions to numerically obtained curves is a risky
undertaking.

Let me end by a quotation [51]: “Good theory thrives on
reasoned dissent, and [our views] may change in the face of
new evidence and further thought.”
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