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Nonadditive entropy and nonextensive statistical mechanics - An overview after 20 years
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Statistical mechanics constitutes one of the pillars of contemporary physics. Recognized as such — together
with mechanics (classical, quantum, relativistic), electromagnetism and thermodynamics —, it is one of the
mandatory theories studied at virtually all the intermediate- and advanced-level courses of physics around the
world. As it normally happens with such basic scientific paradigms, it is placed at a crossroads of various other
branches of knowledge. In the case of statistical mechanics, the standard theory — hereafter referred to as the
Boltzmann-Gibbs (BG) statistical mechanics — exhibits highly relevant connections at a variety of microscopic,
mesoscopic and macroscopic physical levels, as well as with the theory of probabilities (in particular, with the
Central Limit Theorem, CLT ). In many circumstances, the ubiquitous efects of the CLT , with its Gaussian
attractors (in the space of the distributions of probabilities), are present. Within this complex ongoing frame, a
possible generalization of the BG theory was advanced in 1988 (C.T., J. Stat. Phys. 52, 479). The extension
of the standard concepts is intended to be useful in those “pathological”, and nevertheless very frequent, cases
where the basic assumptions (molecular chaos hypothesis, ergodicity) for applicability of the BG theory would
be violated. Such appears to be, for instance, the case in classical long-range-interacting many-body Hamilto-
nian systems (at the so-called quasi-stationary state). Indeed, in such systems, the maximal Lyapunov exponent
vanishes in the thermodynamic limit N→ ∞. This fact creates a quite novel situation with regard to typical BG
systems, which generically have a positive value for this central nonlinear dynamical quantity. This peculiarity
has sensible effects at all physical micro-, meso- and macroscopic levels. It even poses deep challenges at the
level of the CLT . In the present occasion, after 20 years of the 1988 proposal, we undertake here an overview
of some selected successes of the approach, and of some interesting points that still remain as open questions.
Various theoretical, experimental, observational and computational aspects will be addressed.
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1. INTRODUCTION

Statistical mechanics indeed constitutes one of the pillars
of contemporary physics. As such — together with mechan-
ics (classical, quantum, relativistic), electromagnetism and
thermodynamics —, it is one of the basic theories universally
studied at intermediate and advanced levels in physics. As it
happens with such grounding scientific paradigms, it plays a
central role in various other branches of knowledge, includ-
ing chemistry, biology, mathematics, computational sciences,
to name but the most obvious ones. The standard theory —
hereafter referred to as the Boltzmann-Gibbs (BG) statisti-
cal mechanics — exhibits many connections at a variety of
microscopic (mechanics, classical and quantum field theory,
electrodynamics, nonlinear dynamical systems, gravitation),
mesoscopic (Langevin, master equation, Fokker-Planck ap-
proaches, Vlasov equation) and macroscopic (thermodynam-
ics, science of complexity) physical descriptions, as well as
with mathematics (theory of probabilities, Central Limit The-
orem, CLT ).

Those physical approaches that are usually considered from
first principles inescapable involve up to four independent
and universal physical constants, namely the Planck constant
(h), the velocity of light in vacuum (c), the gravitation con-
stant (G), and the Boltzmann constant (kB). All presently
known physical units can be expressed as multiplicative ex-
pressions of powers of these four constants. Naturally, op-
timally formulated mathematics involve none of these con-
stants, i.e., the exponents of all those powers vanish (which
legitimates the common usage of units such that h = c = G =

kB = 1). The constant kB always appears, in one way or an-
other, in statistical mechanics (e.g., in the laws of the ideal
classical gas). In many instances, it is accompanied by the
constant h (e.g., in Fermi-Dirac and Bose-Einstein statistics).
The constant c can also be in the party (e.g., in the various
forms expressing the laws of the black-body radiation). The
constant G accompanies kB whenever gravitation is taken into
account (e.g., the variation of air density of the Earth atmo-
sphere as a function of height, due to the gravitational mass
attraction). Finally, all four constants h, c, G and kB can be
simultaneously present (e.g., in quantum gravitation thermo-
statistical expressions such as the entropy of a black-hole). In
many of these and other circumstances, the efects of the CLT ,
with its Gaussian attractors (in the space of the distributions
of probabilities), show up.

The most primitive form of gravitation (the d = 3 New-
tonian gravitation) emerges with G 6= 0. Maxwell equations
and special relativity emerge with 1/c 6= 0. The most primi-
tive form of quantum mechanics (the Schroedinger equation)
emerges with h 6= 0. The basic form of statistical mechan-
ics (based on the celebrated Boltzmann formula for the en-
tropy, graved on his tomb in the Central Cemitery in Vienna)
emerges with 1/kB 6= 0 (and not with kB 6= 0, as we shall see).
The various possible combinations of these four universal
constants (two by two, or three by three, or even all four to-
gether) can be represented as successively embedded tetrahe-
dra. The 1/kB = 0 section of this structure is indicated in Fig.
1. The most general case (i.e., (G,c−1,h,k−1

B ) 6= (0,0,0,0))
corresponds in principle to the statistical mechanics of quan-
tum gravity, a theory yet to be constructed.
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FIG. 1: Physical structure at the k−1
B = 0 plane. The full diagram

involves four universal constants, and corresponds to successively
embedded tetrahedra. At the center of the tetrahedron we have the
case G = c−1 = h = k−1

B = 0, and the overall tetrahedron corresponds
to G > 0,c−1 > 0,h > 0,k−1

B > 0 (statistical mechanics of quantum
gravity).

The above considerations are consistent with the fact that
Planck introduced [1, 2] (see also [3–8]) four natural units for
length, mass, time, and temperature, namely

unit o f length =

√
hG
c3 = 4.13×10−33cm (1)

unit o f mass =

√
hc
G

= 5.56×10−5 g (2)

unit o f time =

√
hG
c5 = 1.38×10−43s (3)

unit o f temperature =
1
kB

√
hc5

G
= 3.50×1032 K (4)

There is no need to add to this list the elementary elec-
tric charge e. Indeed, it is related to the already mentioned
constants through the fine-structure constant α ≡ 2πe2/hc =
1/137.035999...

In 1988, a generalization of the BG theory was proposed
[9], inspired by the structure of multifractals. It is based on
the nonadditive entropy Sq (q ∈ R ), to be defined in the next
Section, and is currently referred to as nonextensive statistical
mechanics; it recovers the (additive) BG entropy and its asso-
ciated statistical mechanics as the q = 1 particular instance.
The extension of the standard concepts focuses on the fre-
quent “pathological” cases where the basic assumptions (e.g.,
molecular chaos hypothesis, ergodicity) for applicability of
the BG theory are violated. One paradigmatic case concerns
classical long-range-interacting many-body Hamiltonian sys-
tems (at the so-called quasi-stationary state). Indeed, in such
systems, the maximal Lyapunov exponent vanishes in the ther-
modynamic limit N → ∞. This fact is completely atypical
within the BG scenario. Indeed, most of the dynamical sys-
tems that have usually been studied, within the BG theory,
during the last 130 years generically have a positive value for

the maximal Lyapunov exponent. This property has impor-
tant consequences at physical micro-, meso- and macroscopic
levels. Also, it sustains connections with the most important
CLT . Last but not least, as we shall soon see, the quantity
(q−1) intriguingly couples to the universal constant kB.

In Section 2, we briefly introduce the nonadditive entropy
Sq, and its associated statistical mechanics. In Section 3, we
show how the indice(s) q are to be determined from micro-
or meso-scopic information; we also describe typical meso-
scopic mechanisms that are known to yield nonextensive
statistics. In Section 4, we briefly illustrate the ubiquitous
emergence of q-Gaussians (in general q-exponentials) in
natural, artificial and social systems; consistently we present
the q-generalization of the CLT , which can be thought as
being the cause of this ubiquity. We finally conclude in
Section 5.

2. NONADDITIVE ENTROPY AND NONEXTENSIVE
STATISTICAL MECHANICS

The entropic form introduced and studied by Boltzmann,
Gibbs, von Neumann, Shannon and many others will from
now on be referred to as the BG entropy SBG. For the discrete
case, it is given by

SBG =−k
W

∑
i=1

pi ln pi , (5)

with

W

∑
i=1

pi = 1 (pi ∈ [0,1]) , (6)

where W is the number of possible microscopic states, and
k some conventional constant, typically taken to be kB in
physics, and unity (or some other convenient dimensionless
value) in computational sciences and elsewhere. For the par-
ticular case of equal probabilities (i.e., pi = 1/W , ∀i), we im-
mediately obtain the celebrated formula

SBG = k lnW . (7)

The generalization of SBG proposed in [9] for generalizing
BG statistical mechanics is the following:

Sq = k
1−∑W

i=1 pq
i

q−1
(q ∈ R ; S1 = SBG) . (8)

For the particular case of equal probabilities, we obtain

Sq = k lnq W , (9)

where the q-logarithmic function is defined as follows:

lnq x≡ x1−q−1
1−q

(x > 0; ln1 x = lnx) . (10)

Its inverse, the q-exponential function, is given by

ex
q ≡ [1+(1−q)x]

1
1−q
+ (ex

1 = ex) , (11)
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where [z]+ ≡ max{z,0}.
The entropy (8) has various predecessors and related en-

tropies. The (repeated) references to all these are largely dif-
fused in the literature of nonextensive statistical mechanics.
A summary can be found in [10].

It is worth mentioning that the entropy Sq can be equiva-
lently re-written as follows:

Sq = k
W

∑
i=1

pi lnq
1
pi

=−k
W

∑
i=1

pq
i lnq pi =−k

W

∑
i=1

pi ln2−q pi

(12)
If we have two probabilistically independent systems A and

B, i.e. such that p(A+B)
i j = p(A)

i p(B)
j , ∀(i, j), we immediately

verify

Sq(A+B)
k

=
Sq(A)

k
+

Sq(B)
k

+(1−q)
Sq(A)

k
Sq(B)

k
, (13)

hence

Sq(A+B) = Sq(A)+Sq(B)+
(1−q)

k
Sq(A) Sq(B) . (14)

Therefore, for q = 1, we recover the well known additivity of
the BG entropy, i.e.,

SBG(A+B) = SBG(A)+SBG(B) , (15)

and this is so for any finite value of k. We also see that, for
q 6= 1, Sq is nonadditive. We further see that, for q 6= 1, ad-
ditivity is asymptotically recovered in the limit k→ ∞. More
precisely, it is asymptotically recovered for (1− q)/k → 0,
which creates a deep relationship between nonextensivity
and the limit k → ∞. Since the temperature T is accom-
panied by k (in the form kT ) in any stationary-state dis-
tribution and any equation of states involving the tempera-
ture, this fact can be seen as the reason which makes the
high-temperature asymptotic behavior of all known statis-
tics (Boltzmann-Gibbs, Fermi-Dirac, Bose-Einstein, Gentile
parastatistics, nonextensive statistics) to be one and the same,
essentially the Maxwell-Boltzmann one.

The entropy Sq can be, and has been, used in a great vari-
ety of situations for natural, artificial and social systems [11].
If the system is a physical one being described by a Hamil-
tonian, one can also develop a statistical mechanics (nonex-
tensive statistical mechanics) as follows. Let us illustrate the
procedure for the canonical ensemble (the system being in
long-standing thermal contact with a large thermostat). We
extremize Sq with constraint (6), and also constraint [12]

〈H 〉q ≡
W

∑
i=1

P(q)
i Ei = Uq , (16)

where the {Ei} is the set of eigenvalues associated with the
Hamiltonian H (and corresponding boundary conditions), Uq
is a fixed value characterizing the width of the distribution
(we note that the width must always be a finite value, a prop-
erty which is not guaranteed for the standard mean value, i.e.
with probabilities {pi}, if q happens to be not close enough
to unity), and

P(q)
i ≡ pq

i

∑W
j=1 pq

j
(17)

is referred to as the escort distribution. It follows straightfor-
wardly that

pi ≡

[
P(q)

i

] 1
q

∑W
j=1

[
P(q)

j

] 1
q

. (18)

This optimization procedure yields, for the stationary state,

pi =
e−βq (Ei−Uq)

q

∑W
j=1 e

−βq (E j−Uq)
q

, (19)

with

βq =
β

∑W
j=1 pq

j
, (20)

β being the Lagrange parameter associated with constraint
(16). Further details, as well as the connections with ther-
modynamics, can be seen in [12, 13].

The form of the energy constraint (16), using P(q)
i instead

of the usual pi can be understood along various convergent
lines. Let us restrict here to mentioning that both the norm
and the energy constraints are well defined (i.e., correspond-
ing to finite values) for q below some critical value, and both
diverge for q equal or above that value. In the absence of de-
generacy, this critical value is q = 2 (note that the standard
mean value of the energy is finite only up to q = 3/2, being
infinite for q≥ 3/2). The use of the q-expectation values such
as (16) has been recently criticized in [14]. This critique has
been replied in [15, 16]. Further arguments that could sug-
gest the use of q-expectation values can be found in [10], and
also in [17–24]. Other arguments that could suggest the use
of standard averages can be found in [24–26]. This particular
issue is somewhat unclear at the present date. Indeed, in addi-
tion to the various apparently contradicting arguments, calcu-
lations also exist which suggest the equivalence of both pro-
cedures (either using, for the energy constraint, averages with
{pi}, or using averages with {Pi} whenever the former ones
are finite) [12, 27]. To illustrate however a basic point, let us
assume that the variable x runs from zero to infinity, and that
the energy is proportional to xσ (σ > 0). The stationary-state
exhibits therefore a probability p(x) ∝ e−β xσ

q , hence, asymp-
totically for x→ ∞, p(x) ∼ x−σ/(q−1). This distribution (i)
is normalizable only for q < 1 + σ (hence q < 2 for σ = 1,
and q < 3 for σ = 2); (ii) satisfies that 〈xσ〉 is finite only for
q < (1+2σ)/(1+σ) (hence q < 3/2 for σ = 1, and q < 5/3
for σ = 2); (iii) satisfies that 〈xσ〉q is finite only for q < 1+σ,
which coincides with the upper bound for normalizability. In
other words, if we use q-expectation values, the entire theory
is valid up to q = 1 +σ, whereas if we use standard expecta-
tion values, the norm-constraint is mathematically admissible
up to q = 1 + σ, and the energy-constraint is mathematically
admissible up to a lower value, namely (1+2σ)/(1+σ).

Many applications of nonextensive statistical mechanics
can be found in [28–41] and elsewhere [11]. Along the years,
many areas have been focused on such as theory of finance
[42], anomalous diffusion [43], magnetism [44], stochastic
equations [45], biological evolution [46], turbulence in pure-
electron plasma [47], among others.
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3. DETERMINING THE INDICES q , AND THE
EXTENSIVITY OF THE NONADDITIVE ENTROPY Sq FOR

COMPLEX SYSTEMS

3.1. Sets of indices q

The theory advanced in the previous Section is in principle
valid for arbitray values of the index q. We shall now address
the following essential question: For a given specific system
or class of systems, how can we determine the values of its
indice(s) q? To start, let us point out that, for a given system,
not one but a whole family of (possibly infinite countable)
indices {q} is to be determined. Let us give a few examples:

qsensitivity : A dissipative one-dimensional (or, say, con-
servative two-dimensional) nonlinear dynamical system x(t)
typically exhibits a sensitivity to the initial conditions ξ ≡
lim∆x(0)→0

∆x(t)
∆x(0) of the form

ξ = e
λqsensitivity t
qsensitivity , (21)

where λqsensitivity is the q-generalized Lyapunov coefficient.
A practical numerical manner for determining it consists
in plotting lnq ξ(t) versus t for various values of q until a
value is found so that, asymptotically in the t → ∞ limit,
lnq ξ(t) ∝ t. That value of q is qsensitivity, and the slope is
λqsensitivity . The two most interesting situations occur for strong
chaos (i.e., when the Lyapunov exponent λ1 is positive),
and for weak chaos (at the edge of chaos, where λ1 = 0 and
λqsensitivity > 0). In the former case we have qsensitivity = 1; in
the latter qsensitivity < 1. Although not particularly relevant
within the present context, qsensitivity > 1 can also occur. Such
is the case at double-period and tangent bifurcation critical
points.

qentropy production : The phase space of a d-dimensional non-
linear dynamical system is partitioned into many W cells.
We put, in one of those cells (chosen randomly, or in any
other convenient manner), M initial conditions, and then let
these points spread around. We define pi(t) ≡ Mi(t)/M
(i = 1,2,3, ...,W ), where Mi(t) is the number of points within
the i-th cell at time t (∑W

i=1 Mi(t) = M, ∀t). We then calculate,
with these {pi(t)} into Eq. (8), Sq(t)/k. We will verify that,
for a huge class of nonlinear dynamical systems, a value of q
exists such that Sq(t) ∝ t. That value of q is qentropy production,
and the slope is the q-generalized Kolmogorov-Sinai-like en-
tropy production rate Kqentropy production . To be more precise, we
have

lim
t→∞

lim
W→∞

lim
M→∞

Sqentropy production(t)
k t

= Kqentropy production (22)

In the presence of strong chaos (weak chaos) we have
qentropy production = 1 (qentropy production < 1). For d = 1
systems, we expect qentropy production = qsensitivity and
Kqentropy production = λqsensitivity , thus verifying a Pesin-like iden-
tity.

qrelaxation : Various procedures have been used to deter-
mine this index. Let us describe one particularly simple case,
namely that of a d-dimensional dissipative nonlinear dynam-
ical system. We partition its phase space in W cells, and use

a large number of initial conditions uniformly spread in all
these cells. Then count the number of cells W (t) within which
there exists at least one point at time t. The system being dis-
sipative, and for W increasingly large, one expects

W (t)/W ' e
−t/τqrelaxation
qrelaxation , (23)

which defines the index qrelaxation. For strong chaos (weak
chaos) we expect qrelaxation = 1 (qrelaxation > 1). The com-
putational procedure that we have just described is not the
possibly most precise one, but is has the advantage of being
easily implemented.

qstationarystate : This index is the one characterizing the dis-
tribution of energies for the stationary state (which coincides
with thermal equilibrium for q = 1). In other words,

pi ∝ e
−βqstationary state Ei
qstationary state . (24)

Although no proof is available, this index might coincide
(at least for a large class of systems) with that of the dis-

tribution of velocities vi, i.e., p(vi) ∝ e−B v2
i

qstationary state . It might
also coincide with the index noted qlimit in the literature,
where limit refers in the sense of N → ∞, where N is the
number of particles of a probabilistic system; it might also
coincide with qattractor, where attractor is used in the sense
of the central limit theorem. It is not even excluded that
it coincides with the index characterizing some correlation
functions (e.g., velocity-velocity autocorrelation function or
others). At thermal equilibrium we have qstationary state = 1;
for more complex stationary states, one typically expects
qstationary state > 1 (although the possibility qstationary state < 1
is by no means excluded).

qentropy : In order to be consistent with clasical thermo-
dynamics, the entropy of a system composed of N elements
should be extensive, i.e., asymptotically proportional to N in
the N → ∞ limit. There is a plethora of systems for which a
value of q exists which satisfies this requirement. That value
of q is qentropy, i.e.,

0 < lim
N→∞

Sqentropy(N)
N

< ∞ . (25)

If there are no correlations or if they are weak, we have
qentropy = 1; if the correlations are strong we typically (but
not necessarily) have qentropy < 1. We remind however
that “pathological” systems exist for which no value of q
succeeds in making the entropy extensive.
Let us illustrate these features for the simple case of
equal probabilities, i.e., pi = 1/W , ∀i. If, in the
limit N → ∞, W (N) ∼ AµN (µ > 1; A > 0), we have
qentropy = 1. If we have W (N) ∼ BNρ (ρ > 0; B > 0), then
qentropy = 1− 1

ρ < 1. As a final example, let us assume that

W (N) ∼C µNγ
(µ > 1; 0 < γ < 1; C > 0). In such a case, no

value of q exists which could produce Sq(N) ∝ N.

qcorrelation : This index characterizes a strong correlation
involved in the system. It is sometimes introduced through
the q-product [48, 49]

x⊗q y≡
[
x1−q + y1−q−1

] 1
1−q

+
(x≥ 0, y≥ 0) , (26)
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which satisfies x ⊗1 y = xy, and the extensive property
lnq(x⊗q y) = lnq x + lnq y [to be compared with the nonad-
ditive property lnq(xy) = lnq x+ lnq y+(1−q)(lnq x)(lnq y)].

Strong correlations can be also introduced through non-
linearity and/or inhomogeneity in differential equations.
Absence of correlation (i.e., probabilistic independence) cor-
responds to qcorrelation = 1. Presence of strong correlations
corresponds to qcorrelation 6= 1.

3.2. Examples of indices q

We may consider nonextensivity universality classes of
systems, e.g., Hamiltonian many-body systems having two-
body interactions decaying (attractively) with distance as
1/distanceα. All systems sharing the same α (and perhaps
some other common features) possibly have the same set of
q’s. The same occurs for say families of one-dimensional uni-
modal dissipative maps sharing the same inflexion at the ex-
tremum.

The various indices can be determined (in principle analyt-
ically) from microscopic information about the system, typi-
cally its nonlinear dynamics (e.g., deterministic maps, Hamil-
tonian systems) or its complete probabilistic description (e.g.,
the full set of probabilities of the possible configurations of N
discrete or continuous random variables, either independent
or correlated), or from mesoscopic information. In the latter
case, at least two important mechanisms leading to nonexten-
sive statistics have been identified, namely a nonlinear homo-
geneous Fokker-Planck equation [50, 51], associated with a
strongly non-Markovian Langevin equation [52], and a linear
inhomogeneous Fokker-Planck equation [45, 53], associated
with multiplicative noise Langevin equation [45, 53]. Both
mechanisms can be unified within a more general (simulta-
neously nonlinear and inhomogeous) Fokker-Planck equation
[54], essentially implying a long-range memory. The various
connections of statistical mechanics (either BG or nonexten-
sive) and other important approaches are schematically de-
scribed in Fig. 2.

Let us illustrate the various facts mentioned above through
some selected examples.

(i) For the dissipative one-dimensional unimodal maps be-
longing to the z-logistic or the z-circular classes we have
qsensitivity(z) = qentropy production(z) satisfying

1
1−qsensitivity(z)

=
1

αmin(z)
− 1

αmax(z)
(qsensitivity(z) < 1)

(27)
where αmin(z) and αmax(z) are respectively the minimal and
maximal values of α for which the multifractal function f (α)
vanishes. It is known that

αmax(z) =
lnb

lnαF(z)

αmin(z) =
lnb

z lnαF(z)
(28)

where αF(z) is the z-generalized Feigenbaum constant of the
specific universality class of maps, and b is the partition scale

(b = 2 for the z-logistic maps; b = (
√

5 + 1)/2 = 1.6180...,
the golden mean, for the z-circular maps). Hence

1
1−qsensitivity(z)

= (z−1)
lnαF(z)

lnb
. (29)

Broadhurst calculated the z = 2 logistic map Feigenbaum
constant αF(2) with 1,018 digits [56]. Hence, it straighfor-
wardly follows that

qsensitivity(2) = 0.244487701341282066198.... . (30)

(ii) For the block entropy corresponding to an infinitely-
long linear chain with ferromagnetic first-neighbor interac-
tions belonging to the universality class characterized by the
central charge c, at the T = 0 quantum critical point in the
presence of a transverse magnetic field, it has been estab-
lished [57] that

qentropy(c) =

√
9+ c2−3

c
. (31)

Therefore, for the Ising model, we have qentropy(1/2) =√
37− 6 = 0.08..., for the isotropic XY model, we have

qentropy(1) =
√

10− 3 = 0.16..., and for the c→ ∞ limit we
have qentropy(∞) = 1, i.e., the BG result. The physical inter-
pretation of this interesting limit remains elusive. See Fig. 3.

iii) A probabilistic model with N binary equal random
variables can be represented as a triangle having, for fixed
N, (N +1) different elements with multiplicities respectively
given by N!

N!0! = 1, N!
(N−1)!1! = N, N!

(N−2)!2! = N(N−1)
2 , ..., N!

0!N! =
1. Strong correlations can be introduced [58] so that, for given
N, only the first (d + 1) elements (of the (N + 1) possible
ones) have nonvanishing probabilities, all the other (N− d)
elements of the same row having zero probability to occur. It
has been shown for this specific model, which turns out to be
asymptotically scale-invariant, that

qentropy = 1− 1
d

(d = 1,2,3, ...) . (32)

(iv) A probabilistic model with N correlated binary vari-
ables which strictly satisfies scale invariance (i.e., the trian-
gle Leibnitz rule) has been introduced in [59], whose N→ ∞
limiting distribution (appropriately centered and scaled) is a
qlimit -Gaussian with

qlimit =
ν−2
ν−1

(ν = 1,2,3, ...) . (33)

The index ν characterizes a particular triangle (with particular
strong correlations); ν = 1 corresponds to the Leibnitz trian-
gle itself; ν→ ∞ corresponds to independent random vari-
ables. This model has been further generalized [60], in such a
way that qlimit is still given by (33) but ν being now a real (not
necessarily integer) number ν ≥ 1 (hence qlimit ≤ 1). Along
the same lines, the model can be modified in such a way that
the region qlimit > 1 becomes admissible as well, while still
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FIG. 2: Main paths of thermal physics: from mechanics (microscopic level) to thermodynamics (macroscopic level), through Langevin,
Fokker-Planck, master, Liouville, von Neumann, Vlasov, Boltzmann kinetic, BBGKY hierarchy equations (mesoscopic level). The crucial
connection with statistical mechanics (Boltzmann-Gibbs theory, nonextensive statistical mechanics, or others) is done through the knowledge
of the values of indices such as the q’s (typically a family of infinite countable interconnected values of q). If we have full knowledge at the
dynamical (mechanical) level, i.e., the time evolution of the system in say phase space, the relevant q’s (qsensitivity, qentropy production, qrelaxation,
qstationary state, qentropy, etc) can be calculated from first principles; such is the case of unimodal dissipative maps like the logistic one, classical
two-body-interacting many-body Hamiltonian systems, strongly quantum-entangled Hamiltonian systems, etc, although the calculation might
sometimes (quite often in fact!) be mathematically or numerically untractable. If we only have information at the mesoscopic level (e.g.,
types and amplitudes of involved noises, linear or nonlinear coefficients and exponents, etc), the relevant q’s can in principle be analytically
determined as functions of those coefficients and exponents; such is the case of the multiplicative- and additive-noise Langevin equation,
the linear heterogenous and the nonlinear homogeneous Fokker-Planck equations, and similar ones. If we lack full information at both
microscopic and mesoscopic levels, we may still obtain useful information by proceeding through careful fittings of experimental and/or
observational and/or numerical data, by using appropriate functional forms (q-exponential, q-Gaussians, or even more general or different
forms). For the Braun and Hepp theorem connection, see [55]; for the H theorem connection, see [24] and references therein.

being strictly scale invariant. For this family of models, it can
be also proved that qentropy = 1 (see in Fig. 4 an illustration
corresponding to qlimit = 1.5).

(v) A phenomenological model based on a linear inhomo-
geneous Fokker-Planck equation has been suggested by Lutz
[61] to describe the velocity distribution of cold atoms in
dissipative optical lattices. He obtained that the distribution
should be a qstationart state-Gaussian with

qstationary state = 1+
44ER

U0
≥ 1 , (34)

where ER is the recoil energy, and U0 is the potential depth.
Later on, we will come back onto this prediction.

(vi) The solution corresponding to the Langevin equation
including multiplicative noise mentioned previously [45] is a

qstationary state-Gaussian with

qstationary state =
τ+3M
τ+M

≥ 1 , (35)

where τ and M are parameters of the phenomenological
model. In particular, M is the amplitude of the multiplicative
noise. We verify that M = 0 yields qstationary state = 1,
whereas M > 0 yields qstationary state > 1.

(vii) A phenomenological model based on a Langevin
equation including colored symmetric dichotomous noise
[62] has as solution a qstationary state-Gaussian with

qstationary state =
1−2γ/λ
1− γ/λ

, (36)

where (γ,λ) are parameters of the model. We verify that
γ/λ = 0 yields qstationary state = 1, whereas γ/λ > 0 yields
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Therefore, for the Ising model, we have qentropy(1/2) =√
37− 6 = 0.08..., for the isotropic XY model, we have

qentropy(1) =
√

10− 3 = 0.16..., and for the c → ∞ limit we
have qentropy(∞) = 1, i.e., the BG result. The physical inter-
pretation of this interesting limit remains elusive. See Fig. 3.
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FIG. 3: qentropy as a function of the central charge c. It asymptoti-
cally approaches the BG limit qentropy = 1 when c→ ∞. From [57].

iii) A probabilistic model with N binary equal random
variables can be represented as a triangle having, for fixed
N, (N + 1) different elements with multiplicities respectively
given by N!

N!0! = 1, N!
(N−1)!1! = N, N!

(N−2)!2! = N(N−1)
2 , ..., N!

0!N! =
1. Strong correlations can be introduced [58] such that, for
given N, only the first (d+1) elements (of the (N+1) possible
ones) have nonvanishing probabilities, all the other (N − d)
elements of the same row having zero probability to occur. It
has been shown for this specific model, which turns out to be
asymptotically scale-invariant, that

qentropy = 1− 1
d

(d = 1,2,3, ...) . (32)

(iv) A probabilistic model with N correlated binary vari-
ables which strictly satisfies scale invariance (i.e., the trian-
gle Leibnitz rule) has been introduced in [59], whose N → ∞
limiting distribution (appropriately centered and scaled) is a
qlimit-Gaussian with

qlimit =
ν−2
ν−1

(ν = 1,2,3, ...) . (33)

The index ν characterizes a particular triangle (with particular
strong correlations); ν = 1 corresponds to the Leibnitz triangle
itself; ν → ∞ corresponds to independent random variables.
This model has been further generalized [60], in such a way
that qlimit is still given by (33) but ν being now a real (not
necessarily integer) number ν ≥ 1 (hence qlimit ≤ 1). Along
the same lines, the model can be modified in such a way that
the region qlimit > 1 becomes admissible as well, while still

being strictly scale invariant. For this family of models, it can
be also proved that qentropy = 1 (see in Fig. 4 an illustration
corresponding to qlimit = 1.5).
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We numerically verify the analytical result qentropy = 1, i.e., that, for
this model, only SBG(N) is extensive.
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We numerically verify the analytical result qentropy = 1, i.e., that, for
this model, only SBG(N) is extensive.

qstationary state < 1.

(viii) A Ginzburg-Landau discussion of point kinetics for
n = d ferromagnets yields [63, 64] a qstationary state-Gaussian
distribution of velocities with

qstationary state =
d +4
d +2

≥ 1 . (37)

We verify that when d increases from zero to ∞,
qstationary state = 1 decreases from 2 to unity.

(ix) A growth model for a stochastic network (belonging
to the so called scale-free class) based on preferential at-
tachment has been proposed in [65]. The degree distribu-
tion is given by the qstationary state-exponential form p(k) =
p(0)e−k/κ

qstationary state (κ > 0) with (see [10] for details about
the transformation from the form given in [65] to the q-

FIG. 5: q−1 as a function of q≡ q0, as given by Eq. (58) (from [76]).

exponential form)

qstationary state =
2m(2− r)+1− p− r
m(3−2r)+1− p− r

≥ 1 , (38)

where (m, p,r) are parameters of the model.
The above examples paradigmatically illustrate how q can

be determined from either microscopic or mesoscopic infor-
mation. Further analytical expressions for q in a variety of
other physical systems are presented in [66–70].

3.3. Connections between indices q

The full understanding of all the possible connections be-
tween these different q-indices still remains elusive. Many
examples exist for which one or more of these q’s are (analyt-
ically or numerically) known and understood. However, the
complexity of this question has not yet allowed for transpar-
ent, complete and general understanding.

Nevertheless, at the light of what is presently known, the
scenario appears to be that, for a given system, a countable set
of q’s can exist, each of them being basically associated with a
specific (more or less important) property of the system. Let
us denote this set with {qm} (m = 0,±1,±2, ...). For many
systems, if not all, the structure seems to be such that very
few (typically only one) of those q’s are independent, all the
others being functions of those few. Let us illustrate what we
mean by assuming that only one is independent, and let us
denote it by q0. So, we typically have

qm = fm(q0) (m = 0,±1,±2, ...; f0(q0) = q0) . (39)

The form of fm(x0) (or of similar functions) can be quite
complex (see, for instance, [71, 72]). However, intriguingly
enough, very many among them seem to conform to the fol-
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FIG. 6: q+
m as a function of q+

0 ≡ q0 for typical values of m. For clarity, the vertical asymptotes are indicated as well. Left: α = 1; Right:
α = 2. For each value m > 0, there are two branches: the left one is such that q+

m > 1 (q+
m < 1) if q0 > 1 (q0 < 1); the right one does not

contain the point (q0,q+
m) = (1,1). For each value m < 0, there are two branches: the right one is such that q+

m > 1 (q+
m < 1) if q0 > 1 (q0 < 1);

the left one does not contain the point (q0,q+
m) = (1,1).

FIG. 7: q−m as a function of q+
0 ≡ q0 for typical values of m. For clarity, the vertical asymptotes are indicated as well. Left: α = 1; Right:

α = 2. For each value m > 0, there are two branches: the right one is such that q+
m > 1 (q+

m < 1) if q0 < 1 (q0 > 1); the left one does not
contain the point (q0,q+

m) = (1,1). For each value m < 0, there are two branches: the left one is such that q+
m > 1 (q+

m < 1) if q0 < 1 (q0 > 1);
the right one does not contain the point (q0,q+

m) = (1,1).

lowing simple structure. In some case qm satisfies

α
1−q+

m
=

α
1−q0

+m (m = 0,±1,±2, ...) , (40)

where 0 < α ≤ 2. In other cases it satisfies, through the so-

called additive duality q0↔ (2−q0),

α
1−q−m

=
α

q0−1
+m (m = 0,±1,±2, ...) , (41)

where again 0 < α≤ 2. We easily see that, if we apply again
this transformation, we go back to the initial value q0. In other
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words, for fixed (α,m), we have that

q−m(q−m(q0)) = q0, ∀q0 . (42)

Or equivalently, the function q−m(q0) concides with the func-
tion q0(q−m).

It respectively follows from (40) and (41) that

α
1−q+

m
−m =

α
1−q+

m′
−m′ (m,m′ = 0,±1,±2, ...) , (43)

and
α

1−q−m
−m =

α
1−q−m′

−m′ (m,m′ = 0,±1,±2, ...) . (44)

If we define q+
m(q0) through Eq. (40) and q−m(q0) through

Eq. (41), we easily see that

q−m(q0) = q+
m(2−q0) . (45)

If we make an analytical extension in (40) such that m and
m′ are allowed to be real numbers, we may consider the case

m′ = m−α (0 < α≤ 2) . (46)

By replacing this into Eqs. (43) and (44), we respectively
obtain

q+
m−α = 2− 1

q+
m

, (47)

and

q−m−α = 2− 1
q−m

. (48)

This specific form of connection appears in very many occa-
sions in nonextensive statistical mechanics. In particular, if
α = 1 we have

q+
m−1 = 2− 1

q+
m

, (49)

and

q−m−1 = 2− 1
q−m

. (50)

And if α = 2 we have

q+
m−2 = 2− 1

q+
m

. (51)

and

q−m−2 = 2− 1
q−m

. (52)

The families (40) and (41) can be respectively rewritten as
follows:

q+
m =

αq0 +(1−q0)m
α+(1−q0)m

(m = 0,±1,±2, ...) , (53)

and

q−m =
α(2−q0)+(q0−1)m

α+(q0−1)m
(m = 0,±1,±2, ...) . (54)

In both cases we verify that q0 = 1 yields qm = 1, ∀m, and
that q±±∞ = 1, ∀q0 6= 1. For one of the two branches of the
family (53) we verify that q0 > 1 implies q+

m > 1, ∀m, and that
q0 < 1 implies q+

m < 1, ∀m. For one of the two branches of
the family (54) it is the other way around, i.e, q0 > 1 implies
q−m < 1, ∀m, and q0 < 1 implies q−m > 1, ∀m. It is possible
to simultaneously write both families in a compact manner,
namely

q±m =
α [1± (q0−1)]± (1−q0)m

α± (1−q0)m
(m = 0,±1,±2, ...) .

(55)
These relations exhibit a vertical asymptote at q0 = 1± α

m ,
and a horizontal asymptote at q±m = 1∓ α

m .
It is also worth stressing two interesting properties of q−m .
First, we verify that

q−0 = 2−q0 , (56)

which precisely recovers the already mentioned additive du-
ality. This duality admits only one fixed point, namely q0 = 1.

Second, we verify that

lim
m→α

q−m =
1
q0

, (57)

which precisely is the so-called multiplicative duality. This
duality admits two fixed points, namely q0 = 1 and q0 =−1.

It can be shown [10, 58] that, by successively and alterna-
tively composing these two dualities, the entire basic structure
of Eqs. (55) can be recovered. To the best of our knowledge,
the family (55), as a set of transformations, first appeared in
[73], and, since then, in an amazing amount of other situ-
ations. Moreover, isolated elements of the family (55) had
been present in the literature even before the paper [73]. The
exhaustive list of these many situations is out of the present
scope. Let us, however, mention a few paradigmatic ones.

First, the q-Fourier transform (that we will discuss in Sec-
tion 4), when applied to (q,α)-stable distributions, involves
[20, 74, 75] the transformation (53).

Second, the q-Fourier transform for q < 1 can be obtained
from that corresponding to q > 1 by using the transformation
[76]

2
q−1 −1

=
2

1−q0
+1 , (58)

which transforms the interval [1,3) into the interval (−∞,1]
(see Fig. 5 ). This transformation is precisely the (α,m) =
(2,−1) element of family (54).

Third, elements of these families appear in what is some-
times called the q-triplet, which we address specifically in the
next Subsection.

The sets (53) and (54) are illustrated in Figs. 6 and 7 re-
spectively.

3.4. The q-triplet

It was heuristically conjectured in 2004 [77] that com-
plex physical systems should exist with a set of relevant q’s,
namely qsensitivity < 1, qrelaxation > 1 and qstationary state > 1.
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This set is currently referred to as the q-triangle, or the q-
triplet. In the BG limit, it should be qsensitivity = qrelaxation =
qsensitivity = 1.

One year later, the q-triplet was indeed found in the solar
wind [78] through the analysis of the magnetic-field data sent
to Earth (NASA Goddard Space Flight Center) by the space-
craft Voyager 1, at the time in the distant heliosphere. The
observations led to the following values:

qsensitivity = −0.6±0.2 , (59)
qrelaxation = 3.8±0.3 , (60)

qstationary state = 1.75±0.06 . (61)

The most precise q being qstationary state, it seems reasonable
to fix it at its nominal value, i.e.,

qstationary state = 7/4 . (62)

By heuristically adopting simple relations belonging to the set
(53), we can conjecture [58]

qrelaxation = 2− 1
qsensitivity

, (63)

and

qstationary state = 2− 1
qrelaxation

. (64)

Eqs. (62), (63) and (64) lead to

qsensitivity = −1/2 , (65)
qrelaxation = 4 , (66)

qstationary state = 7/4 , (67)

which, within the error bars, are consistent with the observed
values (59), (60) and (61). These assumptions are consistent
with the following identification:

qsensitivity ≡ q+
m , (68)

qrelaxation ≡ q+
m−α , (69)

qstationary state ≡ q+
m−2α . (70)

They are also consistent with the following identification

qsensitivity ≡ q−m , (71)
qrelaxation ≡ q−m−α , (72)

qstationary state ≡ q−m−2α . (73)

Although this kind of scenario is tempting, we have not yet
achieved a deep understanding which would provide a phys-
ical justification about it. To make things even more intrigu-
ing, a last remarkable discovery [10, 79] deserves mention.
Through the definition ε≡ 1−q, we have

εsensitivity ≡ 1−qsensitivity = 1− (−1/2) = 3/2 , (74)
εrelaxation ≡ 1−qrelaxation = 1−4 =−3 , (75)

εstationary state ≡ 1−qstationary state = 1−7/4 =−3/4 .(76)

Amazingly enough, these values satisfy

εstationary state =
εsensitivity + εrelaxation

2
, (77)

εsensitivity =
√

εstationary state εrelaxation , (78)

ε−1
relaxation =

ε−1
sensitivity + ε−1

stationary state

2
, . (79)

which are the arithmetic, geometric and harmonic means re-
spectively! All these striking features suggest something like
a deep symmetry, which eludes us. In any case, even if notori-
ously incomplete, the whole story was apparently considered
quite stimulating by the organizers of the United Nations In-
ternational Heliophysical Year 2007. Indeed, they prepared
the poster shown in Fig. 8 for the exhibition organized during
the launching of the IHY in Vienna.

One more interesting q-triplet is presently known, namely
for the edge of chaos of the logistic map. It is given by

qsensitivity = 0.244487701341282066198... , (80)
qrelaxation = 2.249784109... , (81)

qstationary state = 1.65±0.05 . (82)

We remind that, for this case, qentropy production = qsensitivity.
See [80–83] for the value (81), and [84, 85] for the value (82).
No simple relations seem to hold between these three num-
bers. We notice, however, that, for both q-triplets that have
been presented in this Subsection, the following inequalities
hold:

qsensitivity ≤ 1≤ qstationary state ≤ qrelaxation . (83)

4. q-GENERALIZING THE CENTRAL LIMIT THEOREM,
OR WHY ARE THERE SO MANY q-GAUSSIAN-LIKE

DISTRIBUTIONS IN NATURE?

4.1. Central limit theorems and q-Fourier transforms

The Central Limit Theorem (CLT ) with its Gaussian attrac-
tors (in the space of probability distributions) constitutes one
of the main pieces mathematically grounding important parts
of BG statistical mechanics.

For instance, if we extremize SBG =−k
∫ ∞
−∞ dx p(x) ln p(x)

with the constraints
∫ ∞
−∞ dx p(x) = 1, 〈x〉 ≡ ∫ ∞

−∞ dx x p(x) = 0
and 〈x2〉 ≡ ∫ ∞

−∞ dx x2 p(x) = σ2, we straightforwardly obtain
the following equilibrium distribution:

pBG(x) =
e−β x2∫ ∞

−∞ dx e−β x2 , (84)

i.e., a Gaussian, where the Lagrange parameter β > 0 is de-
termined through the σ2-constraint.

On a different vein — still within the realm of BG statistical
mechanics —, the most basic free-particle Langevin equation
(with additive noise), and its associated Fokker-Planck equa-
tion, provide, for all times and positions, a Gaussian distribu-
tion.

As a third connection, one might argue that the velocity dis-
tribution of any particle of a system described by a classical
N-particle Hamiltonian with kinetic energy and (short-range)
two-body interactions is the Maxwellian distribution, i.e., a
Gaussian. Now, this comes out from BG statistics. So, in what
sense may we consider that the CLT enters? In the sense that
Maxwellian distributions are indeed ubiquitously observed in
nature, and this happens because, for not too strong perturba-
tions, Gaussians are attractors.

Since Sq generalizes SBG, one expects the just men-
tioned connections (and similar ones) to be appropriately q-
generalized. So should also be with the CLT itself (see [86]
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FIG. 8: Poster prepared by the organizers of the Opening Ceremony of the International Heliophysical Year 2007 for its accompanying
exhibition, the 27 February 2007 in Vienna.

and references therein for the reasons which enabled conjec-
turing this q-generalization).

We do not intend in the present review to be exhaustive
with regard to this rich subject. Let us nevertheless remind
that the extremization of Sq under essentially the same con-
straints as before (i.e., normalization, symmetry, and finite-
ness of the width of the distribution) yields, as the stationary-
state distribution, the following q-Gaussian:

pq(x) =
e−β x2

q∫ ∞
−∞ dx e−β x2

q

(q < 3; β > 0) . (85)

Let us now briefly review the standard CLT as well as
the occasionally called Lévy-Gnedenko theorem. If we have
N equal independent (or quasi-independent in an appropri-
ate manner) random variables xi (i = 1,2, ...,N), their sum
XN ≡ ∑N

i=1 xi converges (after appropriate centering and scal-
ing with N) onto a Gaussian distribution in the N → ∞ limit
if the variance of the elementary distribution is finite. Such is
the case, for instance, for q-Gaussians with q < 5/3. If the
variance of the elementary distribution diverges (and the dis-
tribution asymptotically decays like a power-law), the sum XN
converges, instead, onto an α-stable Lévy distribution. Such

is the case, for instance, for q-Gaussians with 5/3 < q < 3. In
this case, through the |x| → ∞ asymptotics, the Lévy index α
is related to the index q through

α =
3−q
q−1

(5/3 < q < 3) . (86)

The situation changes drastically if the hypothesis of
(quasi-)independence is violated, i.e., if the N variables are
strongly correlated. In this case, one expects the attractor
to be neither Gaussian nor α-stable. If this correlation is of
the type denoted as q-independence (1-independence being
independence) [20], then the attractor of the sum XN is a q-
Gaussian if a specific q-generalized variance is finite, and a
(q,α)-stable distribution if it diverges. These are the respec-
tive q-generalizations of Gaussians and Lévy distributions.
See Fig. 9.

The proof of these q-generalized CLT theorems is based on
the so called q-Fourier transform, defined as follows [20, 74,
75, 88, 89]:

Fq[ f ](ξ)≡
∫

dx eix ξ
q ⊗q f (x) =

∫
dx eix ξ [ f (x)]q−1

q f (x) (87)

for q ≥ 1 and f (x) ≥ 0. It is also possible to define the q-
Fourier transform for q < 0. This can be done through the
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FIG. 9: N1/[α)2−q)]-scaled attractors F(x) when summing N→ ∞ q-independent identical random variables with symmetric distribution f (x)
with Q-variance σQ ≡

∫ ∞
−∞ dxx2 [ f (x)]Q/

∫ ∞
−∞ dx [ f (x)]Q (Q ≡ 2q− 1; q1 = (1 + q)/(3− q); q ≥ 1). Top left: The attractor is the Gaussian

sharing with f (x) the same variance σ1 (standard CLT). Bottom left: The attractor is the α-stable Lévy distribution which shares with f (x) the
same asymptotic behavior, i.e., the coefficient Cα (Lévy-Gnedenko CLT, or α-generalization of the standard CLT). Top right: The attractor is
the q-Gaussian which shares with f (x) the same (2q−1)-variance, i.e., the coefficient Cq (q-generalization of the standard CLT, or q-CLT).
Bottom right: The attractor is the (q,α)-stable distribution which shares with f (x) the same asymptotic behavior, i.e., the coefficient CL

q,α
(q-generalization of the Lévy-Gnedenko CLT and α-generalization of the q-CLT). The case α < 2, for both q = 1 and q 6= 1 (more precisely
q > 1), further demands specific asymptotics for the attractors to be those indicated; essentially the divergent q-variance must be due to fat
tails of the power-law class, except for possible logarithmic corrections (for the q = 1 case see, for instance, [87] and references therein).

transformation (58) [76]. The q-Fourier transform (which is
nonlinear if q 6= 1) has a remarkable property, namely to be
closed within the family of q-Gaussians. More precisely, the
q-Fourier transform of a (normalized) q-Gaussian, as given
by Eq. (85), is another member of the q-Gaussian family,
namely one having its index given by

q1 =
1+q
3−q

, (88)

which admits q = 1 as a fixed point (corresponding to the
standard Fourier tranform). It can be rewritten as follows:

2
1−q1

=
2

1−q
+1 , (89)

which, through Eq. (40), immediately allows for the identifi-
cation (q,q1)≡ (q0,q+

1 ) for α = 2.
This transformation, together with the corresponding one

for β, is straightforwardly reversible. However, for a density
f (x) not belonging to the family of q-Gaussians, the problem
can be more complex. Hilhorst has introduced [90] two inter-
esting and paradigmatic examples which illustrate the diffi-
culty. One of them is presented in his article [91] in this same
volume. We shall here discuss his other example, which we
present in what follows. Let us define the probability density

f (x,a)≡


√

2
π

(1−a|x|)2

[(1−a|x|)2 + 1
2 x2]2

if |x|< 1/a

0 otherwise ,

(90)

with a≥ 0 . We verify that f (x,a) is normalized, ∀a, i.e.,∫ 1/a

−1/a
dx f (x,a) = 1 , ∀a . (91)

We also verify that f (x,0) is precisely but a (3/2)-Gaussian,
namely

f (x,0) =
√

2
π

1
(1+ 1

2 x2)2
. (92)

See Fig. 10 for typical examples of f (x,a). Its q-Fourier
transform for q≥ 1 is given by

Fq[ f (x,a)](ξ) =
∫ ∞

−∞
dx

f (x,a)

{1− (q−1) iξx [ f (x,a)]q−1}
1

q−1
.

(93)
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FIG. 10: The distribution f (x,a) for typical values of a : a = 2
(blue), a = 1 (green), and a = 0 (red). From [92].

FIG. 11: The a-dependence of µ(a,q) for typical values of q. From
top to bottom on the right side: q = 1.6, 1.5, 1.4, 1. From [92].

Replacing herein Eq. (90) we obtain

Fq[ f (x,a)](ξ) =
∫ 1/a

−1/a
dx

√
2

π
(1−a|x|)2

[(1−a|x|)2 + x2/2]2{
1− (q−1) iξx

[√2
π

(1−a|x|)2

[(1−a|x|)2 + x2/2]2
]q−1} 1

q−1
. (94)

It can be verified that Fq[ f (x,a)](ξ) depends on a for any q 6=
3/2. But, F3/2[ f (x,a)](ξ) does not depend on a. Indeed, it is
given by

F3/2[ f (x,a)](ξ) =
1

[1+ 1
4π
√

2
ξ2]3/2

, (95)

where we have used the variable changement y = x
1−a |x| . In

other words, this q-Fourier integral transform has, not one,
but an entire family of functions (parameterized by the real

FIG. 12: The a-dependence of ν(a,q) for typical values of q. From
top to bottom on the right side: q = 1.6, 1.5, 1.4, 1. From [92].

FIG. 13: The a-dependence of 〈x2〉2q−1 = µ(a,q)/ν(a,q) for typical
values of q. From top to bottom on the left side: q = 1, 1.4, 1.5, 1.6.
From [92].

number a) of pre-images. Hence, unless we add some sup-
plementary information, F3/2[ f (x,a)](ξ) is not invertible. Let
us now discuss this delicate point related to the nonlinearity
of the generic q-Fourier transform, a point which evaporates
for q = 1 since the standard Fourier tranform is a linear one.

At the present stage, let us focus, not on the generic prob-
lem of finding which is the general form for f (x) whose 3/2-
Fourier transform is given by Eq. (95), but on a less ambitious
one, namely: Knowing that we are dealing within the family
{ f (x,a)}, which is the specific value of the parameter a that
we are interested in? We show next that this question can be
univoquely answered with some simple supplementary infor-
mation. Let us illustrate now how.
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We first define the following quantities [23]:

µ2q−1 ≡
∫ 1/a

−1/a
dx x2 [ f (x,a)]2q−1 ≡ µ(a,q) [µ(0,1) = 2] ,

(96)
and

ν2q−1≡
∫ 1/a

−1/a
dx [ f (x,a)]2q−1≡ ν(a,q) [ν(a,1) = 1] , (97)

which are illustrated in Figs. 11 and 12 respectively. The
(2q−1)-variance is given by

〈x2〉2q−1 ≡
∫ 1/a
−1/a dx x2 [ f (x,a)]2q−1∫ 1/a
−1/a dx [ f (x,a)]2q−1

=
µ(a,q)
ν(a,q)

. (98)

This quantity corresponds to the standard (lin-
ear) variance, but with the escort distribution
[ f (x,a)]2q−1/

∫ 1/a
−1/a dx′ [ f (x′,a)]2q−1, instead of the orig-

inal one f (x,a). It is illustrated in Fig. 13.
To fully understand the implications of these results, let us

remind that successive moments with appropriate escort dis-
tributions are directly related with the successive derivatives
of the q-Fourier transform of f (x,a) [23]. Since f (x,a) is
an even function, all odd moments, as well as all odd deriva-
tives of Fq[ f (x,a)](ξ)|ξ=0, vanish. All even such derivatives

are finite, in particular µ2q−1 ∝ d2Fq[ f (x,a)](ξ)
dξ2 |ξ=0 . We see in

Fig. 11 that, for all q 6= 3/2, µ2q−1 monotonically depends
on a. Therefore, for all such values of q and within the fam-
ily { f (x,a)}, the q-Fourier integral transform is invertible,
even being nonlinear. However, not so for q = 3/2. Consis-
tently, µ(a,3/2) is a constant. In this particular case, further
information is needed. This information can be the value of
ν(a,3/2), which, as we verify in Fig. 12, monotonically de-
pends on a. In other words, the integral tranform F3/2 together
with the knowledge of say ν(a,3/2), becomes an invertible
operation within the family { f (x,a)}.

An analogy can be done at this point. As we all know,
Newton’s equation m d2x(t)

dt2 = F(x) does not provide a single
solution but a family of solutions. To have a unique solu-
tion we need to provide further information, namely x(0)and
ẋ(0). An important difference, however, between this prob-
lem and the generic invertibility of the q-Fourier transform
is that, for the nonlinear integral transform, we do not know
the general form of its inverse. Would we know it, the prob-
lem would in principle be completely solvable through the
use of supplementary information (such as the value of nu for
the above illustration) which would uniquely determine the
specific density within the general form. As we see, the gen-
eral problem still remains open. But if we happen to know
within which specific family of densities we are working (say
q-Gaussians, or say the family { f (x,a)}), uniqueness of the
inverse is basically guaranteed.

All the above discussion about invertibility is of course rel-
evant for the domain of validity of the q-generalized central
limit theorem. At the present moment, its proof [20] fully ap-
plies only within the class of densities for which invertibility
is guaranteed. This class is very vast; however, as we have
seen, it does not include all possible densities. An alternative
q-generalized CLT can be seen in [93].

4.2. Fittings can be extremely useful ... when done carefully!

In this section we compare three analytic forms which are
frequently used in the context of complex systems when-
ever fat tails emerge. These forms are the q-exponential, the
stretched exponential, and the Mittag-Leffler function. All
three recover the exponential function as a limiting instance.

Let us remind that the q-exponential function is defined, for
x≥ 0 and q≥ 1, as follows:

e−x
q ≡

1

[1+(q−1)x ]
1

q−1
(e−x

1 = e−x) , (99)

hence, for β≥ 0,

e−βx
q ≡ 1

[1+(q−1)βx ]
1

q−1
(e−βx

1 = e−βx) (100)

We immediately verify that

e−βx
q ∼ 1−βx (x→ 0; ∀q≥ 1) , (101)

and that

e−βx
q ∼ 1

[(q−1)β]
1

q−1

1

x
1

q−1
∝

1

x
1

q−1
(x→∞; ∀q > 1) . (102)

Let us finally mention that the function (100) is the solution
of

dy
dx

=−βyq (103)

with y(0) = 1.
Let us consider now, for comparison, the stretched expo-

nential function, defined, for 0 < α≤ 1, as follows:

Eα(x)≡ esign(x) |x|α (E1(x) = ex) , (104)

hence, for x≥ 0 and γ≥ 0,

Eα(−γ
1
α x)≡ e−γ xα

(E1(−γx) = e−γx) (105)

We immediately verify that

Eα(−γ
1
α x)∼ 1− γ xα (x→ 0; 0 < α≤ 1) , (106)

and that

Eα(−γ
1
α x) = e−γ xα

(x→ ∞; 0 < α≤ 1) . (107)

The function (104) is the solution of

dy
d[sign(x)|x|α]

=−γy (108)

with y(0) = 1.
Let us now add, within this comparison, the Mittag-Leffler

function defined, for 0 < η≤ 1, as follows (see, for instance,
[94–96]):

Eη(x) =
∞

∑
n=0

xn

Γ(1+ηn)
(E1(x) = ex) . (109)
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It follows that, for x≥ 0 and δ≥ 0, we have

Eη(−(δx)η) =
∞

∑
n=0

(−1)n (δx)ηn

Γ(1+ηn)
, (110)

whose asymptotic behaviors are

Eη(−(δx)η)∼ 1− (δx)η

Γ(1+η)
(x→ 0; 0 < η≤ 1) , (111)

and

Eη(−(δx)η)∼ 1
Γ(1−η)(δx)η (x→∞; 0 < η < 1) . (112)

Consequently, this function interpolates between the
stretched exponential for small values of x and the power-law
for large values of x (see Fig. 22 of [95]).

The function (110) satisfies

dηy
dxη =−δη y (113)

with y(0) = 1, the Caputo fractional derivative (which dif-
fers from the Riemman-Liouville fractional derivative) being
defined as follows:

dηy
dxη ≡

1
Γ(1−η)

∫ x

0
dx′

y(1)(x′)
(x− x′)η (0 < η < 1) , (114)

where y(1)(x′)≡ dy(x′)
dx′ ; limη→1

dηy
dxη = dy

dx .
We see therefore that, if we have access to the x → 0

and x → ∞ asymptotic behaviors, q-exponentials (q > 1),
stretched exponentials (0 < α < 1), and Mittag-Leffler func-
tions (0 < η < 1) are easily distinguishable among them.
However, as illustrated in Figs. 14 and 15, their values can
be very similar in the intermediate (non asymptotic) region.
This fact illustrates a well known concept: careless fittings
can be dangerous. They can be however extremely useful if
done meticulously. They are, in any case, inescapable when-
ever the analysis of experimental or numerical results is con-
cerned. Further interesting examples along similar lines can
be seen in [91].

The three functions that we have compared here are partic-
ular cases of the function y(x;q,α,η,B) which satisfies

dηy
d(xα)η =−Byq (115)

with y(0;q,α,η,B) = 1. The q-exponential corresponds
to y(x;q,1,1,β); the stretched exponential corresponds to
y(x;1,α,1,γ); and the Mittag-Leffler function corresponds to
y(x;1,1,η,δη). Clearly, at the present time no analytical ex-
pression exists for such a general function y(x;q,α,η,B).

4.3. q-Gaussian-like distributions in nature and elsewhere

The q-generalized CLT, with its q-Gaussian attractors in
the space of probability densities, applies for correlations of
the q-independent type. There is strong evidence that this
type of correlations is deeply related to strict or asymptotic

FIG. 14: Comparing q-exponentials with stretched exponentials in
log-log scale (which is the most frequent representation of such
functions). (a) The dots have been generated with the stretched ex-
ponential function y = e−x3/4

, their size has been enlarged in order
to mimic experimental error bars, and they have been fitted, within
the interval [10−1,10], with the q-exponential y = Ae−βx

q . (b) The
dots have been generated with the q-exponential function y = e−x

1.2
, and they have been fitted, within the interval [10−1,10], with the
stretched exponential y = Be−γxα

. As we verify in these two typical
examples, these fitting functions are numerically indistinguishable
within the intermediate interval that we have considered here; only
high-precision numerical knowledge of the values of the ”experi-
mental“ dots within the x→ 0 and x→ ∞ asymptotic regions could
indicate one or the other, ... or a different one!

scale-invariance (which might well be necessary for q-
independence, although surely not sufficient). After decades
of studies focusing on fractals, it is by now well established
that scale-invariance is ubiquitous in natural, artificial and
even social systems. Consequently, we should expect the
emergence of q-Gaussians quite often. This is indeed what
happens, as we shall illustrate next (needless to say that only
within the error bars corresponding to each case).

(i) As predicted by Lutz in 2003 [61], the velocity distri-
bution of cold atoms in dissipative optical lattices has been
seen in 2006 to be q-Gaussian [97]. This has been verified
both with quantum Monte Carlo methods, as well as in the
laboratory with Cs atoms.
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FIG. 15: The dots have been generated with the Mittag-Leffler function y = Eη(−(δx)η). The upper (lower) curve at the right side is the

q-Gaussian y = Ae−βx
q (stretched exponential y = Be−γxα

) which best fits the present discrete set of 21 values of this Mittag-Leffler func-
tion. Left: (η,δ) = (0.7,1), (A,q,β) = (0.915335,2.15899,1.40801) and (B,α,γ) = (1.26496,0.423769,1.14411). Right: (η,δ) = (0.3,1),
(A,q,β) = (0.708294,6.06448,1.65478) and (B,α,γ) = (1.45013,0.144472,1.15538). We verify that, within this limited intermediate region
and with the precision indicated by the size of the dots, the three functions are nearly indistinguishable. However, the detailed study of their
x→ 0 and x→ ∞ asymptotic behaviors would allow for discrimination among them.

(ii) The distribution of velocities in quasi-two dimensional
dusty plasma has been detected to be q-Gaussian [98, 99].

(iii) Single ions in radio frequency traps interacting with a
classical buffer gas (e.g., 136Ba+ ion cooled at 300 K) exhibit
q-Gaussian distributions [100].

(iv) The distribution of velocities of cells of Hydra viridis-
sima in solution has been shown to be q-Gaussian [101].

(v) Distribution of velocities of the defects in the so-called
defect turbulence have been interpreted as q-Gaussians [102].

(vi) Distributions corresponding to fluctuations of the
magnetic field in the plasma within the solar wind in the
distant heliosphere and the heliosheath, as detected through
data received from the Voyager 1 have been interpreted as
q-Gaussians [78, 103–107].

(vii) Computational distributions of velocities in silo
drainage of granular matter have been interpreted as q-
Gaussians [108, 109].

(viii) Distributions of sums of velocities along the trajec-
tories of the particles in a large class of initial conditions
leading to the so-called quasi-stationary states of the HMF
model (many-body Hamiltonian system describing an in-
ertial classical XY ferromagnet with long-range two-body
interactions) gradually approach q-Gaussians [110–112].
Let us mention at this point that if, instead of these time
averages, we do ensemble averages, we obtain other types of
distributions [113, 114].

(ix) Distributions of sums of velocities along the trajec-
tories of the particles at the edge of chaos of the Kuramoto
model gradually approach q-Gaussians [115].

(x) The distributions of sums of successive iterates in the
close neighborhood of the edge of chaos in unimodal dissi-
pative maps exhibit slight oscillations (possibly log-periodic)
on top of q-Gaussians [84, 85, 116].

(xi) Return distributions corresponding to earthquakes
using data from the World and Southern California catalogs
have been interpreted as q-Gaussians [117].

(xii) Return distributions of fluctuations associated with
self-organized criticality in the Ehrenfest’s dog-flea model
are consistent with q-Gaussians [118].

(xiii) Distributions of the increments of current fluctuations
of charge disorder in arrays are interpreted as q-Gaussians
[119].

(xiv) Financial return distributions in the New York Stock
Exchange, NASDAQ and elsewhere are routinely interpreted
as q-Gaussians [120–130].

(xv) Distributions of postural sway for young and old
people are interpreted as q-Gaussians [131].

The q-Gaussian function is of course a q-exponential of a
squared variable. The q-CLT only addresses q-Gaussians, not
q-exponentials in general. However, it is clear that the de-
tection of a q-exponential in some central property of a sys-
tem opens the door for possibly finding q-Gaussians in some
other important property. There are dozens of such situations
that have been reported in the literature (see, for instance,
[10]). We would like to add here a very recent one which con-
cerns spin-glasses. This system was for many years awaited
to exhibit connections with nonextensive statistics due to
its notorious nonergodicity and complex structure in phase
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space. Very recently this finally occurred in the experimen-
tally observed relaxation curves [132] of paradigmatic spin-
glasses such as Cu0.95Mn0.05, Cu0.90Mn0.10, Cu0.84Mn0.16,
Cu0.65Mn0.35, and Au0.86Fe0.14.

5. CONCLUSIONS

The magnificent theory of Boltzmann and Gibbs has, as
any other intellectual construct, limits of validity. Outside
these limits a vast world exists in nature as well as in artificial
systems. Some — apparently many — classes of systems
of this vast world are adequately addressed by nonextensive
statistical mechanics, proposed over twenty years ago [9] as a
generalization of the standard theory. The complexity of this
extended theory certainly is much higher than that of the BG
statistical mechanics. A central feature which dramatically
reflects this complexity is the fact that only one value of
the index q is to be used for the BG theory, namely q = 1,
whereas an entire set of inter-related values for such indices
emerges outside it (see, for instance, Figs. 6 and 7). Another
feature which also reflects this complexity is the fact that the
involved mathematics is definitively nonlinear, whereas that
of the BG theory is, in many aspects, a linear one. Under
such circumstances, one could expect to have an extremely
slow technical and epistemological progress. The intensive
and world-wide developments that we have witnessed during
the last two decades neatly show that it has not been so.
Indeed, an amazingly large field of knowledge is now

available, demanding for further analytical, experimental,
and computational efforts to advance. Sem pressa e sem
pausa... (Without hurry and without stops...)
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