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Critical indices of random planar electrical networks
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We propose a new method to estimate the percolation threshold pc and the critical index t associated with
strength reduction in networks of random fused conductors. It relies on a recently proposed expression for the
yield strength of a network as a function of the probability p that each element is removed from it. The values
of critical indices are confirmed using finite size scaling. Further, we systematically study effects of different
damage modalities, which are chosen to reflect age-related changes in the porous inner segments of human bone.
In particular, we find that pc and t depend on damage modalities.
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I. INTRODUCTION

Random resistor networks are used to model a variety of
physical phenomena ranging from properties of inhomoge-
neous media [1–6], metal insulator transitions [7], dielectric
breakdown [8–11], the role of percolation in weak and strong
disorder [12–14], and the strength of trabecular bone [15–
17]. Studies discussed in this paper, although only for planar
networks, are motivated by the last example.

Large bones of the human skeleton consist of an outer
compact shaft (cortex) of thickness 2-4mm, and an inner
porous region (trabecular architecture) whose structure is
reminiscent of disordered cubic networks with elements of
length 1mm and thickness 0.1mm. With aging, the cortex
weakens due to the accumulation of fractures, and the tra-
becular bone plays increasingly important role in load carry-
ing [16]. Consequently, there is intense interest in discover-
ing how trabecular bone weakens, and identifying non- in-
vasive diagnostics of its strength. Two factors dominate its
age-related metamorphoses. They are random damage which
occurs during daily activity and the preferential regenera-
tion of bone that is under high levels of stress/strain [15, 16].
One of the primary mechanisms for bone loss is through the
removal of individual trabecular elements [17]. It is initi-
ated by fractures that sever a trabecular element and is com-
pounded by the its decay because the element no longer car-
ries a load. Second, the fact that axial loads on a bone are
typically larger than off-axial loads means that the trabecular
elements in the axial direction are preferentially strengthened
through regeneration. Consequently, the level of anisotropy
of trabecular bone networks increases with aging [18]. The
third factor motivating our studies relies on the following ob-
servation; mechanical experiments on ex vivo bone samples
have shown that trabecular networks from subjects fracture
at a fixed level of strain [18], even though the corresponding
fracture stresses vary significantly with age. This suggests
the use of a strain-based fracture criterion for individual tra-
becular elements [17].

We consider here, the problem of failure in a disordered
network of fused conducting elements under the influence of
an electrical field. Although this scalar framework is sim-
pler than the vector models of mechanical failure of elastic

networks, both classes are expected to have similar scaling
properties close to the percolation threshold [19–22]. The
primary question we address is how the strength of a network
is effected by different types of damage it incurs. Age-related
loss of trabecular elements is modeled by a random removal
of conductances from the network. The analog of the strain-
based fracture criterion of bone is a voltage-based fusing of
each electrical element [23]. Increasing levels of anisotropy
of trabecular bone with aging is modeled by corresponding
changes in the electrical network.

In Ref. [23], we studied the breakdown of fused electri-
cal networks. Specifically, we determined how the yield
strength, i.e., the largest potential that the network can be
subjected to before the first electrical element fuses, de-
creases as elements are removed from the network. We first
used Green’s function techniques to obtain an expression for
the reduction in yield strength of an infinite hypercubic net-
work due to a single fracture of length κ. We next consid-
ered random removal of electrical elements, and proposed
a generalization to this expression (Eqn. [1]), which pro-
vides the yield strength as a function of the probability p that
an element is removed from the network. Unlike previously
proposed scaling expressions, which are valid only near the
percolation threshold, this expression was seen to hold for all
values of p. We thus inquire if it can be used to a obtain a
good estimate for the critical index [2]. Since this technique
has not been proven, we check our estimates of the criti-
cal index using the finite-size-scaling ansatz. We then test
if the critical indices remain unchanged when other criteria
are used to degrade the network. These criteria are chosen
to model age-related damage to trabecular bone. For exam-
ple, the fact that the degradation of trabecular bone is highly
anisotropic [17], motivates the study of the critical index of
electrical networks subjected to anisotropic removal of elec-
trical elements. Further, trabecular elements are not only re-
moved with aging, but those remaining ones degrade on av-
erage. The corresponding study of electrical networks would
require reducing the strength of elements at a rate propor-
tional to the fraction of elements that are removed. Finally,
the observation that some trabecular elements remaining in
a bone can strengthen due to extra loads created by thinning
of the network [17] suggest an analysis of networks whose
electrical elements are changed in a range (1− ε,1+ ε). We
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study changes in the percolation threshold and the critical in-
dex under each of these scenarios. As discussed in Ref. [24],
linear response functions can be used as a diagnostic of bone
strength if the percolation threshold of the trabecular network
is known.

The model and the expression which relate the reduction
of yield strength to statistical properties of a network is set
up in section II. In Section III, we study effects of several
damage modalities of the network. Section IV provides con-
clusions.

II. THE MODEL

We consider square networks of fused conductors, each of
which fail when the potential difference across them reaches
a pre-set value; i.e., the breakdown current of an element
is proportional to its conductance. Typically, failure of an
element increases currents on neighboring conductors, en-
hancing the likelihood of their failure [25, 26]. We study
the yield point at which the external current initiates the first
failure. The peak currents on a network show similar scaling
behavior [27].

Consider first, a complete square network of size M× M,
with the top and the bottom edges at potentials V0 and 0 re-
spectively. Assume that each electrical element in the net-
work fails when the potential difference across it reaches a
value Vb. We can calculate the current I(0) flowing through
the network using Kirchhoff’s laws. As V0 increases, cur-
rents through the conductors, as well as I(0), will increase
until the yield point I(0) = Iyield(0), when the first failure of
an electrical element is induced.

Next consider a (degraded) network obtained by remov-
ing electrical elements with a probability p. Denote the yield
current of this network by Iyield(p). (Note that the definition
of Iyield(0) in the previous paragraph is consistent with this.)
Typically, Iyield(p) decreases with increasing p, and vanishes
as (pc − p)t when p approaches the percolation threshold
pc (=0.5 for isotropic square networks). t is the critical in-
dex, with reported values between 1.1 and 1.43 under differ-
ent scenarios of damage and symmetries of the network [28–
36].

There have been several proposals for the reduction of
strength of a network due to a random removal of ele-
ment [19, 20]. Here we test a recently proposed expression
for Iyield(p) [23]:

τ(p)≡
Iyield(p)
Iyield(0)

=
1

1 + a1 z t/2 + a2 z t
, (1)

where z = log(N)/ log( pc
p ). Here, N(= M2) is the number

of nodes in the original network, pc is the bond percola-
tion threshold for the class of network considered, and a1
and a2 are constants that depend on the model and damage
modalities, see below. The form of this expression was de-
duced from the following observations [23]: (1) A calcula-
tion which shows that the reduction in yield strength of a
network due to a single fracture of length κ is

τ(κ)≈ 1
1+a1κ1/4 +a2κ1/2 .
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FIG. 1: Strength reduction in a 1602 network due to a random
isotropic removal of a fraction p of conductances, averaged over
one thousand trials. Numerical results are shown by boxes along
with the statistical error, while those obtained by fitting to expres-
sion (1) are shown as a continuous line.

(2) the expected size of the largest fracture when elements are
removed with a probability p is lnM/ ln(1/p). (3) As p→
pc, the yield strength vanishes as τ(p)→ (pc− p)t . Equation
(1) is valid throughout the range p∈ [0, pc) [23], and we use
it to estimate pc and the critical index t . We then confirm the
value of t using finite size scaling.

The yield current for a given network is computed as fol-
lows: given the conductance σi of all electrical elements in
the network and the potential Vo of the top layer of nodes,
we use Kirchhoff’s laws to determine the currents ik through
each element and the potential differences vk across them.
We denote the largest of the latter by Vmax. The network will
“yield” when Vmax reaches Vb. Since Vmax and I(p) grow lin-
early with V0, the yield current is Iyield(p) = I(p)× Vb/Vmax.

III. RESULTS AND DISCUSSIONS

Our computations used networks with sizes M =
20, 30, 40, 50, 70, 80, 90, 120, 140 and 160, and sample
sizes of 10,000 for M = 20, 30, 40, 50, sample size of 2,500
for M = 70, 80, 90 and finally sample size of 1,000 for
M = 120, 140, 160. Figure 1 shows the behavior of τ(p) for
the 160× 160 networks, where the error bars show standard
errors. Although fluctuations δτ in τ(p) decrease as p→ pc,
the relative fluctuations (δτ/τ) increase. The solid line shown
in Figure 1 represents the best fit to Equation (1) with pa-
rameters a1, a2, pc and t in a 1602 conducting network. To
determine their values, a1 =−0.1043± 0.005, a2 = 0.061±
0.003, pc = 0.513± 0.002 and t = 1.228± 0.015, we used
the Lavenberg-Marquadt method to implement the nonlinear
fit [37]. We must fit t and pc because they depend on the size
of the network.

Next, we determine how pc and t change with the network
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FIG. 2: Variation of parameters t and pc versus the inverse cor-
relation length (x = M−0.75 ), for networks of size M = 20 to
M = 160. All elements in the initial networks have conductance
of 1 unit. Note that, both critical values for t (= 1.066± 0.056) and
pc (= 0.500± 0.006) are getting in the limit when x→ 0.

size. We express the parameters as a function of x = M−1/ν

where ν (= 4/3 for 2D square networks) is the universal cor-
relation length exponent [38, 39]; i.e, x is the inverse of the
mean size of the largest domain in a network of size M×M.
Figure 2 shows the values of t(x) and pc(x), along with the
error estimates.

We estimate the value of t(0) corresponding to an infi-
nite network by first approximating t(x) by a rational func-
tion f (x)/g(x) (where f (x) and g(x) are polynomials of
order 3 and 2 respectively) and extrapolating to x = 0.
The values of the extrapolation corresponding to Figure 2
are pc(0) = 0.500± 0.006, t(0) = 1.066± 0.056, a1(0) =
−0.106± 0.015 and a2(0) = 0.060± 0.004. The error es-
timate includes both errors at each M and those due to the
extrapolation [37].

We now validate our results using finite size scaling to in-
dependently estimate t(0). According to the finite size scal-
ing ansatz, for the correct t(0), the relationship between the
rescaled variables τ = Mt(0)/ν × τ and ζ = M−1/ν(pc − p)
is independent of the system size M [40]. Although the fi-
nite size scaling ansatz need hold only for p → pc (and
0 < M−1/ν < 1), we find that the data collapses to a scaling
function τ(ζ) over the entire range p ∈ [0, pc]; see Figure 3
(left side). We then determine the best value for t(0): for any
chosen value of t(0), we approximate the scaling function
τ(ζ) by a rational function f (x)/g(x) (where f (x) and g(x)
are polynomials of order 3 and 2 respectively) and estimate
the deviation of the data (ζk,τk) from the scaling function
by χ2 = ∑k(τk− τ(ζk))2. Here, the sum is over all available
networks. Figure 3 (right side) shows the χ2 as a function
of t(0); the best estimate, which we assume minimizes χ2, is
tFSS = 1.07± 0.10, where the error estimate corresponds to
doubling the χ2 value. This estimate agrees with that value
we obtained from Equation (1). These processes are fol-
lowed in calculations for other classes of networks discussed

below.
Next we consider networks from which elements are re-

moved anisotropically. We begin with a square network
of unit conductances and remove elements in the horizon-
tal and vertical directions with probabilities ph = β p and
pv = p. Analysis of such networks for β = 2.0 using Equa-
tion (1) gives pc = 0.3383± 0003, t = 1.33± 0.02. Simi-
larly, for β = 1/2, pc = 0.68± 0.01, t = 1.04± 0.06 (See
Figure 4). Finite size scaling for the two cases estimates give
tFSS = 1.30± 0.10 and tFSS = 1.05± 0.10 respectively, in
good agreement with results obtained from the use of Equa-
tion (1). The estimates for pc for multiple β’s, shown in
Figure 4, agree with theoretical results for anisotropic net-
works [1].

Next, we consider the following process with a two-step
degradation. Random removal of conductors is followed by
multiplying the conductivity of the remaining conductors by
a random number in the range (1−ε,1+ε); where ε∈ (0,1).
Note that, the isotropic case is retrieved for ε = 0. This
process is meant to model age-related changes in trabecu-
lar bone. Specifically, while elements of the trabecular net-
work are removed with aging, those remaining can become
weaker or stronger - through bone regeneration- depending
on the mean loads they carry [15]. We find that the critical
index depends on the value of ε. We conduct our analysis for
ε = 0.00,0.25, 0.50, 0.75, 0.85, 0.95 and 1.0, and at each ε,
for network sizes considered earlier. Although the value of
the critical point pc is independent of ε (Figure 5), and the
critical exponent increases with ε (for ε > 0.5) (Figure 5),
consistent with results for finite size scaling.

Next, we consider networks where electrical elements that
remain in the network are randomly degraded as p increases.
Once again, this problem is related to degradation of porous
bone with aging [41], namely the simultaneous loss of tra-
becular elements and reductions of the average thickness of
the remaining elements. In modeling this dual process, we
assume a proportionality between the two types of degrada-
tion. Specifically, we consider networks whose conductance
and breakdown decrease by a factor (1−α p), where as be-
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FIG. 2: Variation of parameters t and pc versus the inverse
correlation length ( x = M−0.75 ), for networks of size M =
20 to M = 160. All elements in the initial networks have
conductance of 1 unit. Note that, both critical values for
t (= 1.066 ± 0.056) and pc (= 0.500 ± 0.006) are getting in
the limit when x→ 0.

2, 500 for M = 70, 80, 90 and finally sample size of 1, 000
for M = 120, 140, 160. Figure 1 shows the behavior of
τ(p) for the 160 × 160 networks, where the error bars
show standard errors. Although fluctuations δτ in τ(p)
decrease as p → pc, the relative fluctuations (δτ/τ) in-
crease. The solid line shown in Figure 1 represents the
best fit to Equation (1) with parameters a1, a2, pc and
t in a 1602 conducting network. To determine their val-
ues, a1 = −0.1043 ± 0.005, a2 = 0.061 ± 0.003, pc =
0.513 ± 0.002 and t = 1.228 ± 0.015, we used the
Lavenberg-Marquadt method to implement the nonlin-
ear fit [37]. We must fit t and pc because they depend on
the size of the network.

Next, we determine how pc and t change with the net-
work size. We express the parameters as a function of
x = M−1/ν where ν (= 4/3 for 2D square networks) is
the universal correlation length exponent [38, 39]; i.e, x
is the inverse of the mean size of the largest domain in
a network of size M × M . Figure 2 shows the values of
t(x) and pc(x), along with the error estimates.

We estimate the value of t(0) corresponding to an in-
finite network by first approximating t(x) by a rational
function f(x)/g(x) (where f(x) and g(x) are polynomials
of order 3 and 2 respectively) and extrapolating to x = 0.
The values of the extrapolation corresponding to Figure 2
are pc(0) = 0.500± 0.006, t(0) = 1.066± 0.056, a1(0) =
−0.106 ± 0.015 and a2(0) = 0.060 ± 0.004. The error
estimate includes both errors at each M and those due
to the extrapolation [37].

We now validate our results using finite size scaling
to independently estimate t(0). According to the fi-
nite size scaling ansatz, for the correct t(0), the rela-

tionship between the rescaled variables τ = M t(0)/ν × τ
and ζ = M−1/ν(pc − p) is independent of the system
size M [40]. Although the finite size scaling ansatz need
hold only for p → pc (and 0 < M−1/ν < 1), we find
that the data collapses to a scaling function τ(ζ) over
the entire range p ∈ [0, pc]; see Figure 3 (left side). We
then determine the best value for t(0): for any chosen
value of t(0), we approximate the scaling function τ (ζ)
by a rational function f(x)/g(x) (where f(x) and g(x)
are polynomials of order 3 and 2 respectively) and esti-
mate the deviation of the data (ζk, τk) from the scaling
function by χ2 =

∑
k(τk− τ (ζk))2. Here, the sum is over

all available networks. Figure 3 (right side) shows the χ2

as a function of t(0); the best estimate, which we assume
minimizes χ2, is tFSS = 1.07 ± 0.10, where the error
estimate corresponds to doubling the χ2 value. This es-
timate agrees with that value we obtained from Equation
(1). These processes are followed in calculations for other
classes of networks discussed below.

Next we consider networks from which elements are re-
moved anisotropically. We begin with a square network
of unit conductances and remove elements in the hori-
zontal and vertical directions with probabilities ph = β p
and pv = p. Analysis of such networks for β = 2.0 using
Equation (1) gives pc = 0.3383± 0003, t = 1.33± 0.02.
Similarly, for β = 1/2 , pc = 0.68± 0.01, t = 1.04± 0.06
(See Figure 4). Finite size scaling for the two cases esti-
mates give tFSS = 1.30± 0.10 and tFSS = 1.05± 0.10 re-
spectively, in good agreement with results obtained from
the use of Equation (1). The estimates for pc for multiple
β’s, shown in Figure 4, agree with theoretical results for
anisotropic networks [1].

Next, we consider the following process with a two-step
degradation. Random removal of conductors is followed
by multiplying the conductivity of the remaining con-
ductors by a random number in the range (1− ε, 1 + ε);
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FIG. 3: The left side of the figure shows the scaling function
(τ ) behavior as a function of the network correlation length
(ξ), and its χ2 error as a function of t for fixed unit conduc-
tances in the network (right side). The minimum of χ2 is t,
gives the critical exponent.

FIG. 3: The left side of the figure shows the scaling function (τ)
behavior as a function of the network correlation length (ξ), and its
χ2 error as a function of t for fixed unit conductances in the network
(right side). The minimum of χ2 is t, gives the critical exponent.
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FIG. 4: Values of t(β) and pc(β) with β, for anisotropic removal of
conductance. Elements in the vertical and horizontal directions are
removed with probabilities p and β p.

fore, p is the probability for an element to be removed from
the network. Once again, as earlier, we analyzed network
sizes ranging from M = 20 to M = 160 (Figure 6). For α =
1.0 we find that pc = 0.509± 0.005, t = 1.29± 0.03, a1 =
−0.123± 0.006 and a2 = 0.067± 0.003. The estimated crit-
ical exponent using finite size scaling is tFSS = 1.29± 0.10.

We end this Section by briefly discussing a clinically rele-
vant issue. The primary non-invasive diagnostic used to esti-
mate bone strength and the need for therapy is bone density
[18, 41]. In using it, there is an implicit assumption that the
relationship between bone strength and density is indepen-
dent of the damage modality of bone. The fact that the per-
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FIG. 5: Behavior of t(ε) and pc(ε) with ε, when conductances of
the initial network are chosen randomly within (1−ε,1+ε). Bonds
removal is isotropic (pc remains at 0.5).
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FIG. 6: Variations in parameters t(α) and pc(α). When elements
are removed from the network with probability p, the conductance
of those remaining are reduced simultaneously by a factor (1−α p).
The critical fraction removed elements remain 0.5.

colation threshold and the critical index for τ(p) depend on
the modality of damage brings the validity of this assumption
into question. To test it, we study two distinct degradations
of networks, see Figure 7. The panel on the right shows the
τ(p) for the anisotropic decay with β = 3.0, while that on the
left shows the relationship when conductors are randomly
removed from the network while the remaining elements are
reduced in strength by a factor (1− 0.75 p). Clearly, the
relationship between τ(p) and p (and hence very likely the
relationship between τ(p) and bone density) depends on the
damage modality. This observation suggests bone density
scans, although widely used, may not be a reliable surrogate
for bone strength.

IV. CONCLUSIONS

We have computed percolation threshold pc and critical
index t for square networks of conductances under different
damage modalities. These studies are motivated by types of
age-related damage in human trabecular bone, and the need
to assess their effects on bone strength. The computations
are based on the expression (1) which was shown to hold
for values of p ∈ [0, pc) [23]. We validate the values of t
using finite size scaling. For isotropic removal of conduc-
tances, we found t = 1.07± 0.06 in agreement with the value
t = 1.1 reported by Kirkpatrick [30], Straley [42, 43], and
Stinchcombe and Watson [44]. However, it is different from
the values obtained using real space renormalization group
methods [34, 44–49] and low density series expansion [50–
52]. Series expansion has also been used to compute nu-
merically the critical exponent [53], where for d = 2 the best
estimate is t = 1.299± 0.002. Many of these discrepancies
have already been discussed by Straley [42].

For anisotropic networks, we compare our results to those
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FIG. 7: The deviation from linearity of the strength reduction due
to the removal of a fraction of conductance in a 1602 network. The
right side shows the anisotropic removal of conductance with prob-
abilities p and 3.0 p in the vertical and horizontal direction. The
left side corresponds the case where the elements are randomly re-
moved with probability p meanwhile the ones remaining are simul-
taneously reduced by a factor (1−0.75 p).

of experimental and computational results by Han, Lee and
Lee [54] and Smith and Lobb [55]. Both groups found that
t = 1.3 when p = 0.33. Figure 4 shows that for p = 0.33,
the parameter β is 1.94 and t = 1.31, in agreement with
these previous analyses. Further, the values of pc(β) for
anisotropic removal of conductances (Figure 4) is consistent
with theoretical results of Redner and Stanley [1].

Perhaps our most interesting observation is the depen-
dence of the critical index of the conductance network on
the damage modality. It would be of interest to develop a
renormalization group analysis to understand this variation.
We have, thus far, not been successful in identifying such a
theory.
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