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Dynamical properties of a mutualism system in the presence of noise and time delay

Chun-Hua Zeng
Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China

Gui-Qin Zhang and Xiao-Feng Zhou∗
Department of Physics, Qujing Normal University, Qujing 655000, China

(Received on 31 October, 2008)

The normalized correlation function C(s) and the associated relaxation time Tc of the mutualism system in
the presence of noise and time delay are investigated. The effects of noise and time delay on C(s) and Tc for a
mutualism system are discussed. Based on the numerical computation, it is found that: (i) The noise intensity D
slows down the the fluctuation decay of species density firstly and then enhances it. (ii) The time delay τ slows
down the fluctuation decay of species density while the mean nterspecies interaction intensity J speeds up the
fluctuation decay of species density.
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I. INTRODUCTION

The behavior of a nonlinear system under the influence
of noise have been widely studied from both theoretical and
experimental points of view [1]. Particulary, noise-induced
phase transition [2], noise-enhanced stability [3], resonant
activation [4], noise-induced nonequilibrium transport [5],
noise-induced multistability [6], and stochastic resonance
[7, 8] have been intensively investigated in a large variety of
physical, and biological systems. However, these investiga-
tions neglect the effects induced by time delays. In practice,
in many physical as well as biological systems, time delays
always exist and play a significant role in the dynamics, such
as, biophysiological controls [9], and signal transmissions in
biological and artificial neuronal networks[10], and laser dy-
namics in optical cavities [11, 12] etc. Meanwhile, it appears
that the combination of noise and time delay is ubiquitous in
nature and often change fundamentally dynamics of the sys-
tem [13–16]. Recently Nie and Mei [17] have studied the
effects of noise and time delay in a classical Lotka-Volterra
model of the mutualism system, and found that the combina-
tion of noise and time delay completely suppressed the pop-
ulation explosion of the mutualism system. Yet in order to
characterize further the dynamics properties of the mutualism
system with noise and time delay, the correlation function and
the associated relaxation time of species density should be
considerd.

In the present paper, the normalized correlation function
C(s) and the associated relaxation time Tc of the mutualism
system with noise and time delay are investigated. In section
2, the analytical expressions of C(s) and Tc of the mutual-
ism system with noise and time are obtained. The effects of
noise and time delay on C(s) and Tc are discussed. Finally, a
conclusion is given in Section 3.
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II. STATIONARY PROBABILITY DISTRIBUTION,
RELAXATION TIME AND CORRELATION FUNCTION

In order to study the effects of noise and time delay on
the relaxation time and correlation function of the mutualism
system. First, the effects of noise and time delay on the one-
species mutualism system is presented. Then the effects of
noise and time delay on the multispecies mutualism system is
analyzed.

II.1. The one-species mutualism system

Consider a classical Lotka-Volterra model introduced by
Vito Volterra for the description of struggle for existence
among species [18, 19]. In the deterministic case, the differ-
ential equation describing the one-species mutualism system
reads

dx(t)
dt

= x(t)[r +ax(t)], (1)

where x is the species density, r is the growth rate, and a
represents the intraspecies interaction parameter. We con-
sider effects due to some environmental perturbations, such
as temperature, and climate, etc. These factors will give rise
to a fluctuation of intraspecies interaction parameter. We can
rewrite the intraspecies interaction parameter a in Eq. (1) as
a+

√
2Dη(t), where η(t) is the Gaussian white noise defined

as 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = δ(t − t ′), in which D is the
noise intensity. If a time delay is also introduced into the sys-
tem. Then Eq. (1) can be rewritten as

dx(t)
dt

= x(t)[r +ax(t− τ)]+
√

2Dx2(x)η(t), (2)

where τ is the delay time of the system. The delay Fokker-
Plank equation corresponding to Eq. (2) is [20, 21]

∂P(x, t)
∂t

=− ∂

∂x

Z [
x(r +axτ)−2Dx3]P(x, t;xτ, t− τ)dxτ

+D
Z

∂2

∂x2 x4P(x, t;xτ, t− τ)dxτ, (3)

in which P(x, t;xτ, t−τ) is the joint probability density. If the
small time delay approximation and first order approximation
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are employed [20–23], the stationary probability distribution
(SPD) corresponding to Eq. (3) can be obtained [17, 24]

Pst(x) = Nxa2τ−2 exp
{
− 1

D

[ r
2x2 +

a
x

+aτ

( r
x

+2Dx
)]}

,(4)

here N are the normalization constant. Then the expectation
values of the nth power of the species density x are given by

〈xn〉st =
R +∞

−∞
xnPst(x)dxR +∞

−∞
Pst(x)dx

. (5)

In this paper, we are interested in the stationary correlation
function and associated relaxation time, which are used to
describe the fluctuation decay of dynamical variable x. The
normalized correlation function is [25, 26]

C(s) = exp
[
− D〈x4〉st

〈x2〉st −〈x〉2
st

s
]
, (6)

and the associated relaxation time is

Tc =
〈x2〉st −〈x〉2

st

D〈x4〉st
. (7)

By virtue of the expressions of the normalized correlation
function (6) and the associated relaxation time (7). The ef-
fects of noise and time delay on C(s) and Tc can be studied
by the numerical computation, respectively. Tc as a function
of D for various values of τ is plotted in Fig. 1. From figure
1, Tc increases firstly and then decreases with D increasing,
showing a single-peak structure. While for a fixed D value,
as the value of τ increases, the peak of Tc becomes higher and
the position of the peak does not change. C(s) versus the de-
cay time s are shown in Figs. 2 and 3 for various values of
τ and for various values of D, respectively. C(s) decreases
exponentially as the decay time s increases. It is seen that the
value of C(s) increases as τ increases (see Fig. 2), while for a
fixed τ value, the value of C(s) increases as D increases from
0.01 to 0.05 (see Fig. 3a) and decreases as D increases from
0.2 to 1 (see Fig. 3b).
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FIG. 1: The relaxation time Tc vs D for r = 1.5 and a = 1. τ takes 0,
0.05, and 0.1, respectively
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FIG. 2: The correlation function C(s) vs s for D = 0.05. τ takes 0,
0.1, and 0.3, respectively. The other parameter values are the same
as those in Fig . 1.
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FIG. 3: The correlation function C(s) vs s for τ = 0.05. (a) D takes
0.01, 0.02, and 0.05, respectively. (b) D takes 0.2, 0.5, and 1, re-
spectively. The other parameter values are the same as those in Fig .
1.
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II.2. The multispecies mutualism system

Consider the multispecies mutualism system subjected to
noise and time delay. It can be described by the following
differential equation

dxi(t)
dt

=xi(t)

[
r +axi(t)+ ∑

j 6=i
Ji jx j(t− τ)

]
+
√

2Dx2
i (x)ηi(t), i, j = 1, ....,M, (8)

in which xi is the i-th species density, M is the total number
of species, Ji j represents the interspecies interaction intensity
between the i-th species and the j-th one, and Ji j > 0. ηi(t) is
the Gaussian white noise by environments on the i-th species,
and define as 〈ηi(t)〉 = 0 and 〈ηi(t)η j(t ′)〉 = δi jδ(t − t ′). As
M → ∞, making use of the mean-field approximation to the
system, we obtain

∑
j 6=i

Ji jx j(t− τ) =
J
M ∑

j
x j(t− τ) = J〈x〉st , (9)

where J is the mean nterspecies interaction intensity, and 〈x〉st
is the stationary average value of x. Thus Eq. (8) can be
rewritten as

dx(t)
dt

= x(t)[r + J〈x〉st +ax(t− τ)]+
√

2Dx2(x)η(t), (10)

with

〈η(t)〉= 0, 〈η(t)η(t ′)〉= δ(t− t ′). (11)

In the condition of small time delay approximation and first
order approximation, the SPD of x can be obtained [17, 24]

Pst(x) = N′xa2τ−2

exp
{
− 1

D

[
r + J〈x〉st

2x2 +
a
x

+aτ

(
r + J〈x〉st

x
+2Dx

)]}
,

(12)

where N′ are the normalization constant. The expectation val-
ues of the nth power of the species density x are

〈xn〉st =
R +∞

−∞
xnPst(x)dxR +∞

−∞
Pst(x)dx

. (13)

The stationary normalized correlation function and the as-
sociated relaxation time can be respectively expressed as
[25, 26]

C(s) = exp
[
− D〈x4〉st

〈x2〉st −〈x〉2
st

s
]
, (14)

and

Tc =
〈x2〉st −〈x〉2

st

D〈x4〉st
. (15)

Making use of the expressions of the normalized correla-
tion function (14) and the associated relaxation time (15). The

results are shown in Figs. 4 and 5. Figure 4 displays the ef-
fects of noise and time delay on Tc of the multispecies mu-
tualism system. Compared with the one-species mutualism
system with the noise and the time delay, the multispecies
mutualism system exhibits its own peculiarities: i) the fluc-
tuation decay of its species density is faster than that without
interspecies interaction (J = 0), which can be seen from the
comparison of the Tc heights between the dashed line and the
solid line of τ = 0.01 in Fig. 4; ii) the peak position of the
Tc is shifted to the larger value of D with τ increasing, but for
the one-species mutualism system it does not change. From
figure 5, the larger J is, the smaller the value of C(s). J speeds
up the the fluctuation decay of species density.
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FIG. 4: The relaxation time Tc vs D for J = 2. τ takes 0.01, 0.05,
and 0.1, respectively. The dashed line represents J = 0,τ = 0.01.
The other parameter values are the same as those in Fig. 1.
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FIG. 5: The correlation function C(s) vs s for D = 0.05,τ = 0.05. J
takes 0, 2, and 4, respectively. The other parameter values are the
same as those in Fig . 1.
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III. CONCLUSIONS

In this paper, we have studied the effects of noise and time
delay on the relaxation time and correlation function of the
mutualism system subjected to noise and time delay. The re-
sults of the numerical computation show that noise and time
delay play important roles in the mutualism system. The
noise intensity D slows down the the fluctuation decay of
species density firstly and then enhances it. The time delay τ

decreases the fluctuations and slows down the fluctuation de-
cay of species density, on the contrary, the mean nterspecies

interaction intensity J enhances the fluctuations and speeds
up the fluctuation decay of species density.
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