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Exhaustive Exploration of Prisoner’s Dilemma Parameter
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Marcelo Alves Pereira†, Alexandre Souto Martinez‡

Departamento de Fı́sica e Matemática - FFCLRP - USP
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The Prisoner’s Dilemma (PD) is one of the most popular games of the Game Theory due to the emergence
of cooperation among competitive rational players. In this paper, we present the PD played in cells of one-
dimension cellular automata, where the number of possible neighbors that each cell interacts, z, can vary. This
makes possible to retrieve results obtained previously in regular lattices. Exhaustive exploration of the parame-
ters space is presented. We show that the final state of the system is governed mainly by the number of neighbors
z and there is a drastic difference if it is even or odd.
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I. INTRODUCTION

Due to the emergence of cooperation between competitive
rational players [1–4], the Prisoner’s Dilemma (PD) [5, 6]
is one of the most popular games of the Game Theory [7].
When it is played repeatedly, one has the Iterated Prisoner’s
Dilemma [8, 9]. If the PD is played in a group of players with
spatial structure, this version is known as Spatial Prisoner’s
Dilemma (SPD) [10]. These spatial structures may generate
chaotically changing spatio-temporal patterns. Cooperators
and defectors coexist, and cooperator proportion oscillates in-
definitely. This occurs when each player interacts with the
nearest neighbors, for instance, in a square lattice. Moreover,
adding the interaction with the next nearest neighbors (corre-
sponding to the chess king possible moves) the spatial patterns
are smoother. During the game, cooperators and defectors or-
ganize themselves in clusters. The most interesting dynamics
occurs on the borders of these clusters, causing the oscillating
behavior of the proportion of cooperators.

The final proportion of cooperators and defectors in the
chaotic phase depends on the initial configuration and the
magnitude of the parameter T (temptation). Moreover, the
connectivity among players also plays an important role in
the dynamics of the clusters [11]. Studies about PD had
been carried out in different topologies such as square lattice
[10], graphs [12] and also in complex networks as random
graphs [11], scale-free networks [13], small-word networks
[14]. We have used the simplest lattice topology, i.e. one-
dimensional lattice to represent regular lattices at any dimen-
sionality [15]. The computational implementation of PD in
the one-dimensional case is simpler than in other topologies,

and it requires less computational time to run the numerical
codes. In one-dimensional cellular automata, it is simpler to
understand the way that oscillations in the cooperator propor-
tion take place [15]. Beyond the topologies, it is also possible
to consider the mobility of players [16].

In this paper we present an exhaustive exploration of the
parameter space for the IPD in the one-dimensional cellular
automata with a variable number of interacting neighbors. Af-
ter introducing the model in Section II, we show the results in
Section III. Final remarks are presented in the Section IV.

II. THE MODEL

Consider a cellular automaton in a one-dimensional lattice,
with L cells, where each cell represents one player, who has
two possible states: θ = 1 (θ = 0) for cooperator (defector).
The automaton has no empty cells, so the cooperator propor-
tions, ρc(t), and defectors, ρd(t), leads to ρc(t)+ ρd(t) = 1.
The initial proportion of cooperators, ρc(0) = ρ0, 0≤ ρ0 ≤ 1,
is an important parameter. The state of Lρ0 players, which
are chosen randomly by a uniform distribution, are set as co-
operators and the remaining ones are set as defectors. The
neighborhood of the i-th player is defined by z = (1,2, . . . ,L).
If z is even, there are α = z/2 adjacent interacting players to
the right and to the left hand side of this player. If z is odd,
each side has α = (z−1)/2 players and player i interacts with
his/her own state (self-interaction) [15, 19, 20]. In addition to
ρ0 and z the other free parameter in this model is the tempta-
tion T in the conflict range 1≤ T ≤ 2.

Consider two players i and j playing the PD. The payoff
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of player i due to interaction with player j is given by gθi,θ j =
θiθ j +T (1−θiθ j)θ j, where θ j is the state of player j, with j =
(1,2, . . . ,L). The total payoff, Pi, of player i is: Pi = ∑Vi

gθi,θ j ,
, where Vi is the neighborhood of the i-th agent. Since the
payoff of each player depends on z, the macroscopic regime,
ρc, also depends on it. Player i will compare Pi to Pk, where
Pk is the payoff of k = (1,2, . . . ,z) set of players. If Pi < Pk,
player i copies the state of the player with the highest payoff,
otherwise player i does not change his/her current state. The
dynamics of the model is totally deterministic. This strategy
of copying the state of the neighbor that had the highest payoff
is the Darwinian Evolutionary Strategy. Others evolutionary
strategies can be adopted, like the Pavlovian one [21]. The
states of the players are updated synchronously and they play
until the system reaches a stationary or dynamical equilibrium
regime.

The cooperator proportion, ρc(t,T,ρ0,z), depends on time,
temptation, initial proportion of cooperators, and the number
of interacting players. The dependence of ρc as a function
of ρ0 and z is commonly neglected, possibly due to the fixed
lattice restriction in a d-dimensional space.

The asymptotic cooperator proportion, ρ∞(T,ρ0,z), is ob-
tained when the system reaches the steady state, which repre-
sents the final phase for the set of parameters (T,ρ0,z). The
dependence of ρ∞ on z can be understood due to the number of
interacting cooperators, c, with 0≤ c≤ z, in the neighborhood
of each player. When player i interacts with ci cooperators out
of z neighbors, his/her payoff is [11, 19]: P(ci)

i (θi) = [T−(T−
1)θi]ci. Some useful relations follow immediately: for a co-
operator P(ci)

i (1) = c, while for a defector P(ci)
i (0) = cT . For

T > 1, P(ci)
i (0) > P(ci)

i (1) and P(c)
i (θ)≥P(c−1)

i (θ). Transitions
in ρ∞(T ) occur when temptation crosses threshold values. In
the conflict range, 1 < T < 2, these transitions are controlled
by [11]: Tc(n,m) = (z−n)/(z−n−m), where 0≤ n < z and
1≤ m≤ int[(z−n−1)/2)] are integers.

III. RESULTS

We have used a one-dimensional cellular automaton with
L = 1,000 cells, with Lρ0 cells set as cooperators and the re-
maining ones as defectors. The asymptotic cooperator propor-
tion, ρ∞, is obtained from the mean values of an ensemble of
1,000 configurations for the same initial parameters. The pa-
rameter T increases in steps ∆T = 0.01 in the range 1 < T < 2
and ρ0 increases in steps ∆ρ0 = 0.1 and the intermediate val-
ues are linearly interpolated.

It could seem meaningless to consider T = 1.00, as the co-
operators and defectors have the same payoff, when one plays
against the other. However, the total payoff of each player de-
pends on the neighborhood, then, if the player belongs to a
cooperative cluster he/she has a higher payoff than the player
from a defective one. In the cooperative/defective clusters
border, the differences among payoffs are essential to deter-
mine the system dynamics [15].

Results for ρ0 = 0 and ρ0 = 1 are the trivial cases due to
the Darwinian Evolutionary Strategy. In a population of co-

operators (defectors) it is not possible to emerge a defector
(cooperator), because the players only can copy the states of
their neighbors. Mutations are not allowed in our model, i.e.
the noise of the system is null [22].

Our results are equivalent to those obtained in the square
lattices, which are briefly reviewed in the following. Con-
sider four scenarios. First, defectors can dominate the system
and determine the complete extinction of cooperators, lead-
ing the system to a defective phase (ρ∞ = 0). Second, de-
fectors can increase and domain the system, but cooperators
are not extinguished, resulting in a defective phase as well
(0 < ρ∞ < 0.5). Third, cooperators may domain the system
forming a cooperative phase (0.5 < ρ∞ < 1.0). And finally,
cooperators can extinguish the defectors determining a coop-
erative phase (ρ∞ = 1.0).

Figures 1a and 1b show the surface of ρ∞ plotted as a func-
tion of T and ρ0, for z = 8 (without self-interaction) and z = 9
(with self-interaction), respectively. Differences between the
presence/absence of self-interaction are clear. The region of
low values of T and high values of ρ0 is a cooperative phase.
The region of high values of T and low values of ρ0 is a de-
fective phase. The other two regions, low T and low ρ0 or
high T and high ρ0, the value of ρ∞ is different and depends
strongly whether z is even or odd. The valleys for ρ0 ∼ 0.9
are due to the system dynamics. For higher values of ρ0, the
defective clusters formed are tiny in comparison to the coop-
erative ones. These defectors exploit theirs cooperator neigh-
bors, but they neither do not invade the cooperative cluster nor
are extinguished by the cooperative neighborhood during time
evolution.

Another visualization of ρ∞ for z = 8 is given in Figures
2a and 2b, and for z = 9 in Figures 2c and 2d. It is equiva-
lent to observe the phase diagram plotted as surface in Figures
1a and 1b from the top view. The images 2b and 2d are the
standard deviation of ρ∞ due to statistics to avoid the initial
configuration dependence. Figures 2b and 2d, show very high
values of standard deviation. In these regions, small changes
in the initial configuration drastically modify ρ∞ from a co-
operative phase, ρ∞ > 0.5, to a defective phase, ρ∞ < 0.5.
Thus, in this region, it is not possible to define the system as
cooperative or defective, and this region is considered as the
coexistence of cooperative/defective phases. In other words,
the chaotic phase. The inclusion of self-interaction implies
in larger cooperation area in the phase diagram as shown in
Figures 2a and 2c. This means that cooperation prevails when
self-interaction is included. In Figure 2a, ρ∞ drops abruptly
for T > 1.7, this rapid decay does not occur in Figure 2c, be-
cause self-interaction shifts Tc to higher values. In Figure 2d,
the higher values of standard deviation fulfill a larger area,
especially for T > 1.7, for the same reasons. When Tc is
shifted, a region that should be cooperative, when the self-
interaction is present, becomes defective in the absence of the
self-interaction.

The slice ρ∞ρ0 of Figure 1 shows ρ∞ as a function of ρ0.
The curves are plotted for T = (2.0,1.8,1.6,1.4,1.2,1.0), in
Figures 3a for z = 8, and Figure 3b for z = 9. The value
of ρ∞ increases in presence of self-interaction in the region
0 < ρ0 < 0.4, for 1.0 < T < 1.4. Self-interaction also shifts the
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FIG. 1: Phase diagram, ρ∞ (asymptotic proportion of cooperators) as
function of T (temptation), ρ0 (initial proportion of cooperators) and
z (number of interacting players of each player) plotted as a surface.
(a) z = 8 (without self-interaction); (b) z = 9 (with self-interaction).
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FIG. 2: (a) Top view of Figure 1a, ρ∞ as function of T and ρ0
for z = 8 (without self-interaction); (b) standard deviation of ρ∞ as
function of T and ρ0 for z = 8 (without self-interaction); (c) Top
view of Figure 1b, ρ∞ as function of T and ρ0 for z = 9 (with self-
interaction); (d) standard deviation of ρ∞ as function of T and ρ0 for
z = 9 (with self-interaction).

emergence of cooperation to lower values of ρ0, when com-
pared to a system without self-interaction. In Table I, one sees
the values of ρ0, where ρ∞ > 0.5 occurs for the first time for
different values of T . Notice the strong difference concerning
the parity of z.

T z = 8 z = 9
1.0 0.3 0.1
1.2 0.5 0.2
1.4 0.6 0.5
1.6 0.7 0.6
1.8 1.0 0.7
2.0 1.0 1.0

TABLE I: Values of ρ0, when occurs ρ∞ > 0.5 for the first time,
for different values of T , for a system with z = 8 (without self-
interaction) and z = 9 (with self-interaction).

The ρ∞ non-monotonous behavior for intermediate values
of ρ0 presented in Figures 1 and 3, in the region 1.3 < T <
1.5 and 0 < ρ0 < 0.5 are due to the coexistence phases. In
this region, the standard deviation of ρ∞ is higher than in the
remaining regions.
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FIG. 3: Slice of the plane ρ∞(T,ρ0,z)ρ0 of the surfaces. Asymptotic
proportion of cooperators (ρ∞) as function of initial proportion of
cooperators (ρ0) for (a) z = 8 (without self-interaction) and (b) z = 9
(with self-interaction). Asterisks: 2.0; Stars: T = 1.8; Diamonds:
T = 1.6; Squares: T = 1.4; Triangles: T = 1.2; Circles: T = 1.0.

To observe the behavior of ρ∞, when z increases, see the
surfaces of ρ∞ for z = 20, in Figures 4a, and z = 19, Figure
4b. Comparing Figures 1a and 1b, one observes that if z is
increased, the surfaces become more similar.

Figures 5a and 5c are the top view of the ρ∞ surfaces for
z = 20 and z = 19, respectively. They show the convergence
of ρ∞ for even and odd z. Figures 5b and 5d are the ρ∞ stan-
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FIG. 4: Phase diagram, ρ∞ (asymptotic proportion of cooperators)
as function of T (temptation), ρ0 (initial proportion of cooperators)
and z (number of interacting players of each player) plotted as a
surface. (a) z = 20 (without self-interaction); (b) z = 19 (with self-
interaction).

dard deviation for z = 20 and z = 19, respectively. A rele-
vant difference between even and odd z is that the cooperative
phase persists for T < 1.1 in the range of 0.1 < ρ0 < 0.5 in the
presence of self-interaction (see Figure 5c). If self-interaction
is present the shift in Tc to higher values remains in higher
values of z.

A slice of the plane T ρ0 of the ρ∞ surface in Figures 1a
and 1b at ρ∞ = 0.5, may represent a phase diagram. In Fig-
ures 6a and 6c, the contours separate the cooperative/defective
phases, i.e. the phase-diagram. Figures 6b and 6d are the con-
tours that take into account the standard deviation. Since there
is the phase coexistence, these contours separate the coopera-
tive/coexistence/defective phases.

In Figures 7a and 7b, there are the contours of the cooper-
ative/defective phase for different z values. When z increases
the contours converge to the same pattern independently if z is
even or odd as shown in Figure 6c and 6d. For small z values,
the z parity generates remarkable differences in the contours,
if z increases, the contours converge and present a similar form
and the phase coexistence region is narrower than for small z
values.

IV. CONCLUSION

The Prisoner’s Dilemma in the one-dimensional cellular au-
tomata yields results according to the results obtained previ-
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FIG. 5: (a) Top view of Figure 4a, ρ∞ as function of T and ρ0 for
z = 20 (without self-interaction); (b) standard deviation of ρ∞ as
function of T and ρ0 for z = 20 (without self-interaction); (c) Top
view of Figure 4b, ρ∞ as function of T and ρ0 for z = 19 (with self-
interaction); (d) standard deviation of ρ∞ as function of T and ρ0 for
z = 19 (with self-interaction).
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FIG. 6: Phase diagram of ρ∞ in the parameter space. (a) z = 8 and
z = 9, contours of the cooperative/defective phase; (b) z = 8 and z =
9, contours of the cooperative/coexistence/defective phase; (c) z = 20
and z = 19, contours of the cooperative/defective phase; (d) z = 20
and z = 19, contours of the cooperative/coexistence/defective phase.
The coexistence phase the phase is the space between the first and
the second contours of the same z.

ously for regular lattices in d dimensions. The exhaustive ex-
ploration of the parameter space allows us to observe that the
parameter z plays the main role in the dynamics. For low z
values, the influence of self-interaction is remarkable. Some
studies about the PD with variable coordination number, i.e.
the neighborhood size z, have been carried out. However,
these studies adopt lattice topologies that are different from
the one-dimensional lattice used here, e.g. square lattice [25],
complex networks as random graphs [11], scale-free networks
[25, 26], small-world networks [14]. Another difference in
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FIG. 7: Phase diagram of ρ∞ in the parameter space. (a) contours
of the cooperative/defective phase for even z = (4,6,8,12,16,20)
(without self-interaction); (b) contours of the cooperative/defective
phase for odd z = (5,7,9,13,17,19) (with self-interaction). Notice
the difference due to the parity of z is not so important for zÀ 1

comparison to these studies is that the state update of the play-
ers is asynchronous [25, 26], but in our case is synchronous.
Despite these differences, the main features due to the z vari-
ation remain, such as the dependence on the asymptotic co-
operator proportion on the neighborhood size. Our results are
similar to those obtained by Durán and Mulet [11] consider-
ing the neighboorhood with self-interaction (odd z). Compar-
ing our results to those found in the literature, it is possible to
see that the way the connection among the players is settled
plays another important role in this problem independently of
the space dimensionality or network structure.

For intermediate values of T and ρ0 the chaotic phase oc-
curs. In the chaotic phase the outcome ρ∞ can belong to the
cooperative or defective phase due to only a small change in
the initial distribution of the cooperators.
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