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The thermal behaviour of the mass, leptonic decay constant, and width of heavy-light quark peseudoscalar
and vector mesons is analized in the framework of thermal Hilbert moment QCD sum rules. In all the cases, the
meson leptonic decay constants decrease with increasing T , and vanish at a critical temperature Tc, while the
mesons develop a width which increases dramatically, diverging when T → Tc, where Tc is the temperature for
chiral-symmetry restoration. The spectral function becomes a smooth function of the energy. This is interpreted
as a signal for deconfinement at T = Tc. In contrast, the thermal masses are stable, except when T → Tc, where
the pseudoscalar meson mass increases slightly by 10-20 %, and the vector meson mass decreases by some
20-30 %.
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1. INTRODUCTION

The discussion of hadronic Green’s functions at finite tem-
perature, in a variety of frameworks, is crucial in understand-
ing the dynamics of the quark-gluon plasma. One such frame-
work is that of QCD sum rules [1], based on the Operator
Product Expansion (OPE) of current correlators beyond per-
turbation theory, and on the notion of quark-hadron duality.
This program was extended to the finite temperature scenario
in [2]. It is based on two assumptions, (a) that the OPE
remains valid, with temperature dependent vacuum conden-
sates, and (b) that the quark-hadron duality also remains valid.
Additional evidence supporting these assumptions was pro-
vided in [3]. This analysis suggests strongly that at finite tem-
perature stable particles at T = 0 develop a non-zero width
and resonances become broader, diverging at a critical decon-
fining temperature (Tc). This width is a result of particle ab-
sorption in the thermal bath. The analysis shows that the onset
of the continuum decreases and approaches threshold near Tc.
This technique provides also evidence for the equality of the
critical temperatures for deconfinement and chiral-symmetry
restoration [6]. When T → Tc hadrons seem to melt and dis-
appear from the hadronic spectral functions. This scenario is
further supported by the thermal behaviour of electromagnetic
mean-squared radii, which also diverge at Tc [4]. On the con-
trary, the thermal mass evolution is not a relevant signal for
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deconfinement. Conceptually, given either the emergence or
the broadening of an existing width, together with its diver-
gence at Tc, the concept of mass looses its meaning. In prac-
tice, in some cases the mass increases slightly with increasing
T , and in others it decreases.
In this paper we use Hilbert moment QCD sum rules for
heavy-light quark pseudoscalar and vector meson correla-
tors to determine the temperature behaviour of the hadronic
masses, couplings, and widths. For more details, see [7].At
T = 0 this problem was discussed in [8]-[9]. While there are
only four ground-state pseudoscalar heavy-light quark mesons
in the spectrum (D, Ds, B, and Bs), and similarly for vector
mesons, it is possible to determine the decay constants for ar-
bitrary meson masses in a self-consistent way [9]. It turns out
that the meson masses are basically independent of T , except
very close to Tc where they increase slightly (pseudoscalars)
by 10 - 20 %, or decrease (vector mesons) by 20-30 %. Here
Tc is the critical temperature for chiral-symmetry restoration.
The leptonic decay constants decrease with increasing T , and
vanish at the critical temperature. Pseudoscalar and vector
mesons develop a non-zero hadronic width that increases with
T diverging at Tc. These results provide evidence for quark
deconfinement at T = Tc.

2. PSEUDOSCALAR MESONS

Let us consider the correlator of axial-vector divergences at
finite temperature, i.e. the retarded Green’s function
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ψ5(q2,T ) = i
∫

d4 x eiqx θ(x0) (1)

<< | [∂µAµ(x) , ∂νA†
ν(0)] |>>,

where ∂µAµ(x) = mQ : q̄(x) iγ5 Q̄(x) : , q (Q) refers to the light
(heavy) quark, and mQ >> mq is assumed. The matrix ele-
ment above is the Gibbs average

<< A ·B >>=
1
Z ∑

n
exp(−En/T ) < n|A ·B|n > , (2)

where |n > is any complete set of eigenstates of the (QCD)
Hamiltonian and Z = Tr(exp(−(H/T )) is the partition func-
tion. We use here the quark-gluon basis, which allows for a
smooth extension of the QCD sum rule program to non-zero
temperature [3]. At T = 0 and to leading order in PQCD [10]

1
π

Imψ5(x,0) =
3

8π2 m4
Q

(1− x)2

x
, (3)

where x≡m2
Q/s, with s≥m2

Q, and 0≤ x≤ 1. At finite temper-
ature contribute both the so called scattering term (q2 space-
like), and the annihilation term (q2 time-like) [2] to the corre-
lator. We find the former to be exponentially suppressed, so
that it can be safely neglected, while the latter is given by

1
π

Imψ5(x,T ) =
1
π

Imψ5(x,0) (4)
{

1−nF

[ ω
2T

(1+ x)
]
−nF

[ ω
2T

(1− x)
]}

,

where Imψ5(x,0) is given by Eq.(3), nF(z) = (1+ez)−1 is the
Fermi thermal function, and in the rest frame (q = 0) of the
thermal bath x = m2

Q/ω2. The first thermal function is expo-
nentially suppressed and can be safely neglected for temper-
atures of order O(100 − 200MeV) , but the second one does
contribute near threshold.
Up to dimension d = 6 the non-perturbative expansion of the
correlator at T = 0 is given by [8]

ψ5(q2)|NP = αC4 < O4 > +βC5 < O5 > +γC6 < O6 > (5)

where α = m2
Q/(m2

Q−q2), β = m3
Qq2/4(m2

Q−q2)3 and

γ =
m2

Q

6

[
2

(m2
Q−q2)2

− m2
Q

(m2
Q−q2)3

− m4
Q

(m2
Q−q2)4

]

Our condensates are

C4 < O4 >=
1

12π
< αs G2 > −mQ < q̄q >, (6)

C5 < O5 >=< gs q̄ iσµν Ga
µν λa q >≡ 2 M2

0 < q̄q > , (7)

C6 < O6 >= παs < (q̄γµλa q)∑
q

q̄γµλa q > (8)

V S=⇒−16
9

παs ρ|< q̄q > |2 ,

and mc(mc) ' 1.3GeV, mb(mb) ' 4. ∗ GeV, <
q̄q >' (−250MeV)3, < αsG2/12π >' 0.003GeV4,
M2

0 ' 0.4− 0.6GeV2, and ρ ' 3− 5 accounts for deviations
from vacuum saturation. Use of these values in Hilbert
moment sum rules reproduce the pseudoscalar meson masses
at T = 0. Changes in these parameters would only affect the
normalization at T = 0.

For the light-quark condensate at finite temperature we use
the result of [11], obtained in the composite operator formal-
ism, valid for the whole range of temperatures T = 0− Tc,
where Tc is the critical temperature for chiral symmetry
restoration. There is lattice evidence [12] as well as analytical
evidence [6] for this critical temperature to be the same as that
for deconfinement. The ratio R(T ) =<< q̄q >> / < q̄q >
from [11] as a function of T/Tc is shown in Fig. 1 .

The low temperature expansion of the gluon condensate is
proportional to the trace of the energy-momentum tensor, and
it starts only at order T 8 [13]. To a good approximation it can
be written as

<<
αs

12π
G2 >>=<

αs

12π
G2 >

[
1−

( T
Tc

)8]
. (9)

FIG. 1: The light-quark condensate ratio R(T )=<< q̄q >>/ < q̄q >
as a function of T/Tc from [11].

Because of this T - dependence, the gluon condensate re-
mains essentially constant up to temperatures very close to
Tc. Hence, the thermal non-perturbative QCD correlator is
basically driven by the quark condensate. Concerning the di-
mension d = 6 condensate, it has been argued that the vac-
uum saturation approximation breaks down at finite tempera-
ture [14]. This is based on the comparison between the slopes
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of the low temperature expansion (chiral perturbation theory)
with and without assuming vacuum saturation. They are in
fact numerically different. However, this result is only valid
at very low temperatures (T << fπ); hence it cannot be ex-
trapolated to T ' Tc. In fact, both the quark condensate and
the four-quark condensate should vanish at the same temper-
ature T = Tc. In any case, numerically, at temperatures of
order T ' 100MeV the quark condensate dominates over the
gluon condensate, the dimension d = 5 condensate is compa-
rable to << q̄q >>, and the dimension d = 6 condensate is
almost two orders of magnitude smaller. Hence, potential vi-
olations of vacuum saturation can be safely ignored. Finally,
at finite temperature it is possible, in principle, to have non-
zero values of non-diagonal (Lorentz non-invariant) vacuum
condensates. There is one example discussed in the literature
[15] with enough detail to make a numerical estimate of their
importance, and it refers to operators of spin-two (quark and
gluon energy momentum tensors). The low temperature ex-
pansion of these terms starts at order O(T 4), in contrast to a
T 2 dependence of the diagonal condensates. We find that at
temperatures of order T ' 100MeV both non-diagonal con-
densates are three orders of magnitude smaller than the cor-
responding diagonal equivalents. We shall then ignore non-
diagonal condensates in the sequel.

FIG. 2: The ratio s0(T )/s0(0), Eq.(14), as a function of T/Tc for
mQ = mc.

If we go now into the hadronic sector,, the spectral function
at T = 0 can be written as

1
π

Imψ5(s)|HAD = 2 f 2
P M4

P δ(s−M2
P) + (10)

θ(s− s0)
1
π

Imψ5(s)|PQCD ,

where MP and fP are the mass and leptonic decay constant of
the pseudoscalar meson, and the continuum, starting at some
threshold s0, is modeled by perturbative QCD. With this nor-
malization, fπ ' 93MeV. Our previous experience with ther-
mal evolution of two point functions according to finite energy

sum rules suggests us strongly to anticipate the pseudoscalar
mesons to develop a sizable width ΓP(T ) at finite temper-
ature (particle absorption in the thermal bath), and using a
Breit-Wigner parametrization, the following replacement will
be understood

δ(s−M2
P) =⇒ const

1
(s−M2

P)2 +M2
PΓ2

P
, (11)

where the mass and width are T−dependent, and the constant
is fixed by requiring equality of areas, e.g. if the integration is
in the interval (0−∞) then const = 2MPΓP/π. The continuum

FIG. 3: The ratio MP(T )/MP(0) as a function of T/Tc.

threshold s0 above also depends on temperature; to a good
approximation it scales universally as the quark condensate
[16], i.e.

s0(T )
s0(0)

≈ << q̄q >>

< q̄q >
, (12)

where s0(0) is clearly channel dependent. At the critical tem-
perature we expect s0(Tc) = m2

Q, in which case Eq. (13) can
be rewritten as

s0(T )
s0(0)

≈ << q̄q >>

< q̄q >

[
1− m2

Q

s0(0)

]
+

m2
Q

s0(0)
, (13)

This is shown in Fig. 2 for the case mQ = mc and
s0(0) = 5GeV2; a qualitatively similar behaviour is obtained
for mQ = mb and s0(0)' (1.1−1.3)M2

B.

The correlation function ψ5(q2,T ), Eq.(1), satisfies a twice
subtracted dispersion relation. To eliminate the subtractions
one can use Hilbert moments at Q2 ≡−q2 = 0, i.e.

ϕ(N)(T ) ≡ (−)N+1

(N +1)!

( d
dQ2

)N+1
ψ5(Q2,T )|Q2=0 (14)

=
1
π

∫ ∞

m2
Q

ds
sN+2 Imψ5(s,T ) ,
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FIG. 4: The ratio fP(T )/ fP(0) as a function of T/Tc.

where N = 1,2, .... Invoking quark-hadron duality

ϕ(N)(T )|HAD = ϕ(N)(T )|QCD , (15)

FIG. 5: The width ΓP(T )) as a function of T/Tc, with ΓP(0) = 0.

and combining the continuum contribution in the hadronic
spectral function with the PQCD piece of the QCD counter-
part leads to the finite energy Hilbert moments

1
π

∫ s0(T )

0

ds
sN+2 Imψ5(s,T )|POLE =

1
π

∫ s0(T )

m2
Q

ds
sN+2 Imψ5(s,T )|PQCD +ϕ(N)(T )|NP , (16)

where Imψ5(s,T )|POLE is given by the first term in Eq.(11)
modified according to Eq.(12), the PQCD spectral function
corresponds to Eq.(4), and

ϕ(N)(T )|NP =
A

m2N+2
Q

[
1− 1

12π
<< αsG2 >>

A

−1
4
(N +2)(N +1)

M2
0

m2
Q

− 4
81

(N +2)(N2 +10N +9)παs ρ
<< q̄q >>

m3
Q

]
(17)

where we introduced A = −mQ << q̄q >>. Using the first
three moments one obtains the temperature dependence of the
mass, the leptonic decay constant, and the width. Results from
this procedure are shown in Figs.3-5 for the charm case; in the
case of beauty mesons, results are qualitatively similar.

3. VECTOR MESONS

We consider the correlator of the heavy-light quark vector
current

Πµν(q2,T ) = i
∫

d4 xeiqxθ(x0) << |[Vµ(x),V †
ν (0)]|>>

=−(gµνq2−qµqν)Π(1)(q2,T )+qµqνΠ(0)(q2,T )
(18)

where Vµ(x) =: q(x)γµQ(x) : . In the sum rule we shall use the
function −Q2Π(1)(q2,T ), which is free of kinematical singu-
larities. A straightforward calculation gives

1
π

ImΠ(1)(x,T ) =
1

8π2 (1− x)2(2+ x)

×
[
1−nF

(
z+

)−nF
(
z−

)]
, (19)

where z± ≡ ω
2T (1± x). In the hadronic sector, we define the

vector meson leptonic decay constant fV through

< 0|Vµ(0)|V (k) >=
√

2 MV fV εµ , (20)

so that the pole contribution to the hadronic spectral function
is 2 f 2

V δ(s−M2
V ). At T = 0 the vector Meson D∗(2010) has

a very small width in the keV range (96±22) keV which we
expect to increase with increasing T , so that the replacement
in Eq.(12) will be made.

The Hilbert moments at Q2 = 0 of the function
−Q2Π(1)(Q2) are given by

ϕ(N)(T ) ≡ (−)N+1

(N +1)!

( d
dQ2

)N+1
[−Q2Π(1)(Q2,T )]|Q2=0

=
1
π

∫ ∞

m2
Q

ds
sN+1 Im Π(1)(s,T ) . (21)



Brazilian Journal of Physics, vol. 38, no. 3B, September, 2008 441

FIG. 6: The ratio MV (T )/MV (0) as a function of T/Tc.

FIG. 7: The width ΓV (T ) as a function of T/Tc.

Following the same procedure as for the pseudoscalar
mesons (see Eq. (17)), the sum rules become

1
π

∫ s0(T )

0

ds
sN+1 ImΠ(1)(s,T )|POLE =

1
π

∫ s0(T )

m2
Q

ds
sN+1 ImΠ(1)(s,T )|PQCD +ϕ(N)(T )|NP , (22)

where ϕ(N)(T )|NP is given by

ϕ(N)(T )|NP =− A
m2N+4

Q

[
1− << αsG2 >>

12πA
−

(N +2)(N +3)
4

M2
0

m2
Q

+

4
81

(N +2)(20 +N −N2)παs ρ
<< q̄q >>

m3
Q

]
, (23)

where we used once again A = −mQ << q̄q >>. Using the
first three Hilbert moments to find the temperature depen-
dence of the hadronic parameters, we obtain for the mass and
the width of D∗(2010) the results shown in Figs.6-7. The be-
haviour of the vector-meson leptonic decay constant is essen-
tially the same as that of the pseudoscalar-meson shown in
Fig.4. Similar results are found for the case of the beauty vec-
tor meson B∗.

4. CONCLUSIONS

The thermal behavior of pseudoscalar and vector meson de-
cay constants, masses, and widths was obtained in the frame-
work of Hilbert moment finite energy QCD sum rules. This
behaviour is basically determined by the thermal light quark
condensate on the QCD sector, and by the T-dependent con-
tinuum threshold on the hadronic sector. Normalizing the
values at T = 0, and using the method of [9] for arbitrary
masses, there follows a universal relation for the hadronic
parameters as a function of T/Tc. Results show that the de-
cay constants decrease with increasing temperature, vanish-
ing at T = Tc, while the widths increase and diverge at the
critical temperature. Such a behavior provides (analytical) ev-
idence for quark-gluon deconfinement, and is in qualitative
agreement with corresponding results obtained in the light-
quark sector. Finally, pseudoscalar meson masses increase
slightly with temperature by some 10−20%, while the vector
masses decrease by 20−30%. Given the dramatic emergence
of monotonically increasing widths Γ(T ), there is little if any
significance of this temperature behaviour of the masses, i.e.
the relevant signals for deconfinement are the vanishing of the
leptonic decay constants and the divergence of the widths at
T = Tc.

Acknowledgments

We acknowledge support from Fondecyt (Chile) under
grants Nr. 1051067, 7070178 and 1060653 and. M.L.
acknowledges also support from the Centro de Estudios
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