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Simulation of Dense Colloids
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We present in this proceeding recent large scale simulations of dense colloids. On one hand we simulate model
clay consisting of nanometric aluminum oxyde spheres in water using realistic effective electrostatic interactions
and Van der Waals attractions, known as DLVO potentials and a combination of molecular dynamics (MD) and
stochastic rotation dynamics (SRD). We find pronounced cluster formation and retrieve the shear softening of
the viscosity in quantitative agreement with experiments. On the other hand we study the velocity probability
distribution functions (PDF) of sheared hard-sphere colloids using a combination of MD with lattice Boltzmann
and find strong deviations from a Maxwell-Boltzmann distribution. We find a Gaussian core and an exponential
tail over more than six orders of magnitude of probability. The simulation data follow very well a simple
theory. We show that the PDFs scale with shear rate γ̇ as well as particle volume concentration φ, and kinematic
viscosity ν.
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I. INTRODUCTION

Colloids are ubiquitous in our daily life including coffee,
tooth paste and wall paint which are mixtures of finely ground
solid ingredients in a fluid. Of particular interest for industrial
applications are suspensions under the influence of external
forces causing sedimentation or shear flows. Detailed exper-
iments have been performed for more than a hundred years,
but questions about the microstructure during sedimentation
or structural relaxations of the sediment are still not well un-
derstood. Colloids behave in a complex way, since different
time and length scales are involved. The particle sizes are
on a mesoscopic length scale, i.e., in the range of nanometers
up to micrometers. Depending on the particle sizes, materi-
als, and concentrations, different interactions are of relevance
and often several of them are in a subtle interplay: electro-
static repulsion, depletion forces, van der Waals attraction,
hydrodynamic interaction, Brownian motion, and gravity are
the most important influences. Here, we are interested in col-
loids, where attractive van der Waals interaction is important
for the description, i.e., where under certain circumstances
cluster formation plays an important role[1, 2]. To model
these systems experimentally, Al2O3 suspensions are often
used[3, 4]. Al2O3 is also a common material in the ceram-
ics industry. There, wet processing of suspensions, followed
by a sinter process is a common practice. The stability of the
resulting workpiece strongly depends on the microstructure
formed before the sintering process. The viscosity, velocity
distribution and stability of clusters as well as their formation
are only a few of the quantities of interest. We will present
large scale simulations and study in particular the anomalous

velocity distribution under shear.

II. SIMULATING SHEARED CLAY

We investigate the rheology of a sheared solution of spher-
ical Al2O3 particles of diameter 0.37µm in water. Clusters
of particles can form for two different reasons: depletion
forces[5, 6], like-charge attraction mediated by the counteri-
ons in the solvent[7, 8], or van der Waals attraction[9–11].
The shear flow can either support cluster formation at low
shear rates, or it can suppress cluster formation at high shear
rates as we have shown in ref. [12]. We adjust the simulation
parameters so that the simulation corresponds quantitatively
to a real suspension with 35% volume concentration under
shear. The shear rate is kept fixed at γ̇ = 20/s[13, 14]. For
Al2O3 suspensions attractive van der Waals forces compete
with electrostatic repulsion. Depending on the particle sur-
face charge, clustering due to attractive van der Waals forces
can dominate or be prevented. We have presented how one
can relate parameters of DLVO potentials[15, 16] with exper-
imentally tunable parameters, i.e., the pH-value and the salt
concentration expressed by the ionic strength I, influence the
charge of the colloidal particles[14]. We explored the stability
diagram of Al2O3 suspensions and reproduced that the par-
ticles are uncharged close to the so called “isoelectric point”
at pH = 8.7, where they form clusters regardless of the ionic
strength. For lower pH-values particles can be stabilized in so-
lution. For very low pH-values, low salt concentrations, and
high volume fractions a repulsive structure can be found. The
particle size is on a mesoscopic length scale, where Brownian
motion is relevant and long range hydrodynamic interactions
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are of importance. Therefore, we use “Stochastic Rotation
Dynamics” (SRD), which includes both, hydrodynamics and
Brownian motion for the description of the fluid [17, 18].

Our simulation method is described in detail in ref. [13, 14]
and consists of two parts: a Molecular Dynamics (MD) code,
which treats the colloidal particles, and a Stochastic Rotation
Dynamics (SRD) simulation for the fluid solvent. In the MD
part we include effective electrostatic interactions and van der
Waals attraction, known as DLVO potentials[15, 16], a lubri-
cation force and Hertzian contact forces. DLVO potentials are
composed of two terms, the first one being an exponentially
screened Coulomb potential due to the surface charge of the
suspended particles
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Here d denotes the particle diameter, r the distance between
the particle centers, e the elementary charge, T the temper-
ature, kB the Boltzmann constant, and z is the valence of the
ions of added salt. ε0 is the permittivity of the vacuum, εr = 81
the relative dielectric constant of the solvent, κ the inverse De-
bye length defined by κ2 = 8π`BI, with ionic strength I and
Bjerrum length `B = 7Å. The first fraction in eq.(1) is a cor-
rection to the DLVO potential (in the form used in ref. [9]),
which takes the surface curvature into account and is valid
for spherical particles. The effective surface potential ζ can
be related to the pH-value of the solvent with a 2pK charge
regulation model[14]. The Coulomb term competes with the
attractive van der Waals interaction (AH = 4.76 ·10−20 J is the
Hamaker constant)[9]
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The attractive contribution VVdW is responsible for clus-
ter formation. However, depending on the pH-value and the
ionic strength, it may be overcompensated by the electrosta-
tic repulsion. When particles get in contact, the potential
has a minimum. However, eq.(2) diverges due to the limi-
tations of DLVO theory. We cut off the DLVO potentials and
model the minimum by a parabola. The particle contacts are
modeled as Hertzian contacts and for non-touching particles,
below the resolution of the SRD algorithm short range hy-
drodynamics is corrected by a lubrication force, which we
apply within the MD framework, as we have explained in
ref. [13, 14]. For the integration of translational motion of
the colloidal particles we use a velocity Verlet algorithm[19]
and for the fluid we apply the Stochastic Rotation Dynamics
method (SRD)[17, 18]. It intrinsically contains fluctuations, is
easy to implement, and has been shown to be suitable for sim-
ulations of colloidal and polymer suspensions[13, 14, 20–22].
The method is also known as “Real-coded Lattice Gas”[20]
or as “multi-particle-collision dynamics” (MPCD)[22] and is
based on coarse-grained fluid particles with continuous posi-
tions and velocities. A streaming step and an interaction step

are performed alternately. In the streaming step, each parti-
cle i is moved according to ~ri(t + τ) =~ri(t) + τ~vi(t), where
~ri(t) denotes the position of the particle i at time t and τ is the
time step. In the interaction step fluid particles are sorted into
cubic cells of a regular lattice and only the particles within
the same cell interact according to an artifical collision rule
which conserved energy and momentum. First, for each in-

dependent cell j the mean velocity ~u j(t ′) = 1
N j(t ′) ∑

N j(t ′)
i=1 ~vi(t)

is calculated. N j(t ′) is the number of fluid particles contained
in cell j at time t ′ = t + τ. Then, the velocities of each fluid
particle are rotated according to

~vi(t + τ) =~u j(t ′)+~Ω j(t ′) · [~vi(t)−~u j(t ′)]. (3)

~Ω j(t ′) is a rotation matrix, which is independently chosen at
random for each time step and cell. Rotations are about one
coordinate axes by a fixed angle ±α. To couple colloidal par-
ticles and the fluid, the particles are sorted into SRD cells and
their velocities are included in the rotation step. The masses
of colloidal and fluid particles are used as a weight factor for
the mean velocity

~u j(t ′) =
1

M j(t ′)

N j(t ′)

∑
i=1

~vi(t)mi, (4)

with M j(t ′) =
N j(t ′)

∑
i=1

mi. (5)

N j(t ′) is the total number of all colloidal and fluid particles in
the cell. mi is the mass of particle i and M j(t ′) gives the total
mass contained in cell j at time t ′ = t + τ. We apply shear by
explicitly setting the mean velocity ~u j to the shear velocity in
the cells close to the border of the system. A thermostat re-
moves the energy introduced to the system by the shear force.

One simulation run takes between one and seven days on
a 3GHz Pentium CPU. In order to be able to gather statis-
tics as well as to minimize finite size effects, we parallelized
our code. While MD codes have been parallelized by many
groups, only few parallel implementations of a coupled MD
and SRD program exist. This is in contrast to the number
of parallel implementations of other mesoscopic simulation
methods like for example the lattice Boltzmann method. A
possible explanation is that SRD is a more recent and so far
not as widely used algorithm causing the parallelization to be
a more challenging task.

We study systems [23] containing a volume concentration
of 5% of colloidal particles (=1320 MD particles), a shear rate
of γ̇ = 20/s, ionic strengths I= 3mmol/l and 7mmol/l, and pH
= 6 and 7. To demonstrate the effect of clustering, in fig, (1)
snapshots from a typical simulation of a 8.88µm3 system with
periodic boundaries at I = 7mmol/l and pH = 6 at different
times are shown. While at the beginning of the simulation (a),
freely moving particles can be observed, small clusters appear
after t = 0.26s (b). After t = 1.06s, all particles are contained
within three individual clusters (c) and after t = 4.22s only
one single cluster is left in the system. For an investigation of
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a) t = 0.05s b) t = 0.26s

c) t = 1.06s d) t = 4.22s

FIG. 1: Snapshots of a simulation of an 8.88µ3 system, filled with
Φ = 5% MD particles of diameter d = 0.37µ under shear with γ̇ =
20/s.

the formation and movement of clusters, substantially larger
systems are needed. Therefore, we scaled up the simulation
volume to 17.76µ3 containing 10560 MD particles and 1.3·107

fluid particles. Due to the computational demands of the fluid
solver, a single simulation of 5s real time requires about 5000
CPU hours on 32 CPUs of an IBM p690 system.

FIG. 2: Viscosity as function of shear velocity.

Using this algorithm we can calculate the viscosity and ob-
tain the result shown in Fig. 2. We compare this with ex-
perimental data obtained by Reinshagen in Karlsruhe for alu-
minum oxyde beads in water at pH = 6 under shear [14]. We
see that the agreement is good and that the numerical data
show much more scatter that the experimental one because
the simulated system is much smaller. Another reason for dis-
crepancy is the insecurity in the experimental determination
of the ζ-potential. Clearly the system exhibits shear soften-
ing, i.e. the viscosity decreases with the shear rate. This is
very typical for dense colloids.

Summarizing, the presented combination of MD and SRD
has turned out to be very accurate to simulate colloids of nano-
sized particles where van der Waals and electrostatic forces
compete with thermal motion. Besides the cluster formation
and the rheology presented here we have also measured cor-
relations functions and structure factors [12].

III. THE VELOCITY DISTRIBUTION

The probability distribution function of particle velocities
P(v) can be of use for a better understanding of colloids.
Naively, one might expect P(v) to be of similar shape as for
an ideal gas, i.e., like a Maxwellian. However, it has been
found by numerous authors that the probability of high ve-
locities is substantially larger than predicted by a Gaussian
shaped distribution function [24, 25]. Non-Gaussian distribu-
tions are well known from other fields of physics like gran-
ular media [26–28], astrophysics [29], flow in porous me-
dia [30], turbulence [31], bubble rafts [32] or glass forming
colloids [33]. Experimentally, Rouyer et al. [34] studied quasi
2D hard-sphere suspensions and found a stretched exponen-
tial form of P(v) with concentration dependent exponents be-
tween 1 and 2 corresponding to purely exponential distribu-
tions for high concentrations and a Gaussian for small particle
counts. These experimental results are in contrast to theoret-
ical predictions of a transition from exponential to Gaussian
with increasing volume concentration [24, 25]. However, both
experimental and theoretically studied systems are not able to
obtain valuable statistics over more than 2-4 decades. If one
does not have enough data for high quality PDFs, a final an-
swer on the nature of the function cannot be given since for
high velocities the variation of the data points is too large.
Indeed, we have found that even stretched exponentials can
fit PDFs with purely exponential tails and Gaussian centers if
only 2-4 decades of probability are covered [35]. But as soon
as one adds more data points, the exponential nature of the
tails becomes more distinct and fitting the whole PDF with a
single stretched exponential function becomes impossible.

vshear

y
x

z

f

−vshear

FIG. 3: Sketch of the simulation setup.
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In this section we follow our work being reported on in [35].
We overcome the limitations of previous works by present-
ing PDFs consisting of up to 1010 measurements of particle
displacements each [35]. Our data does not show any devia-
tions from purely exponential tails over six to eight decades of
probability. Using a single-particle theory we can analytically
confirm this finding. We show that for constant volume con-
centration φ, P(vz) scales linearly with the shear rate, volume
concentration and viscosity. The system under consideration
is a three-dimensional Couette setup as shown in Fig. 3. At
top and bottom closed sheared walls are applied and the shear
rate is γ̇ = 2vshear/Nz, with Nz being the distance between the
shear planes. All other boundaries are periodic. We consider
384 up to 1728 initially randomly placed suspended particles
of equal radius corresponding to a particle volume concentra-
tion φ between 6.8% and 30.7%. A body force f can be added
to mimic gravity.

We apply a hybrid method composed of a lattice-Boltzmann
solver (LB) for the fluid solvent and a molecular dynamics
(MD) algorithm for the motion of suspended particles. With
appropriate boundary conditions being imposed at solid/fluid
interfaces, colloidal suspensions can be modeled. This ap-
proach and recent additions for the calculation of lubrication
forces and stability improvements of the MD were originally
introduced by A.J.C. Ladd and coworkers [36–39]. The al-
gorithm has been applied by numerous groups and is well es-
tablished in the literature [36–41]. For our simulations we
found a particle radius of a=1.25 lattice sites being sufficient
since for larger particles P(vz) does not change significantly
anymore, but the computational effort increases substantially.
The simulation volume has dimensions 64a × 8a × 48a and
the shear rate γ̇ is varied between 2.3 · 10−4 and 1 · 10−3 (in
lattice units). The fluid density is kept constant and if not
specified otherwise the kinematic viscosity is set to ν = 0.05.

One simulation runs for 6.25 million lattice Boltzmann time
steps, where during the last 5 million time steps the z compo-
nent of the velocity of every individual particle is gathered in
a histogram in order to obtain P(vz). Up to 1010 data points
per histogram allow us to obtain good statistics over six or-
ders of magnitude. All distributions are normalized such that∫

dvzP(vz) = 1 and
∫

dvzv2
z P(vz) = 1.

The theoretical model [35] is based on the balance be-
tween viscous dissipation and shear forcing in steady state.
The forcing is modeled as uncorrelated white noise (〈ξ j〉= 0,
〈ξi(t)ξ j(t ′)〉= 2Dδi jδ(t− t ′)). velocities change as dv j

dt |heat =
ξ j. Due to the viscous fluid, particles slow down. The change
in the velocity is dv/dt = −βv, so in accordance with the
traditional drag law the velocity decays exponentially in the
absence of forcing v = v0e−βt . We model this by reducing
each time unit the velocity by a factor η = e−β as v → ηv.
In a sheared fluid, there is a well defined time scale for re-
encounters with the boundary, setting the time scale for the
damping process. This process was used by van Zon et al. to
model forced granular media [42, 43]. The velocity distribu-
tion obeys the linear equation

∂P(v)
∂t

= D
∂2P(v)

∂2v
+

1
η

P
(

v
η

)
−P(v). (6)

Here, no explicit interactions between particles are consid-
ered. Instead, a particle undergoes diffusion as influenced by
all other particles. This effect is modeled by the first term on
the right hand side. The next two terms describe gain and loss
due to the damping. In steady state the left hand side of Eq. 6
vanishes. We note that the shape of P(v) is independent of the
diffusion constant. Indeed, by making the scaling v→ v/

√
D

we can eliminate D and assume without loss of generality that
D = 1. The shape of the distribution depends on the dissipa-
tion parameter η alone. In the weak drag limit, η → 1, the
exponential decay holds only for sufficiently large velocities
and there is a cross-over between a Maxwellian behavior and
an exponential one,

P(v)∼




exp
(
− εv2
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)
v¿ε−1,

exp
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)
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where ε = 1−η. The two expressions match, P(v)∼ exp
(−

ε−1
)

at the crossover velocity v ≈ ε−1. The Maxwellian be-
havior directly follows from the moments. Interestingly, the
crossover to a non-Maxwellian does not affect the leading be-
havior of the moments.
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FIG. 4: Probability distribution function of vz for f = 0.72 · 10−4

corresponding to a Stokes velocity of vs=1.4 · 10−3, φ = 13.6% and
different shear rates 3.3 ·10−4, 6.7 ·10−4, and 1 ·10−3. The left figure
shows the unscaled data, where higher γ̇ relate to wider P(vz). The
right figure shows a collapse of the data obtained by normalising as
described in the text. The full line is the steady state solution of Eq. 6
(η = 0.73) [35].

As a summary, the theory predicts the non-equilibrium
shape of the PDF as an interplay between energy being in-
jected by a diffusive thermostat and dissipation due to the drag
of the fluid. The theoretical results shown later are given by a
Monte Carlo solution of the steady state case of Eq. 6. Here,
N particles are characterized by a velocity vi. The velocities
change through two independent processes: damping and ran-
dom forcing. In the damping process, the velocity is reduced
by a fixed factor vi → ηvi. In the forcing process, the particle
velocity changes by a random increment vi → vi + ξ where ξ
has zero mean and a unit variance. The steady-state distribu-
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tions were obtained using over 1010 points from simulations
with 108 particles.

Let us first consider suspensions with constant volume con-
centration and various shear rates under the influence of a
body force f . The dependence of P(vz) on the shear rate
for three representative γ̇ is depicted in Fig. 4a. Distributions
in other directions are essentially identical if one deducts the
shear velocity and are therefore not shown. P(vz) is symmetric
and 〈vz〉= 0 for all cases considered in this proceedings paper.
As shown in Fig. 4b, the not normalized distributions widen
for higher shear rates. However, a very good scaling is ob-
served: all normalized curves collapse onto a single one. The
influence of γ̇ on the RMS velocity vRMS

z =
√〈v2

z 〉 follows a
linear dependence as expected from the theory: the shear rate
only sets a scale for the velocity.

To obtain an insight into the properties of P(vz), we com-
pute the cumulant κ from our data and find that for all simula-
tion parameters studied in this letter it varies between 3.8 and
4.6. Knowing κ, we can compute η =

√
6/κ−1. Due to the

large number of data points in our histograms, we calculate κ
for periods of 1 million time steps each and then compute the
arithmetic average of the last 5 million time steps of a simu-
lation run. We find that κ varies by up to 10% within a single
simulation which is of the same order as the difference of the
individual PDFs in Fig. 4b. Thus, we average the different
curves as well in order to obtain a value for the cumulant to be
utilized for the Monte Carlo solution of the steady state case
of Eq. 6. For the collapse in Fig. 4b we get η = 0.73. As
demonstrated in the figure, the solid line given by the theory
and the simulation data show an excellent agreement over the
full range of six orders of magnitude of probability.

We consider next neutrally-buoyant suspended hard-
spheres under shear. The shear rate is kept fixed and the par-
ticle volume concentration is varied between φ = 6.8% and
30.7%. Due to hydrodynamic interactions, the particles tend
to move to the center of the system, i.e., to an area where the
shear is low creating a depleted region close to the sheared
walls. The corresponding normalized P(vz) are presented in
Fig. 5a. As depicted in the figure, all PDFs except for the low-
est particle concentration φ = 6.8% (circles) collapse onto a
single curve. At very low concentrations, the tails of P(vz) are
still not fully converged due to the limited number of particle-
particle interactions taking place within the simulation time
frame. Again, the full line in Fig. 5a is given by the steady
state solution of Eq. 6 with η = 0.69 being obtained from the
fourth moment of P(vz). As before, a very good agreement be-
tween simulation and theory is observed. We study the depen-
dence of vRMS

z on φ. For concentrations of at least φ = 13.6%
vRMS

z (φ) can be fitted by a line with slope 1.8 ·10−4.
By keeping all simulation parameters except the kinematic

viscosity ν constant, the dependence of ν on P(vz) can be stud-
ied. We find that the probability distribution functions are in-
dependent of the viscosity. Thus, the steady state curve ob-
tained for different volume concentrations is identical to the
one for different ν as shown in Fig. 5b. It would be of interest
to study the influence of the body force f on the shape of the
probability distribution. However, f and the shear forces are
in a subtle interplay since the height of the steady state sedi-
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FIG. 5: P(vz) for f = 0, γ̇ = 6.7 · 10−4 and φ =
6.8%,13.6%,20.5%,23.9%, and 27.3% (a). In Fig. b), φ is
kept at 13.6% and the kinematic viscosity is set to ν = 0.017, 0.05,
and 0.1. In both figures, all data sets collapse onto a single curve
and the lines are given by the theory with η = 0.69 [35].

ment depends on both parameters and thus influences the local
particle volume concentration. To investigate this behavior is
beyond our scope.

We conclude that the non-equilibrium velocity distributions
reported here are a consequence of the irreversible nature of
the driving process. On average, particles gain energy by
one mechanism but lose energy by another mechanism and
unlike in an ideal gas, these two mechanisms are not inter-
changeable. In other words, one cannot reverse the arrow of
time and observe the same behavior. Our theoretical model
captures this irreversibility through the competition between
two non-equivalent driving mechanisms: energy dissipation
through a multiplicative process and energy injection through
an ordinary additive diffusive thermostat. The theory de-
scribes all aspects of the distribution as demonstrated by an
excellent agreement with the results obtained from our cou-
pled lattice Boltzmann and molecular dynamics simulations
of sheared hard-sphere suspensions: the particle velocity dis-
tribution functions P(vz) exhibit a Gaussian core and expo-
nential tails over at least six orders of magnitude of proba-
bility. Interestingly, particle interactions in moderately dense
suspensions can be well represented by a white noise. We also
note that the complete shape of the distribution function can
be characterized by a single parameter, the normalized fourth
moment.

IV. CONCLUSION

In this proceedings we have demonstrated an efficient way
to simulate dense colloids by combining MD with either SRD
or lattice Boltmann. We applied the first algorithm to data ob-
tained from large scale simulations of colloidal suspensions
in the clustering regime and found the shear softening of the
viscosity in good agreement with experiments. Further, by ap-
plying the latter method, we confirmed that P(vz) scales lin-
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early with the particle volume concentration as well as the
shear rate and is independent of the solvent’s viscosity. While
different authors report on transitions between Gaussian and
(stretched) exponential tails [24, 25, 34], we have shown that
such findings are due to insufficient statistics and that there is
no such transition.
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