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Cylindrically symmetric inhomogeneous magnetized string cosmological model is investigated with cosmo-
logical term Λ varying with time. To get the deterministic solution, it has been assumed that the expansion (θ)
in the model is proportional to the eigen value σ1

1 of the shear tensor σi
j . The value of cosmological constant

for the model is found to be small and positive which is supported by the results from recent supernovae Ia
observations. The physical and geometric properties of the model are also discussed in presence and absence of
magnetic field.
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I. INTRODUCTION

Cosmic strings play an important role in the study of the
early universe. These strings arise during the phase transition
after the big bang explosion as the temperature goes down
below some critical temperature as predicted by grand uni-
fied theories [1]− [5]. It is believed that cosmic strings give
rise to density perturbations which lead to formation of galax-
ies [6]. These cosmic strings have stress energy and couple
to the gravitational field. Therefore, it is interesting to study
the gravitational effect which arises from strings. The gen-
eral treatment of strings was initiated by Letelier [7, 8] and
Stachel [9]. The occurrence of magnetic fields on galactic
scale is well-established fact today, and their importance for
a variety of astrophysical phenomena is generally acknowl-
edged as pointed out Zel’dovich [10]. Also Harrison [11] has
suggested that magnetic field could have a cosmological ori-
gin. As a natural consequences, we should include magnetic
fields in the energy-momentum tensor of the early universe.
The choice of anisotropic cosmological models in Einstein
system of field equations leads to the cosmological models
more general than Robertson-Walker model [12]. The pres-
ence of primordial magnetic fields in the early stages of the
evolution of the universe has been discussed by several au-
thors (Misner, Thorne and Wheeler [13]; Asseo and Sol [14];
Pudritz and Silk [15]; Kim, Tribble, and Kronberg [16]; Perley
and Taylor [17]; Kronberg, Perry and Zukowski [18]; Wolfe,
Lanzetta and Oren [19]; Kulsrud, Cen, Ostriker and Ryu [20];
Barrow [21]). Melvin [22], in his cosmological solution for
dust and electromagnetic field suggested that during the evo-
lution of the universe, the matter was in a highly ionized state
and was smoothly coupled with the field, subsequently form-

ing neutral matter as a result of universe expansion. Hence
the presence of magnetic field in string dust universe is not
unrealistic.

Benerjee et al. [23] have investigated an axially symmet-
ric Bianchi type I string dust cosmological model in presence
and absence of magnetic field. The string cosmological mod-
els with a magnetic field are also discussed by Chakraborty
[24], Tikekar and Patel [25, 26]. Patel and Maharaj [27]
investigated stationary rotating world model with magnetic
field. Ram and Singh [28] obtained some new exact solution
of string cosmology with and without a source free magnetic
field for Bianchi type I space-time in the different basic form
considered by Carminati and McIntosh [29]. Singh and Singh
[30] investigated string cosmological models with magnetic
field in the context of space-time with G3 symmetry. Singh
[31] has studied string cosmology with electromagnetic fields
in Bianchi type-II, -VIII and -IX space-times. Lidsey, Wands
and Copeland [32] have reviewed aspects of super string cos-
mology with the emphasis on the cosmological implications
of duality symmetries in the theory. Bali et al. [33–35] have
investigated Bianchi type I magnetized string cosmological
models.

Cylindrically symmetric space-time play an important role
in the study of the universe on a scale in which anisotropy and
inhomogeneity are not ignored. Inhomogeneous cylindrically
symmetric cosmological models have significant contribution
in understanding some essential features of the universe such
as the formation of galaxies during the early stages of their
evolution. Bali and Tyagi [36] and Pradhan et al. [37, 38] have
investigated cylindrically symmetric inhomogeneous cosmo-
logical models in presence of electromagnetic field. Barrow
and Kunze [39, 40] found a wide class of exact cylindrically
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symmetric flat and open inhomogeneous string universes. In
their solutions all physical quantities depend on at most one
space coordinate and the time. The case of cylindrical sym-
metry is natural because of the mathematical simplicity of the
field equations whenever there exists a direction in which the
pressure equal to energy density.

In modern cosmological theories, a dynamic cosmological
term Λ(t) remains a focal point of interest as it solves the cos-
mological constant problem in a natural way. There are sig-
nificant observational evidence for the detection of Einstein’s
cosmological constant, Λ or a component of material content
of the universe that varies slowly with time and space to act
like Λ. A wide range of observations now compellingly sug-
gest that the universe possesses a non-zero cosmological term
[41]. In the context of quantum field theory, a cosmological
term corresponds to the energy density of vacuum. The birth
of the universe has been attributed to an excited vacuum fluc-
tuation triggering off an inflationary expansion followed by
the super-cooling. The release of locked up vacuum energy re-
sults in subsequent reheating. The cosmological term, which
is measure of the energy of empty space, provides a repulsive
force opposing the gravitational pull between the galaxies. If
the cosmological term exists, the energy it represents counts
as mass because mass and energy are equivalent. If the cos-
mological term is large enough, its energy plus the matter in
the universe could lead to inflation. Unlike standard inflation,
a universe with a cosmological term would expand faster with
time because of the push from the cosmological term [42].
Some of the recent discussions on the cosmological constant
“problem” and on cosmology with a time-varying cosmologi-
cal constant by Ratra and Peebles [43], Dolgov [44] and Sahni
and Starobinsky [45] point out that in the absence of any in-
teraction with matter or radiation, the cosmological constant
remains a “constant”. However, in the presence of interac-
tions with matter or radiation, a solution of Einstein equations
and the assumed equation of covariant conservation of stress-
energy with a time-varying Λ can be found. This entails that
energy has to be conserved by a decrease in the energy den-
sity of the vacuum component followed by a corresponding
increase in the energy density of matter or radiation (see also
Weinberg [46], Carroll, Press and Turner [47], Peebles [48],
Padmanabhan [49] and Pradhan et al. [50] ).

Recent observations by Perlmutter et al. [51] and Riess et
al. [52] strongly favour a significant and a positive value of Λ
with magnitude Λ(G~/c3) ≈ 10−123. Their study is based on
more than 50 type Ia supernovae with red-shifts in the range
0.10 ≤ z ≤ 0.83 and these suggest Friedmann models with
negative pressure matter such as a cosmological constant (Λ),
domain walls or cosmic strings (Vilenkin [53], Garnavich et
al. [54]). Recently, Carmeli and Kuzmenko [56] have shown
that the cosmological relativistic theory predicts the value for
cosmological constant Λ = 1.934× 10−35s−2. This value of
“Λ” is in excellent agreement with the recent estimates of the
High-Z Supernova Team and Supernova Cosmological Project
(Garnavich et al. [54]; Perlmutter et al. [51]; Riess et al. [52];
Schmidt et al. [56]). In Ref. [57] Riess et al. have recently
presented an analysis of 156 SNe including a few at z > 1.3
from the Hubble Space Telescope (HST) “GOOD ACS” Trea-

sury survey. They conclude to the evidence for present accel-
eration q0 < 0 (q0 ≈ −0.7). Observations (Knop et al. [58];
Riess et al., [57]) of Type Ia Supernovae (SNe) allow us to
probe the expansion history of the universe leading to the con-
clusion that the expansion of the universe is accelerating.

Baysal et al. [59], Kilinc and Yavuz [60], Pradhan et al.
[61] have investigated string cosmological models in cylindri-
cally symmetric inhomogeneous universe in different context.
Recently, Pradhan, Rai and Singh [62] have studied cylin-
drically symmetric inhomogeneous universe with elctromag-
netic field in string cosmology. Motivated by the situation
discussed above, in this paper, we have generalized these so-
lutions by including electromagnetic field, pressure and cos-
mological term varying with time. We have taken strings and
electromagnetic field together as the source gravitational field
as magnetic field are anisotropic stress source and low strings
are one of anisotropic stress source as well. The paper is or-
ganized as follows. The metric and the field equations are
presented in Section II. In Section III, we deal with the so-
lution of the field equations in presence of perfect fluid with
electromagnetic field and variable cosmological term. Section
IV describes some physical and geometric properties of the
universe. In Section V, we deal with the solution of the field
equations in absence of the magnetic field. Finally in Section
VI concluding remarks are given.

II. THE METRIC AND FIELD EQUATIONS

We consider the metric in the form

ds2 = A2(dx2−dt2)+B2dy2 +C2dz2, (1)

where A, B and C are functions of x and t. The energy mo-
mentum tensor for the cloud of strings with perfect fluid and
electromagnetic field has the form

T j
i = (ρ+ p)uiu j + pg j

i −λxix j +E j
i , (2)

where ui and xi satisfy conditions

uiui =−xixi =−1, (3)

and

uixi = 0. (4)

Here ρ is the rest energy density of the cloud of strings, p is
the isotropic pressure, λ is the tension density of the strings, xi

is a unit space-like vector representing the direction of strings
so that x1 = 0 = x2 = x4 and x3 6= 0, and ui is the four velocity
vector satisfying the following conditions

gi juiu j =−1. (5)

In Eq. (2), E j
i is the electromagnetic field given by Lichnerow-

icz [63]

E j
i = µ̄

[
hlhl

(
uiu j +

1
2

g j
i

)
−hih j

]
, (6)
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where µ̄ is the magnetic permeability and hi the magnetic flux
vector defined by

hi =
1
µ̄
∗Fjiu j, (7)

where the dual electromagnetic field tensor ∗Fi j is defined by
Synge [64]

∗Fi j =
√−g

2
εi jklFkl . (8)

Here Fi j is the electromagnetic field tensor and εi jkl is the
Levi-Civita tensor density.

In the present scenario, the comoving coordinates are taken
as

ui =
(

0,0,0,
1
A

)
. (9)

The incident magnetic field is taken along x-axis so that

h1 6= 0,h2 = 0 = h3 = h4 (10)

The first set of Maxwell’s equations

Fi j;k +Fjk;i +Fki; j = 0, (11)

leads to

F23 = constant = H(say). (12)

The semicolon represents a covariant differentiation. Here
F12 = F24 = F34 = 0 due to assumption of infinite electromag-
netic conductivity. The only non-vanishing component of Fi j
is F23.

The Einstein’s field equations (with 8πG
c4 = 1)

R j
i −

1
2

Rg j
i +Λg j

i =−T j
i , (13)

for the line-element (1) lead to the following system of equa-
tions:

1
A2

[
−B44

B
− C44

C
+

A4

A

(
B4

B
+

C4

C

)
+

A1

A

(
B1

B
+

C1

C

)
+

B1C1

BC
− B4C4

BC

]

= p−λ− H2

2µ̄B2C2 +Λ, (14)

1
A2

[
−

(
A4

A

)

4
+

(
A1

A

)

1
− C44

C
+

C11

C

]
= p+

H2

2µ̄B2C2 +Λ, (15)

1
A2

[
−

(
A4

A

)

4
+

(
A1

A

)

1
− B44

B
+

B11

B

]
= p+

H2

2µ̄B2C2 +Λ, (16)

1
A2

[
−B11

B
− C11

C
+

A1

A

(
B1

B
+

C1

C

)
+

A4

A

(
B4

B
+

C4

C

)
− B1C1

BC
+

B4C4

BC

]

= ρ+
H2

2µ̄B2C2 −Λ, (17)

B14

B
+

C14

C
− A4

A

(
B1

B
+

C1

C

)
− A1

A

(
B4

B
+

C4

C

)
= 0, (18)

where the sub indices 1 and 4 in A, B, C and elsewhere denote
ordinary differentiation with respect to x and t respectively.

The rotation ω2 is identically zero. The scalar expansion θ,
shear scalar σ2, acceleration vector u̇i and proper volume V 3

are respectively found to have the following expressions:

θ = ui
;i =

1
A

(
A4

A
+

B4

B
+

C4

C

)
, (19)
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σ2 =
1
2

σi jσi j =
1
3

θ2− 1
A2

(
A4B4

AB
+

B4C4

BC
+

C4A4

CA

)
, (20)

u̇i = ui; ju j =
(

A1

A
,0,0,0

)
(21)

V 3 =
√−g = A2BC, (22)

where g is the determinant of the metric (1).

III. SOLUTIONS OF THE FIELD EQUATIONS

As in the case of general-relativistic cosmologies, the intro-
duction of inhomogeneities into the string cosmological equa-
tions produces a considerable increase in mathematical diffi-
culty: non-linear partial differential equations must now be
solved. In practice, this means that we must proceed either
by means of approximations which render the non- linearities
tractable, or we must introduce particular symmetries into the
metric of the space-time in order to reduce the number of de-
grees of freedom which the inhomogeneities can exploit.

Here to get a determinate solution, let us assume that expan-
sion (θ) in the model is proportional to the eigen value σ1

1
of the shear tensor σi

j. This condition leads to

A = (BC)n, (23)

where n is a constant. Equations (15) and (16) lead to

B44

B
− B11

B
=

C44

C
− C11

C
. (24)

Using (23) in (18), yields

B41

B
+

C41

C
−2n

(
B4

B
+

C4

C

)(
B1

B
+

C1

C

)
= 0. (25)

To find out deterministic solutions, we consider

B = f (x)g(t) and C = h(x)k(t). (26)

In this case equation (25) reduces to

f1/ f
h1/h

=− (2n−1)(k4/k)+2n(g4/g)
(2n−1)(g4/g)+2n(k4/k)

= K(constant), (27)

which leads to

f1

f
= K

h1

h
(28)

and

k4/k
g4/g

=
K−2nK−2n
2nK +2n−1

= a(constant). (29)

From Eqs. (28) and (29), we obtain

f = αhK (30)

and

k = δga, (31)

where α and δ are integrating constants. Eq. (24) and (26)
reduce to

g44

g
− k44

k
=

f11

f
− h11

h
= N, (32)

where N is a constant. Eqs. (29) and (32) lead to

gg44 +ag2
4 =− N

a−1
g2, (33)

which leads to

g = β
1

a+1 cosh
1

a+1 (bt + t0), (34)

where β and t0 are constants of integration and

b =

√
N(a+1)

1−a
.

Thus from Eq. (31) we get

k = δβ
a

a+1 cosh
a

a+1 (bt + t0). (35)

From Eqs. (27) and (32), we obtain

hh11 +Kh2
1 =

N
K−1

h2, (36)

which leads to

h = `
1

K+1 cosh
1

K+1 (rx+ x0), (37)

where ` and x0 are constants of integration and

r =

√
N(K +1)

K−1
.

Hence from Eq. (30) we have

f = α`
K

K+1 cosh
K

K+1 (rx+ x0). (38)

It is worth mentioned here that equations (33) and (36) are
fundamental basic differential equations for which we have
reported new solutions given by equations (34) and (37).

Thus, we obtain

B = f g = Qcosh
K

K+1 (rx+ x0)cosh
1

a+1 (bt + t0), (39)

C = hk = Rcosh
1

K+1 (rx+ x0)cosh
a

a+1 (bt + t0), (40)

and

A = (BC)n = M coshn(rx+ x0)cosn(bt + t0), (41)

where

Q = αβ
1

a+1 `
K

K+1 ,
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R = δβ
a

a+1 `
1

K+1 ,

M = (QR)n.

Hence the geometry of the space-time (1) takes the form

ds2 = M2 cosh2n(rx+ x0)cosh2n(bt + t0)(dx2−dt2)+

Q2 cosh
2K

K+1 (rx+ x0)cosh
2

a+1 (bt + t0)dy2+

R2 cosh
2

K+1 (rx+ x0)cosh
2a

a+1 (bt + t0)dz2. (42)

By using the following transformation

rX = rx+ x0,

Y = Qy,

Z = Rz

bT = bt + t0 (43)

the metric (42) reduces to

ds2 = M2 cosh2n(rX)cosh2n(bT )(dX2−dT 2)+

cosh
2K

K+1 (rX)cosh
2

a+1 (bT )dY 2 +cosh
2

K+1 (rX)cosh
2a

a+1 (bT )dZ2.
(44)

IV. SOME PHYSICAL AND GEOMETRIC PROPERTIES
OF THE MODEL

In this case the physical parameters, i.e. the pressure (p),
the energy density (ρ), the string tension density (λ), the parti-
cle density (ρp) and the cosmological term Λ(t) for the model
(44) are given by

p =
1

M2 cosh2n(bT )cosh2n(rX)

[
b2

{
n+

a
(a+1)2

}
tanh2(bT )

−r2
{

n+
K

(K +1)2

}
tanh2(rX)−b2

{
n+

1
(a+1)

}
+ r2

{
n+

K
(K +1)

}]

− κ
cosh2(bT )cosh2(rX)

−Λ, (45)

λ =
1

M2 cosh2n(bT )cosh2n(rX)

[
r2

{
n+

K
(K +1)

}
− b2

{
n+1+

1
(a+1)

}

−2r2
{

n+
K

(K +1)2

}
tanh2(rX)

]
− 2κ

cosh2(bT )cos2(rX)
, (46)

ρ =
1

M2 cosh2n(bT )cosh2n(rX)

[
b2

{
n+

a
(a+1)2

}
tanh2(bT )

+r2
{

n+
K

(K +1)2

}
tanh2(rX)− r2

]
− κ

cosh2(bT )cosh2(rX)
+Λ, (47)

ρp = ρ−λ =
1

M2 cosh2n(bT )cosh2n(rX)

[
b2

{
n+

a
(a+1)2

}
tanh2(bT )



172 Anirudh Pradhan, Kanti Jotania, and Archana Singh

+3r2
{

n+
K

(K +1)2

}
tanh2(rX)+b2

{
n−1+

1
(a+1)

}

−r2
{

n+1+
K

(K +1)

}]
+

κ
cosh2(bT )cosh2(rX)

+Λ, (48)

where

κ =
H2

2µ̄
.

For the specification of Λ, we assume that the fluid obeys an equation of state of the form

p = γρ, (49)

where γ(0≤ γ≤ 1) is a constant. From Eqs. (45), (47) and (49), we obtain

Λ =
1

(1− γ)M2 cosh2n(bT )cosh2n(rX)

[
(1− γ)b2

{
n+

a
(a+1)2

}
tanh2(bT )

−(1+ γ)r2
{

n+
K

(K +1)2

}
tanh2(rX)−b2

{
n+

1
(a+1)

}

+r2
{

n+
K

(K +1)

}
− γr

]
− κ

cosh2(bT )cosh2(rX)
. (50)

From Eq. (47), we note that ρ(t) is a decreasing function of
time and ρ > 0 for all times. Fig. 1(a) shows this behaviour of
energy density.

In spite of homogeneity at large scale our universe is inho-
mogeneous at small scales, so physical quantities being po-
sition dependent are more natural in our observable universe
if we do not go to super high scale. This result shows this
kind of physical importance. In recent time the Λ-term has in-
terested theoreticians and observers for various reasons. The
nontrivial role of the vacuum in the early universe generate a
Λ-term that leads to inflationary phase. Observationally, this
term provides an additional parameter to accommodate con-
flicting data on the values of the Hubble constant, the decel-
eration parameter, the density parameter and the age of the
universe (for example, see the references [65, 66]). Assuming
that Λ owes its origin to vacuum interactions, as suggested in
particular by Sakharov [67], it follows that it would in gen-
eral be a function of space and time coordinates, rather than a
strict constant. In a homogeneous universe Λ will be at most
time dependent [68]. In our case this approach can generate Λ
that varies both with space and time. In considering the nature
of local massive objects, however, the space dependence of Λ
cannot be ignored. For details discussion, the readers are ad-
vised to see the references (Narlikar, Pecker and Vigier [69],
Ray and Ray [70], Tiwari, Ray and Bhadra [71]).

The behaviour of the universe in this model will be deter-
mined by the cosmological term Λ ; this term has the same

effect as a uniform mass density ρe f f = −Λ/4πG, which is
constant in space and time. A positive value of Λ corresponds
to a negative effective mass density (repulsion). Hence, we
expect that in the universe with a positive value of Λ, the ex-
pansion will tend to accelerate; whereas in the universe with
negative value of Λ, the expansion will slow down, stop and
reverse. From Eq. (50), we see that the cosmological term
Λ is a decreasing function of time and it approaches a small
positive value at late time. From Fig. 1(b) we note this be-
haviour of cosmological term Λ. Recent cosmological ob-
servations (Garnavich et al. [54], Perlmutter et al. [51],
Riess et al. [52, 57], Schmidt et al. [56]) suggest the exis-
tence of a positive cosmological constant Λ with the magni-
tude Λ(G~/c3) ≈ 10−123. These observations on magnitude
and red-shift of type Ia supernova suggest that our universe
may be an accelerating one with induced cosmological density
through the cosmological Λ-term. Thus, our model is consis-
tent with the results of recent observations.

The kinematical quantities , i.e. the scalar of expansion (θ),
shear tensor (σ), the acceleration vector (u̇i) and the proper
volume (V 3) for the model (44) are given by

θ =
b(n+1) tanh(bT )

M coshn(bT )coshn(rX)
, (51)

σ2 =
b2 tanh2(bT )[(a+1)2(n2−n+1)−3a]

3(a+1)2M2 cosh2n(bT )cosh2n(rX)
, (52)
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FIG. 1: The plot of (a) ρ as a function of T, (b) Λ as a function of T

u̇i = (nr tanh(rX),0,0,0), (53)

V 3 = cosh2n+1(bT )cosh2n+1(rX). (54)

From Eqs. (51) and (52), we obtain

σ2

θ2 =
(a+1)2(n2−n+1)−3a

3(n+1)2(a+1)2 = constant. (55)

The dominant energy conditions (Hawking and Ellis [72])

(i) ρ− p≥ 0 (ii) ρ+ p≥ 0

lead to

2r2
{

n+
K

(K +1)2

}
tanh2(rX)− r2

{
n+1+

K
K +1

}

+b2
{

n+
1

a+1

}
+2ΛM2 cosh2n(bT )cosh2n(rX)≥ 0, (56)

and

2b2
{

n+
a

(a+1)2

}
tanh2(bT )+ r2

{
n−1+

K
K +1

}

−b2
{

n+
1

a+1

}
≥ 2M2κcosh2n−2(bT )cosh2n−2(rX).

(57)
The reality conditions (Ellis [73])

(i) ρ+ p > 0, (ii) ρ+3p > 0,

lead to

2b2
{

n+
a

(a+1)2

}
tanh2(bT )+ r2

{
n−1+

K
K +1

}

−b2
{

n+
1

a+1

}
> 2M2κcosh2n−2(bT )cosh2n−2(rX),

(58)
and

4b2
{

n+
a

(a+1)2

}
tanh2(bT )−2r2

{
n+

K
(K +1)2

}
tanh2(rX)

+3r2
{

n+
K

K +1

}
− 3b2

{
n+

1
a+1

}
− r2

> 4M2κcosh2n−2(bT )cosh2n−2(rX)+2M2Λcosh2n(bT )cosh2n(rX). (59)

In general, the model represents an expanding, shearing and
non-rotating universe. Since σ

θ = constant, hence the model
does not approach isotropy. In presence of uniform magnetic

field if p = 0, Λ = 0, our solution represents the solution ob-
tained by Pradhan et al. [62]. The model is accelerating. The
proper volume in the model increases as T increases.
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V. SOLUTIONS OF THE FIELD EQUATIONS IN ABSENCE
OF MAGNETIC FIELD

In absence of the magnetic field i.e. H = 0, the physical
parameters, i.e. the pressure (p), the energy density (ρ), the

string tension density (λ), the particle density (ρp) and the
cosmological term Λ(t) for the model (44) are given by

p =
1

M2 cosh2n(bT )cosh2n(rX)

[
b2

{
n+

a
(a+1)2

}
tanh2(bT )

−r2
{

n+
K

(K +1)2

}
tanh2(rX)−b2

{
n+

1
(a+1)

}
+ r2

{
n+

K
(K +1)

}]
−Λ, (60)

λ =
1

M2 cosh2n(bT )cosh2n(rX)

[
r2

{
n+

K
(K +1)

}
− b2

{
n+1+

1
(a+1)

}

−2r2
{

n+
K

(K +1)2

}
tanh2(rX)

]
, (61)

ρ =
1

M2 cosh2n(bT )cosh2n(rX)

[
b2

{
n+

a
(a+1)2

}
tanh2(bT )

+r2
{

n+
K

(K +1)2

}
tanh2(rX)− r2

]
+Λ, (62)

ρp = ρ−λ =
1

M2 cosh2n(bT )cosh2n(rX)

[
b2

{
n+

a
(a+1)2

}
tanh2(bT )

+3r2
{

n+
K

(K +1)2

}
tanh2(rX)+b2

{
n−1+

1
(a+1)

}

−r2
{

n+1+
K

(K +1)

}]
+Λ. (63)

By using the equation of state (49) in Eqs. (60) and (62), we obtain

Λ =
1

(1− γ)M2 cosh2n(bT )cosh2n(rX)

[
(1− γ)b2

{
n+

a
(a+1)2

}
tanh2(bT )

−(1+ γ)r2
{

n+
K

(K +1)2

}
tanh2(rX)−b2

{
n+

1
(a+1)

}

+r2
{

n+
K

(K +1)

}
− γr

]
. (64)

We observe that in absence of the magnetic field, the ex-
pressions for Kinematical quantities for the model (44) are

unchanged.
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FIG. 2: The plot of (a) ρ as a function of T, (b) Λ as a function of T

From Eq. (62), we note that ρ(t) is a decreasing function of
time and ρ > 0 for all times. Fig. 2(a) shows this behaviour of
ρ(t). From Eq. (64), we see that the cosmological term Λ is a
decreasing function of time and it approaches a small positive
value as time increases more and more which matches with
recent observations. From Fig. 2(b) we note this behaviour of
cosmological term Λ. In absence of uniform magnetic field if
we set p = 0 and Λ = 0, our solution represents the solution
obtained by Pradhan et al. [61]).

VI. CONCLUDING REMARKS

We have obtained a new cylindrically symmetric inhomo-
geneous cosmological model of uniform electromagnetic per-
fect fluid as the source of matter where the cosmological con-
stant is varying with time. Generally the model represents
an expanding, shearing and non-rotating universe in which
the flow vector is geodetic. The model does not approach
isotropy.

In presence and absence of magnetic field, the cosmolog-
ical terms in the models are decreasing function of time and

approach a small value at late time. The values of cosmo-
logical “constant” for the models are found to be small and
positive, which is supported by the results from supernovae
observations recently obtained by the High-Z Supernovae Ia
Team and Supernova Cosmological Project (Garnavich et al.
[54], Perlmutter et al. [51], Riess et al. [52, 57], Schmidt et
al. [56]).

If we set p = 0 and Λ = 0, our solution represents the so-
lution obtained by Pradhan, Rai and Singh [62]. Again we
observe that when p = 0, Λ = 0, and κ = 0, our solution rep-
resents the model (case (i)) obtained by Pradhan et al. [61].
Thus our solutions generalize the rsults obtained in [61] and
[62].
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