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An Analytical Solution for the Critical Number of Particles for Stable
Bose-Einstein Condensation under the Influence of an Anisotropic Potential
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We have considered a Bose gas in an anisotropic potential. Applying the the Gross-Pitaevskii Equation (GPE)
for a confined dilute atomic gas, we have used the methods of optimized perturbation theory and self-similar root
approximants, to obtain an analytical formula for the critical number of particles as a function of the anisotropy
parameter for the potential. The spectrum of the GPE is also discussed.
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I. INTRODUCTION

The experimental realization of BEC with alkali atoms [1-
5] opened a new and exciting field involving quantum atomic
fluids. This new field has been launched with many interest-
ing theoretical predictions and ideas. When the system is spa-
tially confined with atomic interaction effectively attractive,
BEC is stable only below a certain critical value. In this case,
the zero-point motion of the atoms serves as a kinetic obsta-
cle against collapse, allowing a metastable BEC to be formed
[6-10]. Above the critical number of particles the colapse is
unavoidable.

When the ground-state energy becomes complex, the sys-
tem becomes unstable. That is a general way to identify the
critical value for the coupling parameter in the system as well
as identifying the critical number of particles.

It was shown by Gammal et al [11-12] within the Gross-
Pitaevskii formalism, that the critical number of particles for
BEC in cylindrical traps can be obtained numerically for the
case attractive interactions. It was also calculated in reference
[13] the spectrum of the Gross-Pitaevskii Equation (GPE) for
a system composed of attractive bosons confined in a har-
monic trap through the Controlled Perturbation Theory. In
reference [13], the critical number of particles that ensures
real values for the energy spectrum was obtained as a function
of the potential anisotropic parameter.

The aim of this work is to consider the analytical spec-
trum of the Gross-Pitaevskii equation through approxi-
mants crossover roots [16] with negative effective interaction
strength in a cylindrical symmetry. An analytical formula was
derived to analyze the stable critical number of particles, Nc
as a function of the anisotropy of the confining potential. Here
we used controlled perturbation theory [14] to derive numer-
ically the spectrum of the Gross-Pitaevskii equation, and ap-
proximants crossover roots [15] to obtain the analytical ex-
pression for the spectrum of the Gross-Pitaevskii equation.

In fact, we used controlled perturbation theory instead of
standard (ordinary) perturbation theory since the first one uses
control functions that optimize the convergence [13].

II. MODEL

Bose system is confined by a trapping potential given by
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1
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The interaction potential is considered as a Fermi contact
potential as

Φ(~r) = Aδ(~r) , where A = 4πh2 as

m0
(2)

with as being the s-wave scattering length. With the confining
potential and the interaction potential, we get the nonlinear
Hamiltonian

H(ϕ) =−~
2∇2

2m0
+U (~r)+NA |ϕ|2 . (3)

Due to the presence of this confining potential, the spectrum
of the stationary Gross-Pitaevskii Equation (GPE) is discrete,
being defined by the eigenvalue problem

H [ϕn]ϕn (~r) = Enϕn (~r) . (4)

When the confining presents cylindrically symmetric, so
that

ωx = ωy = ωr , (5)

hence anisotropy parameter is defined as

λ =
ωz

ωr
. (6)

The radial oscillator length
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lr ≡
√
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serves to define the dimensionless cylindrical variables, and

~r ≡

√
r2

x + r2
y

lr
, z =

rz

lr
. (8)

Then one may define the dimensionless coherent wave
function

ψ(r,ϕ,z)≡ l3/2
r ϕ(~r)

depending on the cylindrical variables r ∈ (0,∞) , ϕ ∈
(0,2π) and z ∈ (∞,−∞) and the Hamiltonian, H, is defined
as

H ≡ H (ϕ(~r))
~ωr

The atom-atom coupling parameter can be expressed as

g = 4π
as

lr
N. (9)

Thus we can write the Hamiltonian in the form

Ĥ =−1
2
~∇2 +

1
2

(
r2 +λz2)−g |ψ|2

where

~∇2 =
∂2

∂r2 +
1
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∂
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+
1
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∂ϕ2 +
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and the coupling parameter, g , is the perturbed Hamiltonian
term.

The eigenproblem (4) takes the form HΨnml = EnmlΨnml ,
in which n = 0,1,2, ... is radial quantum number, m =
0,±1,±2, ... is the azimuthal quantum number, and l =
0,1,2, ... is the axial quantum number.

The equilibrium Bose-Einstein condensate corresponds to
the ground-state solution of the stationary GPE, when n = m =
l = 0.

The nonlinear eigenproblem cannot be solved exactly. We
can employ the optimized perturbation theory to find the ac-
curate expressions for the spectrum of GPE and for arbitrary
values of the coupling parameter. This theory has been applied
in several physical problems [13-14]. This approach has been
used for calculating the critical temperature of Bose-Einsten
condensation in a Dilute Bose Gas [14]. The introduction of
optimized perturbation theory provides us the control func-
tions that are optimal choice and provoke the optimal conver-
gence of a calculational procedure [14], this theory was intro-
duced by Yukalov [16].

In applying the optimized perturbation theory to the GPE,
the spectrum, in first approximation, can be written as:

e(g)≡ E(g,u(g) ,v(g))

with the expression

E(g,u,v) =
p
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2
su
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vp
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where p and q are defined as

p = 2n+ |m|+1 , q≡ 2l +1. (11)

The related eigenfunction are [17]
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where Lm
n (.) are the Laguerre polynomials and Hk (.) are Her-

mite polynomials.
The fixed-point conditions are, therefore, obtained from

conditions

∂
∂u

E(g,u,v) = 0 ,
∂
∂v

E(g,u,v) = 0

which yield the control function equations

p
(

1− 1
u2

)
− s

pλ
= 0, q

(
1− λ2

v2

)
− s

pλ
√

λq
= 0 (13)

and the effective interaction strength is represented by

s≡ 2p
√

qInmlλg . (14)

Equations (5)-(7) define the spectrum (4) for all quantum
numbers n, mand l and for arbitrary values of the coupling
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parameter g. The term Inml can be related with the coefficients
an through a recursion formula showed in reference [13]. We
derive the expressions for the spectrum of GPE and find weak-
coupling
limit for the spectrum as

e(g)≈
k

∑
n=0

ansn (s→ 0) (15)

with the coefficients

a0 = p+
qλ
2

, a1 =− 1

2p(qλ)
1/2

a2 =− p+2qλ
16p3 (qλ)2 , a3 =− (p+2qλ)2

64p5 (qλ)
7/2

.

For the strong-coupling limit

e(g) =
k

∑
n=0

bnsβn (s→ ∞) (16)

where the coefficients are given by the equations

b0 =
5
4

4b1 = 2p2− (qλ)2 ,

20b2 =−3p4 +2p2 (qλ)2−2(qλ)4 .

and the exponents are

β0 = 2
5 , β1 =− 2

5
β2 =− 6

5 .

interpolating the asymptotic limits (15) and (16) by means of
the self-similar root approximants [17-18], that results in the
following approximants crossover roots function

f ∗b (g) = a0

(
...

{[
(1+Ab1s)n1 +Ab2s2]n2 +Ab3s3

}3
+ ...+Aksk

)nk

. (17)

Here, depending on the approximation order b = 1,2, ... we
have the values of A and n in the first order

A11 =
1.746928

a
2/5
0

, n11 =
2
5

;

in the second order

A21 = 2.533913

(
2p2 +(qλ)2

)5/6

a25/6
0

, A22 =
3.051758

a5
0

n21 =
6
5
, n22 =

1
5

;

and in the third order

A31 = 1.405455

(
8p4 +12p2 (qλ)2 +(qλ)4

)5/6

a125/22
0

[
2p2 +(qλ)2

]5/66 , n31 =
6
5

A32 = 6.619620

(
2p2 +(qλ)2

)10/11

a75/11
0

, n32 =
11
10

A33 =
5.331202

a15/2
0

, n33 =
2
15

.

This model was described in several references [16-18].

III. RESULTS

Analysis for the critical number of particles in different
traps are performed using an analytical expression from the
self-similar root approximants to get an expression for Nc.
We need to find the negative value of sc in which the spec-
trum (10) become complex. We limit the first order of root
approximant,E∗1 (g), which is complex for s < sc, with

sc =−0.572433a5/2
0 .
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FIG. 1: The behaviour of the critical number of particles in function
of several different traps.

Using the eq. (14), we get the equation for the critical cou-
pling parameter

gc =−0.05
(2p+qλ)5/2

p
√

qInm jλ
.

The equation g = 4π as
lr

N, gives us the expression for the
critical number of particles

Nc =
(2p+qλ)5/2

300p
√

qInm jλ

∣∣∣∣
lr
as

∣∣∣∣ . (18)

Using the analytical expression (18) with the values of 7Li
Condensate [18-19] and considering the ground state, with
n = m = l = 0, p = l = 1 and I000 = 0.063494,we can obtain
Nc in Figure 1.

From these results, we observe that there are two regimes:
cigar-shape (λ << 1) and the disc-shape (λ >> 1). Both sit-
uations increase Nc, while in a spherical-shape Nc reaches its
the minimal value. For example, in a cigar-shape trap λ =
0.1 and Nc = 7157, in a disc-shape trap λ = 10 and Nc = 5586
and in a spherical-shape trap λ = 1 with Nc = 1350.These val-
ues are in a good agreement with those in references [11,13].

IV. CONCLUSION

The method of the self-similar root approximants resulted
in analytical expressions for the spectrum of energy levels,
for the critical coupling parameter and for the critical number
of particles. We have analytically studied the behaviour of
the critical number of particles as a function of the anisotropy
parameter, which introduced a better stability in the system.
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