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Unusual Domain Growth Behavior in the Compressible Ising Model
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Large scale Monte Carlo simulations have been used to study long-time domain growth behavior in a com-
pressible, two-dimensional Ising model undergoing phase separation. The system is quenched below the
transition temperature from a random spin state, and we investigated the late-time domain size growth law,
R(t) = A + Btn. For “lattice mismatched” systems, we found n = 0.224± 0.004 which deviates significantly
from the Lifshitz-Slyozov value of n = 1/3 for late-time growth . For a compressible model with no mismatch,
we find only a slight deviation from n = 1/3. These results strongly suggest that we do not yet fully understand
domain growth.
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I. INTRODUCTION

The phenomenon of phase separation is extremely common
in diverse condensed matter systems including magnets [1, 2],
alloys [3–14], fluids [15–20], and polymers [21]. Phase sepa-
ration may be observed whenever a system is quenched from
a homogeneous disordered phase into an ordered phase where
multiple domains coexist. During phase separation, diffusion
and surface tension cause the domain size to increase with
time. For an infinite system, the domain size is predicted to
grow as a power law [22],

R(t) = A+Btn, (1)

where R is the domain size, t is the time after the quench oc-
curs, A and B are constants which depend upon system spe-
cific details, and n is the domain growth exponent [1]. Sto-
chastic domain growth with a conserved order parameter in
the absence of hydrodynamic modes (Model B [23]) is be-
lieved to be in a class of domain growth with n = 1/3, in-
dependent of the dimensionality of the system. This value
for the growth exponent, first predicted by Lifshitz and Sly-
ozov [24], has since been observed in numerous simulation
results of lattice models, most notably Ref. [1]. For reviews,
see Refs. [25–27]. Thus, it would seem as though domain
growth under these conditions would not show the rich diver-
sity of behavior that is seen near critical points in different
systems.

Monte Carlo simulations are well suited for the study of do-
main growth under these conditions, but because large system
sizes are required to access the asymptotic growth limit region
and multiple long runs are needed to measure n, few high pre-
cision computational studies exist that could verify the univer-
sality of the n = 1/3 growth law. Furthermore, until recently,
high precision studies of compressible systems were outside
the limits of available computational resources. Studies of
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Ising binary alloys [28–32] have now shown that compress-
ibility can affect static critical phenomena and can have a non-
trivial effect on the interfaces between domains [17]. There is
reason to believe that domain growth may also be affected by
compressibility [4, 6]; however, we are unaware of any high
precision computational study that has confirmed any signifi-
cant deviation from the theoretical prediction of n = 1/3.

II. MODEL AND METHOD

In order to investigate the universality of the n = 1/3
growth law, we have considered the simplest possible com-
pressible model with coherent interfaces, a two-dimensional
Ising model in which L2 Ising spins have continuous posi-
tions within a periodic box of size Lx×Ly. Although the Ising
model is most often used to describe magnetic systems, it is
equivalent to a binary alloy in which the two spin values rep-
resent the two different species. The Ising model Hamiltonian
is

H = ∑
〈i j〉

f (ri j,si,s j)+ Jθ ∑
〈i jk〉

cos2(θi jk) , (2)

where ∑〈i j〉 is a sum over nearest-neighbor pairs of particles,
ri j is the distance in dimensionless units between nearest-
neighbor particles, si is the spin value of the ith spin with
possible values of ±1, f (r,a,b) is the nearest-neighbor in-
teraction potential (given below), Jθ = 50 is the bond angle
stiffness in dimensionless units, and ∑〈i jk〉 is the sum over
bond angles θi jk (four per particle), where i and k are nearest-
neighbors of j. The second term stabilizes an ordered square
lattice structure.

In this model the nearest-neighbor interaction is given by a
Lennard-Jones-like potential:

f (r,a,b) = Jab

[(
lab

r

)12

−2
(

lab

r

)6
]

, (3)

where r is the displacement between two nearest-neighbors
with spin values a and b, lab is the preferred bond length,
J++ = J−− = 30, J+− = J−+ = J++−2, and l+− = l−+ = 1.
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FIG. 1: Configurations at different times for each model. L = 512.
Down spins (−1) are white, and up spins (+1) are black. The tem-
perature is 0.59Tc for the rigid model, and is close to 0.6Tc (T = 1.5)
for the compressible models.

With these interactions, when lab = 1 and J++ and Jθ → ∞,
the Hamiltonian reduces to that of the common ferromagnetic,
rigid (lattice) Ising model, allowing comparison with previous
studies [1]. We will give all spatial units in terms of the l+−
bond length, and all energies and temperatures in units where
J++−J+− = 2. The well-known Onsager critical temperature
for the rigid (lattice) model is thus Tc = 2.269.

The model was investigated using Monte Carlo simulations
with the standard Metropolis acceptance criterion within the
canonical constant pressure ensemble [33]. Three types of
Monte Carlo moves were used: a spin exchange (Kawasaki
dynamic), in which a nearest neighbor pair of spins were ran-
domly chosen and their spin values exchanged, lateral dis-
placement, in which a particle was randomly selected and its
position displaced by a small, random amount, and a global
volume rescale (expansion or contraction), which was needed
to maintain a constant pressure. The energy change for the
global rescale had an additional effective term not shown in
Eq. 2, which was needed to correctly reproduce a constant
pressure ensemble [28]. Monte Carlo time was measured in
units of Monte Carlo steps per site (MCS), where one MCS
consisted of one attempted volume change followed by L2 ex-
change or lateral displacement attempts, where the probability
to choose exchange or displacement was 50%. For the rigid
(lattice) model, only spin exchange moves could be imple-
mented, and then one MCS consisted of L2 exchange attempts.

Each simulation began with a state in which the value of
each spin was randomly chosen to be +1 or −1 with 50%
probability, and our Monte Carlo algorithm conserved the to-
tal magnetization at this initial value. The system was then
equilibrated at a temperature (T = 7.0) which was well above
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FIG. 2: C(r) for the 0% mismatch model at various times. L = 512,
averaged over the lattice and lattice diagonal directions for 56 runs.
(For the rigid and 0% mismatch models, C(r) is isotropic.) Error bars
are less than the line thickness.

the critical temperature (Tc). Following equilibration the tem-
perature was quenched to 0.6Tc, and the configurations were
recorded and analyzed every 103 MCS.

III. RESULTS

We investigated three specific variations of the model, the
rigid two-dimensional Ising model (i.e. the traditional Ising
square lattice), a symmetric elastic net, where lab = 1, re-
ferred to as the 0% mismatch model, and a 4% lattice mis-
match model, where l++ = 1.02 and l−− = 0.98. The 4%
mismatch value was chosen to give insight into phase separa-
tion in SiGe alloys [28–30]. To decrease the computational ef-
fort of the simulations, the compressible systems were treated
as distortable square nets, a reasonable approach for the low
temperatures and relatively stiff models considered here.

All simulations were performed in the spinodal decompo-
sition regime, as the configurations in Fig. 1 indicate, and all
three variations of the model clearly show phase separation
behavior [34]. No noticeable qualitative differences in the
overall structure can be seen in the “snapshots” of the rigid
and 0% mismatch models; however, the 4% mismatch model
shows clear, diagonally oriented domains. Anisotropic con-
figurations are often observed for systems containing a lattice
mismatch [10]. A system with coherent interfaces, such as the
one studied here, might be expected to stop phase separating at
very late times (not reached in these simulations) [14], where
the domain size would be finite due to interfacial energy.

Simulations were performed for various system sizes be-
tween L = 64 and L = 512. These showed that system sizes
of L = 512 (5122 particles)and time scales of 106 MCS are
needed to measure the asymptotic growth behavior. For the
compressible models, each 106 MCS run required one to two
weeks of run time on a 2 GHz AMD Opteron processor, with
a combined computational effort of ∼ 5 cpu years, and over a
terabyte was required to store and then analyze the resulting
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FIG. 3: C(r/ξ) vs “scaled distance” r/ξ for the 0% mismatch model
at various times. The data are for L = 512, from Fig. 2.
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FIG. 4: C(r) for the 4% mismatch model at various times. L = 512,
averaged over the lattice directions for 69 runs. (For the 4% mis-
match model, C(r) is anisotropic, with no zero crossing in the diag-
onal directions at late times.) Error bars are less than the line thick-
ness.

time series. The rigid model (lattice) simulations accounted
for less than 5% of the total computational effort and are in-
cluded for comparison to earlier work [1] that used a vector-
ized, multispin coding algorithm. Although we would not ex-
pect any difference in n, the vectorizing algorithm examined
the spins in a different order and could yield different values
of A and B. Note that larger system sizes and longer runs are
not feasible for the compressible models with currently avail-
able resources, since L = 1024 only reaches 105 MCS after
two weeks of run time. On the other hand, simulations for
L = 256 show finite size effects for t ∼ 107 MCS so longer
simulations would not help for this size system.

Quantitative information about the phase separation behav-
ior can be extracted by analyzing the spin-spin spatial cor-
relation function; however, because the compressible mod-
els have continuous particle positions, methods developed for
regularly spaced particles were not applicable. Therefore, the
correlation function was calculated by direct summation over
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FIG. 5: C(r/ξ) for the 4% mismatch model at various times. Data
are for L = 512, from Fig. 4.

the “lattice” in only four “high symmetry” directions,

C(r) = C(p,q)(r) = 〈sis j〉 , (4)

where (p,q) denotes one of the four displacement directions,
i.e. the “lattice” directions, (1,0) and (0,1), and the “lattice”
diagonal directions, (1,1) and (−1,1). Furthermore, si and
s j are the spin values of two particles with a displacement r
in the (p,q) direction, and 〈sis j〉 denotes an average over all
such pairs of particles. For brevity, r is used here to denote
an average over the actual interparticle displacements. The
correlation length, ξ, is then defined as the first zero crossing
of C(r) and is found by fitting a second order polynomial to
the three points closest to the crossing.

The correlation functions were isotropic for both the rigid
(lattice) model and the 0% mismatch model, and Fig. 2 shows
C(r) averaged over all four directions for 0% mismatch. Both
the rigid and 0% mismatch models show well-defined first
zero crossings for all directions, and the zero crossing moves
to greater distances as the time increases. When the correla-
tion function is plotted against the “scaled” correlation length,
see Fig. 3, the curves almost collapse onto each other. In
contrast, with 4% mismatch we find quite anisotropic results,
as one might expect from Fig. 1. For the (1,0) and (0,1)
directions, see Fig. 4 the first zero crossings again move to
greater distances with increasing time, moreover, additional
zero crossings are visible on this scale. For t > 104 MCS, no
first zero crossing is observed in the diagonal directions, but
we can perform alternative scaling analyses using the loca-
tion of the first local minimum or the perimeter density (i.e.
fraction of mixed bonds). These additional analyses yielded
the same growth exponents as those obtained from the first-
zero crossings presented below. When the correlation function
is plotted against the “scaled” correlation length, see Fig. 5,
the curves do not collapse onto each other, although the zero
crossings occur quite close to each other.

The average correlation lengths are shown in Fig. 6. In
all cases, power-law growth is observed at late times, but the
form, ξ(t) = A + Btn is not adequate for t < 104. From non-
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FIG. 6: Time dependence of ξ(t)−A for L = 512. Lines are least
squares fits to A + Btn, where n is the domain growth exponent.
Data were averaged over multiple runs and directions. Error bars
are smaller than the symbol sizes.
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FIG. 7: Results of the ratio analysis for L = 512, ∆ = 4×103 MCS,
bin averaged over eight points (original point separation 103 MCS).
While error bars are not shown, statistical errors can be estimated
from the fluctuations of the results.

linear fits to the data shown in Fig. 6 for t > 104, we find
that n = 0.332±0.003 for the rigid model, n = 0.318±0.005
for the 0% mismatch model, and n = 0.224± 0.004 for the
4% mismatch model. The error bars include small systematic
uncertainties arising from the fitting procedure, such as the
number of points, weighting of the data, and fitting range.

In addition to performing least squares fits of the long time
behavior of the domain size, shown in Fig. 6, we also per-
formed a ratio analysis [33], which is a more sensitive tech-
nique giving a “local” estimate of the growth exponent, i.e.
over a relatively short time interval. The ratio estimate for
n(t) is defined by

n(t) =
log

[
ξ′(t+∆)
ξ′(t−∆)

]

log
[ t+∆

t−∆
] , (5)

where ξ′(t) = ξ(t)−A, A is obtained from fits shown in Fig. 6,

FIG. 8: Plot of the scaled magnetization distribution vs scaled mag-
netization for 4% mismatch compressible systems at the estimated
location of the critical point (see the top of the figure). Errors are
smaller than the size of the symbols.

and t and ∆ are multiples of 103 MCS. Because the ratio
method is very sensitive to small statistical errors in ξ(t), bin
averaging of the final sequence was necessary. Therefore, the
calculation was repeated for different bin widths and different
values of ∆ and A, but such differences did not noticeably af-
fect the estimate of n. The results from the ratio analysis are
shown in Fig. 7.

The growth exponent estimates for the lattice (the rigid
model) are in excellent agreement with the theoretical pre-
diction of n = 1/3 [1, 23–25, 33]. The small deviation from
n = 1/3 for 0% mismatch is within the fluctuation in the “lo-
cal estimates” for n; hence we cannot firmly conclude that it
is inconsistent with n = 1/3 at long times. Longer runs and
larger systems would be needed to determine if this deviation
is a real effect, but such simulations are beyond our current
computational capabilities. However, for the 4% mismatch
model the results clearly show a smaller growth exponent and
anisotropic correlations. (Deviations from n = 1/3 have been
seen before in systems with mismatch [4], but it was unclear
if the asymptotic growth regime had been reached, and more
recent studies [9] indicated n = 1/3.)

We also used large scale Monte Carlo simulations to study
the static critical behavior of these models. Data for the mag-
netization distribution P(m) were analyzed using histogram
reweighting in H−T space to adjust the estimate for the loca-
tion of the critical point until the finite size scaled distributions
σP(m) vs m/σ, where σ is the 2nd moment of the distribution,
were rather well superimposed. Data for the 4% mismatch
model are shown in Fig. 8. The scaled data for L = 16 appear
to show small corrections to finite size scaling, and if these are
omitted the quality of the scaling is improved. For larger sizes
any finite size corrections are so small that it seems highly
unlikely that data for still larger lattices would bring scaling
curves into agreement with that for the Ising square lattice



Brazilian Journal of Physics, vol. 38, no. 1, March, 2008 5

which is included in the figure for comparison. Note that field
mixing was not employed, and it is possible that an even bet-
ter scaling could be obtained if it were implemented; but even
without field scaling the data scale extremely well.

The “universal” curve expected for systems in the same uni-
versality class as the two dimensional Ising model is dramat-
ically different and strongly suggests that the compressible,
Ising net is not in the same static universality class as the Ising
lattice model.

IV. CONCLUSION

The inclusion of compressibility and lattice mismatch in
the Ising model Hamiltonian can alter the domain growth ex-

ponent, and our results can be readily generalized to systems
with differing sizes or differing bond lengths. We do not know
if the deviations from n = 1/3 indicate a breakdown of univer-
sality or if they indicate new classes of domain growth. Obvi-
ously our current understanding of domain growth is incom-
plete, and further theoretical and computational consideration
is needed.
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