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Results from two-K0
s interferometry in

√
sNN = 200 GeV Au+Au collisions at RHIC are presented. A model

that takes into account the strong final state interaction has been used to fit the data. The effect of coupled K0K̄0

and K+K− channels was studied. The value of the correlation radius parameter obtained is consistent with the
transverse mass (mT ) systematics established in pion correlation measurements.
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I. INTRODUCTION

A phase transition from hadronic matter to a new state of
matter called a Quark Gluon Plasma (QGP) is predicted to
occur at sufficiently large energy densities by Lattice QCD
calculations [1]. The primary goal of the heavy-ion collisions
program at the Relativistic Heavy-Ion Collider (RHIC) is the
creation and study of such a de-confined state of matter. It
is believed that a first order phase transition from the QGP
back to normal hadronic matter delays the expansion of the
hot reaction zone created in the collision [2]. A long duration
of particle emission due to a delayed expansion should reveal
itself as a large effective source size.

One of the important goals in high energy experiments for
the last several decades has been the measurement of the
space-time extent of the particle emitting region [3–5]. These
measurements are based on the sensitivity of particle momen-
tum correlations to the space-time separation of the particle
emitters due to the effects of quantum statistics (QS) and fi-
nal state interaction (FSI). The QS symmetrization (antisym-
metrization) is usually the dominant source of the correlation
for identical particles. Due to the interference of the ampli-
tudes corresponding to various permutations of identical par-
ticles, the measurement of the corresponding correlation is of-
ten called particle interferometry (see [6] for a review).

Because of their smaller mass, pions are the most abundant
particles produced in heavy ion collisions. A significant frac-
tion of them, however, come from the decay of unstable res-
onances after freezout thus complicating the pion interferom-
etry measurements. As a result, while the direct pion source
may be inherently non-Gaussian, the resonances extend the
source size due to their finite lifetime, introduce an additional
essentially non-Gaussian distortion in the two-pion correlator
and reduce the fitted correlation strength. Due to the reso-
nance decay phase-space, secondary pions populate mainly
the low momentum region and can thus introduce an addi-
tional pair momentum dependence of the two-particle corre-
lator.

In contrast to the pions, kaon interferometry suffers less
from resonance contributions and could provide a cleaner sig-
nal for correlation studies than pions [7, 8]. Since the kaon
density is considerably smaller than the pion density at RHIC
(
√

sNN = 200 GeV), higher multi-particle correlation effects,

that might play a role for pions, should be of minor importance
for kaons. For example, the pion multiplicity has increased
by approximately 70% from the SPS(

√
sNN = 17.3 GeV) to

RHIC [9] but the interferometry radii remain almost the same
[10, 11]. The strangeness distillation mechanism [12] might
further increase any time delay QGP signature. This mecha-
nism could lead to strong temporal emission asymmetries be-
tween kaons and anti-kaons [13], thus probing the latent heat
of the phase transition.

Particle identification for pions, via their specific ionization
(energy loss per unit length or dE/dx), works only up to about
700 MeV/c. Neutral kaons, on the other hand, can be identi-
fied up to much higher momentum using their decay topology.
This allows for the extension of the interferometry systemat-
ics to a higher momentum than is presently achievable with
pions, and thus provides a means to probe the earlier times of
the collision. The effect of two-track resolution, which is a
limiting factor in charged particle correlations, is also small.
The absence of Coulomb FSI suppression together with small
contributions from resonance decays make neutral kaon corre-
lations a powerful tool to investigate the space time structure
of the particle emitting source.

The OPAL [14] and ALEPH [15] collaborations have mea-
sured correlations of neutral kaons from hadronic decays of
Z0 in e+e− collisions at LEP. The WA97 experiment at CERN
[16] attempted to measure K0

s K0
s correlations but did not see

a significant enhancement of neutral kaon pairs in the region
of small momentum difference due to a lack of sufficient sta-
tistics. In this paper, recent results are presented on two-K0

s
correlations in central Au-Au collisions at

√
sNN = 200 GeV

measured by the STAR(Solenoidal Tracker at RHIC) experi-
ment at RHIC [17].

II. CORRELATION FUNCTIONS

The two-particle correlation function C(p1, p2) is usually
defined as the ratio of the measured two-particle distribution
to the reference one obtained by mixing particles from dif-
ferent events of a given class, normalized to unity at suffi-
ciently large relative momenta. The space-time information
contained in the momentum correlations is usually extracted
based on the following assumptions:
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(i) The mean freeze-out phase space density 〈 f 〉 is assumed
sufficiently small so that only the mutual QS and FSI effects
can be considered when calculating the correlation function of
two particles emitted with a small relative momentum Q = 2k∗
in their center-of-mass (c.m.) system. It is found that 〈 f 〉
increases with energy and for central lead-lead or gold-gold
collisions seems to saturate at the highest SPS energy [6]. The
saturated 〈 f 〉 is substantially smaller than unity for pions with
pt > 0.2 GeV/c so pointing to negligible multiboson effects in
this pt -region.

(ii) The momentum dependence of the one-particle emis-
sion probabilities is assumed inessential when varying the par-
ticle four-momenta p1 and p2 by the amount characteristic for
the correlations due to QS and FSI. This smoothness assump-
tion, requiring the components of the mean space-time dis-
tance between particle emitters much larger than those of the
space-time extent of the emitters, is well justified for heavy
ion collisions.

(iii) An independent or incoherent particle emission is as-
sumed. This assumption is quite reasonable for a dominant
part of particle pairs produced in heavy ion collisions and is
consistent with the observed strength of two- and three-pion
correlation functions (see, e.g., [18–20]).

(iv) To simplify the calculation of the FSI effect, the Bethe-
Salpeter amplitude describing two particles emitted at space-
time points xi = {ti,ri} and detected with four-momenta pi
is usually calculated at equal emission times in the pair c.m.
system. In this approximation, the reduced non-symmetrized
Bethe-Salpeter amplitude (with the removed unimportant
phase factor due to the c.m. motion), depending only on the
relative four-coordinate ∆x ≡ x1− x2 = {t,r} and the gener-
alized relative momentum q̃ = q− P(qP)/P2 (q = p1 − p2,
P = p1 + p2 and qP = m1

2 −m2
2; in the two-particle c.m.

system, P = 0, q̃ = {0,2k∗} and ∆x = {t∗,r∗}), is substituted
by a stationary solution Ψ(+)

−k∗(r
∗) of the scattering problem.

The solution at large distances r∗ has the asymptotic form of a
superposition of the plane and outgoing spherical waves (the
minus sign of the vector k∗ corresponds to the reverse in time
direction of the emission process). This equal time approx-
imation is usually satisfied for heavy particles like kaons or
nucleons and, for pions, it merely leads to a slight overestima-
tion (typically < 5%) of the strong FSI effect [21].

The two-particle correlation function then reduces to the
square of the two-particle wave function averaged over the
distance r∗ of the emitters in the two-particle c.m. system:

C(p1, p2)
.= 〈|Ψ(+)

−k∗(r
∗)|2〉. (1)

For identical particles, the amplitude in Eq. (1) enters in a
symmetrized form. Particularly, for spin-0 bosons,

Ψ(+)
−k∗(r

∗)→ [Ψ(+)
−k∗(r

∗)+Ψ(+)
k∗ (r∗)]/

√
2. (2)

The two-particle approximation in (i) and FSI separation
in the Bethe-Salpeter amplitudes of the elastic transitions
a + b → a + b implies a long FSI time as compared with the
characteristic production time, i.e. the c.m. momentum k∗
much less than typical production momentum transfer of hun-
dreds MeV/c. In fact, the long-time FSI can be separated

also in the inelastic transitions, a + b → c + d, characterized
by a slow relative motion in both entrance and exit channels
[21, 22]. Particularly, calculating the FSI effect on neutral
kaon correlations, one has to take into account the coupled
K+K−-channel (see section IV).

For non-interacting particles, the non-symmetrized wave
function reduces to the plane wave, Ψ(+)

−k∗(r
∗) = exp(−ik∗r∗),

and the correlation function of two identical spin-0 bosons be-
comes

C(p1, p2)
.= 1+ 〈cos(2k∗r∗)〉. (3)

Particularly, for the Gaussian distribution of the vector r∗ of
the relative distance between particle emission points in the
pair c.m. system:

d3N
d3r∗

∝ e−r∗2/(4R2), (4)

the correlation function takes the Gaussian form:

C(p1, p2)
.= 1+ exp(−R2Q2), (5)

where Q = (−q2)1/2 = 2k∗.
The Gaussian expression in Eq. (5) is often used to fit the

one-dimensional correlation functions of two identical pions
or kaons in a modified form:

C(Q) = N · [1+λ · exp(−R2Q2)], (6)

where N and λ are respectively the normalization and corre-
lation strength parameters. The parameter λ equals unity for
a fully chaotic Gaussian source and is smaller than unity for a
source with partially coherent particle emission. The value of
λ can also be lowered by the non-Gaussian form of the corre-
lation function, the contribution from kaons coming from long
lived resonances. Also neglecting FSI can affect (suppress or
enhance) the value of this parameter.

III. THE SYSTEM OF TWO NEUTRAL KAONS

The production of the neutral kaons, K0 and K̄0, is at-
tributed to the strong interaction which conserves the strange-
ness quantum number. An interesting property of neutral
kaons is that the K0 can change into a K̄0 through a second
order weak interaction. However, the particles that we nor-
mally observe through weak decay channels in the laboratory
are not K0 and K̄0 [23]. Neglecting the effects of CP violation,
the observed weak interaction eigenstates are given by

|K0
s
〉

=
1√
2
(|K0〉+ |K̄0

〉
),

|K0
l
〉

=
1√
2
(|K0〉−|K̄0

〉
), (7)

where |K0
s
〉

and |K0
l

〉
are the state vectors of the short and

long lived neutral kaons, to which experiments have access
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via measurements of their decay products, which are mainly
pions. The state vector of the K0

s K0
s system is then given by

the expression

|K0
s K0

s
〉

=
1
2
(|K0K0〉+ |K0K̄0

〉

+|K̄0K0〉+ |K̄0K̄0
〉
). (8)

Now, if a K0
s K0

s pair comes from K0K0 (K̄0 K̄0), it is subject
to Bose-Einstein (BE) enhancement as it originates from an
identical boson pair. On the other hand, the K0 and K̄0 are two
different particles and one may not expect correlations if one
K0

s comes from K0 and the other one from K̄0. Nevertheless, it
can be shown [24] (see also [25–27]) that only the symmetric
part of the K0K̄0 amplitude contributes to the K0

s K0
s system

and thus also leads to a Bose-Einstein enhancement at small
relative momentum (on the contrary, only the anti-symmetric
part of the K0K̄0 amplitude contributes to the K0

s K0
l system

and leads to the “Fermi-Dirac like” suppression). The K0
s K0

s
correlation thus includes a unique interference term that may
provide additional space-time information.

The strong FSI has an important effect on neutral kaon cor-
relations due to the near threshold resonances, f0(980) and
a0(980) [28]. These resonances contribute to the K0K̄0 chan-
nel and lead to the s-wave scattering length dominated by the
imaginary part of ∼1 fm. Based on the predictions of chiral
perturbation theory for pions [29], the non-resonant s-wave
scattering lengths∼ 0.1 fm for both K0K̄0 and K0K0 channels
and can be neglected to a first approximation.

To calculate the K0
s K0

s correlation function, the K0’s and
K̄0’s are assumed to be emitted by independent single-kaon
sources so that the fraction of K0

s K0
s pairs originating from

K0K̄0 system is α = (1− ε2)/2, where ε is the K0-K̄0 abun-
dance asymmetry. The correlation function is calculated as a
mixture of the average squares of the properly symmetrized
K0K0, K̄0K̄0 and non-symmetrized K0K̄0 wave functions,
weighted by the respective K0

s K0
s fractions. To average over

the relative distance vector r∗, the Lednický & Lyuboshitz an-
alytical model [28] has been used, assuming r∗ is distributed
according to Eq. (4) with a Gaussian radius R. The model
assumes that the non-symmetrized wave functions Ψ−k∗(r∗)
describing the elastic transitions can be written as a superpo-
sition of the plane and spherical waves, the latter being domi-
nated by the s-wave,

Ψ−k∗(r∗) = e−ik∗r∗ + f (k∗)
eik∗r∗

r∗
, (9)

where k∗ ≡ Q/2 is the three-momentum of one of the kaons
in the pair rest frame and f (k∗) is the s-wave scattering am-
plitude for a given system. Neglecting the scattered waves for
the K0K0 and K̄0K̄0 systems (the corresponding f (k∗) = 0)
one obtains the following expression for the K0

s K0
s correlation

function [28]:

C(Q) = 1+ e−Q2R2
+α

[∣∣∣∣
f (k∗)

R

∣∣∣∣
2

+

4ℜ f (k∗)√
πR

F1(QR)− 2ℑ f (k∗)
R

F2(QR)
]
, (10)

where F1(z) =
∫ z

0 dxex2−z2
/z and F2(z) = (1− e−z2

)/z. The
s-wave K0K̄0 scattering amplitude f (k∗) is dominated by
the near threshold s-wave isoscalar and isovector resonances
f0(980) and a0(980) characterized by their masses mr and re-
spective couplings γr and γ ′r to the KK̄,ππ and KK̄,πη chan-
nels. Associating the amplitudes fI at isospin I = 0 and I = 1
with the resonances r = f0 and a0 respectively, one can write
[28, 30]

f (k∗) = [ f0(k∗)+ f1(k∗)]/2, (11)

fI(k∗) = γr/[m2
r − s− iγrk∗− iγ′rk

′
r]. (12)

Here s = 4(m2
K + k∗2) and k′r denotes the momentum in the

second (ππ or πη) channel with the corresponding partial
width Γ ′

r = γ ′rk′r/mr.
There is a great deal of uncertainty in the properties of

these resonances due to insufficiently accurate experimental
data and the different approaches used in their analysis. For-
tunately, the dominant imaginary part of the scattering am-
plitude is basically determined by the ratios of the f0KK̄ to
f0ππ and a0KK̄ to a0πη couplings whose variation is rather
small [31]. In this paper, the resonance masses and couplings
from (a) Martin et al. [30], (b) Antonelli [32], (c) Achasov
et al. [33], (d) Achasov et al. [33] (see Table I) are used to
demonstrate the impact of their characteristic uncertainties on
the calculated correlation function.

Re f . m f0 γ f0KK̄ γ f0ππ ma0 γa0KK̄ γa0πη

a 0.978 0.792 0.199 0.974 0.333 0.222
b 0.973 2.763 0.5283 0.985 0.4038 0.3711
c 0.996 1.305 0.2684 0.992 0.5555 0.4401
d 0.996 1.305 0.2684 1.003 0.8365 0.4580

TABLE I: The f0 and a0 masses and coupling parameters, all in GeV,
from (a) Martin et al. [30], (b) Antonelli et al.[32], (c) Achasov et
al.[33] and (d) Achasov et al. [33].

IV. THE EFFECT OF THE K+K−→ K0K̄0 TRANSITION

The interaction of final state particles can proceed not only
through the elastic transition ab→ ab but also through inelas-
tic reactions of the type cd → ab, where c and d are also
final state particles of the production process. The FSI ef-
fect on particle correlations is known to be significant only
for particles with a slow relative motion. Such particles con-
tinue to interact with each other after leaving the domain of
particle production and their slow relative motion guarantees
the possibility of the separation (factorization) of the ampli-
tude of a slow FSI from the amplitude of a fast production
process. For the relative motion of the particles involved in
the FSI to be slow, the sums of the particle masses in the en-
trance and exit channels should be close to each other [22].
Thus, in our case, one should account for the effect of inelastic
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transition K+K−→ K0K̄0 in addition to the elastic transition
K0K̄0 → K0K̄0. Instead of a single channel Scrödinger equa-
tion one should thus solve a two-channel one. In solving the
standard scattering problem, one should take into account that
the FSI problem corresponds to the inverse direction of time.
As a result, one has to make the substitution k∗ →−k∗ and
consider K0K̄0(≡ 1) as the entrance channel and K+K−(≡ 2)
as the exit channel. Since the particles in both channels are
members of the same isospin multiplets, one can assume that
they are produced with about the same probability. There-
fore the correlation function will be simply a sum of the av-
erage squares of the wave functions Ψ11

−k∗(r
∗) and Ψ21

−k∗(r
∗)

describing the elastic and inelastic transitions respectively.
Assuming the s-wave dominance and r∗ outside the range

of the strong interaction potential, one has [22]:

Ψ21
−k∗(r

∗) = f 21
c (k∗)

√
µ2

µ1

G̃(ρ2,η2)
r∗

, (13)

where µ1 = mK0/2 and µ2 = mK+/2 are the respective reduced
masses in the two channels. ρ2 = k∗2r∗, η2 = (k∗2a2)−1 and
k∗2 = [2µ2(k∗2/(2µ1)+2mK0−2mK+ ]1/2 is the K+ momentum
in the two-kaon rest frame; a2 = −(µ2e2)−1 = −109.6 fm is
the (negative) K+K− Bohr radius, f 21

c (k∗) is the s-wave tran-
sition amplitude re-normalized by Coulomb interaction in the
K+K− channel, G̃(ρ,η) =

√
Ac(η).[G0(ρ,η) + iF0(ρ,η)] is

the combination of the singular and regular s-wave Coulomb
functions G0 and F0. Finally Ac(η) = 2πη/[exp(2πη)− 1] is
the Coulomb penetration (Gamow) factor.

The wave function of the elastic transition 1 → 1 is still
given by Eq. (9) in which k∗ ≡ k∗1 and the amplitude f = f 11

c
is now the element of a 2×2 matrix

f̂c =
(
K̂−1− ik̂c

)−1
. (14)

Here K̂ is a symmetric matrix and k̂c is a diagonal matrix
in the channel representation: k11

c = k∗, k22
c = Ac(η2)k∗2 −

2ih(η2)/a2, where the function h(η) is expressed through
the digamma function ψ(z) = Γ ′(z)/Γ(z) as h(η) = [ψ(iη)−
ψ(−iη)− lnη2]/2. Assuming that the isospin violation arises
solely from the mass difference and Coulomb effects on the
element k22

c , making it different from the momentum k∗ in the
neutral kaon channel, one can express the K̂−1 matrix, in the
channel representation through the inverse diagonal elements
K−1

I of the K̂-matrix in the representation of total isospin I
(the products of the corresponding Clebsch-Gordan coeffi-
cients being 1/2 or -1/2):

(K̂−1)11 = (K̂−1)22 =
1
2

[
K−1

0 +K−1
1

]
,

(K̂−1)21 = (K̂−1)12 =
1
2

[
K−1

0 −K−1
1

]
. (15)

The latter are assumed to be dominated by the resonances r =
f0(980) and a0(980) for I = 0 and 1, respectively, so:

K−1
I = (m2

r − s− ik′rγ
′
r)/γr. (16)

One should also take into account the correction ∆CKK̄ due
to the deviation of the spherical waves from the true scattered

waves in the inner region of the short-range potential, which
is of comparable size to the effect of the second channel. This
correction is also given in Ref. [22] and is represented in a
compact form in Eq. (125) of Ref. [21]. In the case of the
kaons,

∆CKK̄ = − 1
2
√

πR3

[| f 11
c |2d11

0 + | f 21
c |2d22

0

+ 2ℜ( f 11
c f 21∗

c )d21
0

]
, (17)

where di j
0 = 2ℜd(K̂−1)i j/dk∗2; at k∗ = 0, d̂0 coincides with

the real part of the matrix of effective radii.

One may see from Eqs. (10) and (13) that the usual res-
onance Breit-Wigner behavior settles only at small r∗ when
squares of the spherical waves | f i j

c /r∗|2 dominate. At suffi-
ciently large k∗, one can neglect the Coulomb effects and put
f 11
c

.= ( f0 + f1)/2, f 21
c

.= ( f0− f1)/2, so that | f 11
c |2 + | f 21

c |2 .=
| f0|2 + | f1|2. The sum of the square terms then reduces to
the incoherent Breit-Wigner contributions of f0 and a0 res-
onances. There can also be additional (not related to FSI)
resonance contribution of the usual Briet-Wigner form due to
direct f0(980) and a0(980) production. This contribution is
assumed to be negligible as compared to the FSI effect.

In the fits, the normalization and correlation strength pa-
rameters N and λ are taken into account by the substitution
C(Q)→ N · [λ ·C(Q)+ (1−λ)]. Figure 1 shows the theoreti-
cal correlation functions [17] for two sets of resonance para-
meters from Table I with R = 6 and R = 3 fm as input radii
with the normalization factor N and λ both set to unity.

Q (GeV/c)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

C
(Q

)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Mass and coupling parameters
    from row (a) of Table I

R = 6 fm
R = 3 fm

Mass and coupling parameters
    from row (d) of Table I

R = 6 fm
R = 3 fm

FIG. 1: (Color online) Theoretical correlation functions [17] for in-
put Gaussian sources of R = 6 fm and R = 3 fm with λ = 1,N = 1
The resonance masses and coupling constants are from Table I.

The results indicate that the effect of the strong FSI in the
K0K̄0 system is to give rise to a repulsive-like component
causing the correlation function to go below unity.
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V. THE EXPERIMENTAL K0
s CORRELATION FUNCTION

The data used in the present analysis were collected us-
ing the Solenoidal Tracker at RHIC(STAR)[35]. The STAR
detector consists of several detector subsystems in a large
solenoidal magnet that provides a uniform 0.5 Tesla field. The
main setup consisted of the time projection chamber (TPC)
[36] for charged particle tracking, a scintillator trigger barrel
(CTB) surrounding the TPC for measuring charged particle
multiplicity, and two zero degree calorimeters (ZDC) [37] lo-
cated upstream and downstream along the axis of the TPC
and beams to detect spectator neutrons. With full azimuthal
coverage over |η|< 1 and an almost 100% efficiency for min-
imum ionizing particles, the CTB provides a good estimate of
the number of charged particles produced in the mid-rapidity
region. The number of neutrons detected in the ZDC’s is iden-
tified with the amount of energy deposited in them. The col-
lision centrality is determined by correlating the energy de-
position in the ZDC with the number of minimum ionizing
particles detected by the CTB. Events from the ZDC and CTB
central trigger (0− 10% of the total hadronic cross section)
data sets were used with an event vertex within±25 cm of the
center of the TPC along the beam axis.
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FIG. 2: (Color online) The K0
s invariant mass distribution from cen-

tral Au+Au collisions at
√

sNN = 200 GeV [17] . The range in trans-
verse momentum is from 0.5 GeV/c to 3.5 GeV/c and rapidity is
between -1.5 and 1.5. Kaon candidates falling in the mass range
from 0.48 GeV/c2 to 0.51 GeV/c2, indicated by the shaded region,
were selected for this correlation study. The corresponding mass is
495.6±6.8 MeV/c2.

The K0
s has a mean decay length (cτ) of 2.7 cm and decays

via the weak interaction into π+ and π− with a branching ratio
of about 68%. The mass and kinematic properties of the K0

s
are determined from the decay vertex geometry and daughter
particle kinematics [34]. Neutral kaon candidates are formed
out of a pair of positive and negative tracks whose trajecto-
ries point to a common secondary decay vertex which is well
separated from the primary event vertex.

Figure 2 shows the invariant mass distribution of the neu-

tral kaons [17]. The background below K0
s peak is character-

ized by a polynomial fit to the distribution outside the mass
peak. This enables us to define the purity S/(S + B) (ra-
tio of signal to signal plus background) of the K0

s sample in
the reconstructed mass peak. The observed mass 495.6±6.8
MeV/c2 is consistent with the accepted value [38]. The sig-
nal and background for the mass range from 0.48 GeV/c2

to 0.51 GeV/c2 considered in this analysis are shown by the
shaded regions. All neutral kaon candidates, with invariant
masses from 0.48 GeV/c2 to 0.51 GeV/c2, transverse momen-
tum from 0.5 GeV/c to 3.5 GeV/c and rapidity between -1.5
and 1.5 have been considered. The daughter particle tracks
are required to have a minimum of 15 TPC hits and a distance
of closest approach to the primary vertex greater than 1.3 cm.
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FIG. 3: (Color online) The KT distribution of the K0
s pairs [17]. The

range in transverse momentum of the single particles is from 0.5
GeV/c to 3.5 GeV/c. The distribution in (a) corresponds to Q < 0.2
GeV/c and that in (b) is for Q < 0.1 GeV/c, i.e., (b) is a subset of
(a). The two histograms in each panel are for low (dashed) and high
(full) pair purity.

Experimentally, the two-particle correlation function is de-
fined as

C2(Q) =
A(Q)
B(Q)

, (18)

where A(Q) represents the distribution of the invariant rela-
tive momentum Q for a pair of particles from the same event.
The possibility of a single neutral kaon being correlated with
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itself, i.e., correlation between a real K0
s and a fake K0

s recon-
structed from a pair which shares a daughter of the real K0

s ,
was eliminated by requiring that kaons in a pair have unique
daughters. The effects from splitting of daughter tracks have
also been explored by looking at the angular correlation be-
tween the normal vectors to the decay planes of the K0

s in a
given pair. No enhancement at very small angles was observed
indicating no significant problem from track splitting. B(Q)
is the reference distribution constructed by mixing particles
from different events with similar Z-vertex positions(relative
z position within 5 cm). The individual K0

s for a given mixed
pair are required to pass the same single particle cuts applied
to those that go into the real pairs. The mixed pairs are also
required to satisfy the same pairwise cuts applied to the real
pairs from one event. The efficiency and acceptance effects
cancel out in the ratio A(Q)

B(Q) .
The effect of momentum resolution on the correlation func-

tions has also been investigated using simulated tracks from
K0

s decays with known three-momenta, pin, embedded into
real events. The embedded tracks were simulated taking into
account the response of the TPC and scattering effects. The
resolution in p lies between 1% and 2% for the pT range used
in this analysis.

The top panel in Figure 3 shows the KT distribution for
Q < 0.2 GeV/c where KT = (|p1T + p2T |)/2. One can see
that the shape of the KT distribution changes with the pair pu-
rity and, as a result, so does 〈KT 〉, the mean of the distribution.
The mean KT varies almost linearly with pair purity. For the
lowest pair purity value of ≈ 52%, 〈KT 〉 ≈ 0.805 GeV/c. At
the highest pair purity value of ≈ 89%, 〈KT 〉 ≈ 1.07 GeV/c
[17]. The dependence of 〈KT 〉 on the pair purity together with
the fact that the radii may vary with KT implies that varying
the pair purity may change the measured radii. In this analy-
sis, the correlation function is integrated over all KT since the
statistics are not sufficient to make a KT dependent study.

Corrections to the raw correlation functions were applied
according to the expression

Ccorrected(Q) =
Cmeasured(Q)−1
PairPurity(Q)

+1 (19)

where the pair purity was calculated as the product of the
signal(S) to signal plus background (S + B) ratios of the two
K0

s of the pair (i,j)

PairPurity(Q) =
S

S +B
(pti)× S

S +B
(pt j) (20)

The pair purity, PairPurity(Q), has been found to be inde-
pendent of Q over the range of invariant four-momentum dif-
ference considered. As a result, an average value over Q of the
pair purity has been used to correct the correlation function.

Figure 4 shows the experimental K0
s K0

s correlation function
before and after corrections for purity and momentum resolu-
tion are applied [17]. It has been verified that the correlation
function due to pairs coming outside the K0

s mass window is
flat. It can be seen that the effect of momentum resolution is
comparable to that of purity correction.

Q (GeV/c)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

C
(Q

)

1

1.5

2

2.5

3

Corrected for purity and 

momentum resolution

Corrected for purity only

Uncorrected data

FIG. 4: (Color online) The K0
s K0

s correlation function from central
Au+Au collisions at

√
sNN = 200 GeV [17]. The solid circles are for

uncorrected data. The squares correspond to the case where the data
have been corrected for pair purity. The triangles represent the data
after correcting for pair purity and momentum resolution. The errors
are statistical only.

VI. EXPERIMENTAL RESULTS

The experimental correlation functions are fit using the
Lednický & Lyuboshitz [28] model to take into account the
effect of the strong FSI. The free parameters are the radius R
characterizing the separation r∗ of the particle emission points
in the pair rest frame, the normalization N, and λ. This fitting
was done assuming the Gaussian r∗–distribution of Eq. (4).

Figure 5 shows an example of the model fits to the experi-
mental correlation function. A Gaussian fit to the correlation
function gives R = 5.02±0.61 fm and λ = 1.08±0.29. One
can see that a Gaussian fit cannot account for the C(Q) < 1
part of the data which are fit better if the strong FSI is in-
cluded. When taking the effects of the strong FSI, the val-
ues obtained are R = 4.09± 0.46(stat.)± 0.31(sys) fm and
λ = 0.92±0.23(stat)±0.13(sys) at the mean transverse mass
〈mT 〉 = 1.07 GeV [17]. The value of λ is consistent with unity
as expected for a chaotic system with little contributions from
decaying resonances. Plotting the radius as a function of the
mean KT , as shown in Figure 6, shows a slight dependence
of R with increasing KT [17]. However this could be a re-
maining artifact of the mean KT dependence on pair purity, as
mentioned earlier and shown in Figure 3. One has to look at
several KT bins for a specified pair purity to study a KT de-
pendence of the radius coming from real physics effects. This
was not possible in this analysis due to the limited statistics.

Figure 7 shows the mT dependence of R extracted from ππ
[39], K0

s K0
s [17], and proton-Λ correlations [40]. Considering

the large mean transverse momentum of the pair, the value
of R for K0

s before taking into account the FSI in the K0K̄0

system is larger than expected from the systematics followed
by the rest of the data. However, after taking into account the
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FIG. 5: (Color online) Fits to experimental correlation function in-
cluding the strong interaction with resonance masses and coupling
constants from Table I [17]. The corresponding χ2/DOF are (a)
1.053, (b) 1.048, (c)1.045 and (d) 1.046. A simple Gaussian fit, with
χ2/DOF = 0.816, is also shown for comparison. The errors are only
statistical.
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FIG. 6: (Color online) The extracted R as a function of the mean KT
of the pairs that go into the correlation function [17]. The errors are
only statistical.

FSI effect the neutral kaons also seem to follow the mT scaling
that hydrodynamics predicts [41].

VII. CONCLUSIONS

The first measurement of neutral kaon correlations in
heavy-ion collisions at RHIC are presented. To obtain rea-
sonable agreement between theory and data, the effect of the
strong FSI has to be considered. The variations of the reso-

 )  2 (GeV/cTm
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Λ p
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FIG. 7: (Color online) R as a function of mT [17]. Statistical and
systematic errors are shown. The FSI uncertainty measured by the
spread of the fit results is substantially smaller than the statistical
error.

nance parameters result in very small differences, which are
well within the systematic errors. A Gaussian fit to the cor-
relation function does not account very well for the C(Q) < 1
part of the data and gives a radius which is larger compared to
the model fit results.

The measured correlation radius for the neutral kaon is in-
termediate between those obtained from two-pion and proton-
lambda correlations in these collisions with the same condi-
tions except for a different transverse mass, mT . The radii
seem to follow a universal mT dependence in agreement with
a universal collective flow predicted by hydrodynamics. The
value of the parameter λ has been found to be consistent with
unity and thus points to a chaotic kaon source. This is in cor-
respondence with an indication of a dominantly chaotic pion
source obtained from STAR measurement of three-pion cor-
relations [18].

Small contributions from resonance decays, the fact that the
Coulomb interaction is absent in the dominant elastic transi-
tion and that the strong FSI effect can be handled with suf-
ficient accuracy makes neutral kaon interferometry a power-
ful tool which allows for an important cross-check of charged
pion correlation measurements.

The results presented represent an important first step to-
wards a multi-dimensional analysis of neutral kaon correla-
tions using the high statistics data from RHIC. In the future
this analysis will allow to extract information about the freeze-
out geometry, collective flow velocity, the evolution time and
duration of particle emission. The latter is especially interest-
ing in the context of an increased emission duration expected
if there is a first order phase transition from a quark gluon
plasma to a hadronic system. Recent pion interferometry mea-
surements at RHIC however point to a smaller evolution time
and emission duration than expected from the usual hydro-
dynamic and transport models. This result may indicate an
explosive character of the collision and is often considered as
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the interferometry puzzle.
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