
92 Brazilian Journal of Physics, vol. 37, no. 1, March, 2007

On the Existence of Korteweg - de Vries Solitons in Relativistic Hydrodynamics

D. A. Fogaça∗
Instituto de Fı́sica, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil

Received on 29 September, 2006

We study the conditions for the formation and propagation of Korteweg-de Vries solitons in relativistic fluid
dynamics using an appropriate equation of state. The KdV equation is obtained from the relativistic version of
the Euler and continuity equations.
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I. INTRODUCTION

In a previous work [1] we have studied the formation and
propagation of Korteweg - de Vries (KdV) solitons in nuclear
matter. We found that these solitary waves can indeed exist
in the nuclear medium, provided that derivative couplings be-
tween the nucleon and the vector field are included. These
couplings lead to an energy density which depends on the
laplacian of the baryon density. For this class of equation
of state (EOS), which is quite general as pointed out in [2],
perturbations on the nuclear density can propagate as a pulse
without dissipation.

During the analysis of several realistic nuclear equations
of state, we realized that, very often the speed of sound c2

s
is in the range 0.15− 0.25. Compared to the speed of light
these values are not large but not very small either. This sug-
gests that, even for slowly moving nuclear matter, relativistic
effects might be sizeable. This concern alone would justify
the extension of the formalism presented in [1], but there is
another motivation for revisiting our early work. In the last
years there has been increasing evidence for supersonic mo-
tion in the hot hadronic matter formed in collisions at RHIC.
The most striking evidence is the observation of an approx-
imate double bump structure recoiling against a jet, the so-
called “away-side jet”, measured by STAR [3]. This structure
was interpreted as arising from a conical shock wave result-
ing from the supersonic motion of a fast parton through the
hadronic medium [4]. This interesting conjecture gives us
additional motivation for studying supersonic motion in rel-
ativistic hydrodynamics.

II. RELATIVISTIC HYDROYNAMICS

In this section we review the main expressions of one di-
mensional relativistic hydrodynamics. In natural units (c = 1)
the velocity four vector uν is defined as:

u0 = γ , ~u = γ~v (1)

where γ is the Lorentz contraction factor given by:

γ = (1− v2)−1/2 (2)
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The velocity field of the matter is~v =~v(t,x,y,z) and thus

uνuν = 1 (3)

The energy-momentum tensor is, as usual, given by:

Tµν = (ε+ p)uµuν− pgµν (4)

where ε and p are the energy density and pressure respectively.
Energy-momentum conservation is ensured by:

∂νTµ
ν = 0 (5)

The projection of (5) onto a direction perpendicular to uµ gives
us the relativistic version of Euler equation [5, 6]:

∂~v
∂t

+(~v ·~∇)~v =− 1
(ε+ p)γ2

(
~∇p+~v

∂p
∂t

)
(6)

The relativistic version of the continuity equation for the
baryon number is [5]:

∂ν jBν = 0 (7)

Since jBν = uνρB the above equation reads

∂
∂t

(ρBγ)+~∇ · (ρBγ~v) = 0 (8)

The enthalpy per nucleon is given by [6]:

dh = T ds+V d p (9)

where V = 1/ρB is the specific volume. For a perfect
fluid (ds = 0) the equation above becomes d p = ρBdh and
consequently:

~∇p = ρB~∇h,
∂p
∂t

= ρB
∂h
∂t

(10)

Inserting (10) in (6) we find:

∂~v
∂t

+(~v ·~∇)~v =− ρB

(ε+ p)γ2

(
~∇h+~v

∂h
∂t

)
(11)

Recalling the Gibbs relation [7]:

ε−T s+ p = µBρB (12)

and considering the case where T = 0 we obtain:

ε+ p = µBρB (13)
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where ε, p, µB and ρB are the energy density, pressure, bary-
ochemical potential and baryon density respectively. Inserting
(2) and (13) into (11) we obtain:

∂~v
∂t

+(~v ·~∇)~v = − (1− v2)
µB

(
~∇h+~v

∂h
∂t

)
(14)

Since the enthalpy per nucleon may also be written as [1, 8]:

h =
∂ε

∂ρB
(15)

it becomes clear that it is the equation of state that will deter-
mine the final form of (14).

We close this section comparing the relativistic and non-
relativistic versions of the Euler and continuity equations. The
latter were presented in [1]

∂ρB

∂t
+~∇ · (ρB~v) = 0 (16)

∂~v
∂t

+(~v ·~∇)~v =−
(

1
M

)
~∇h (17)

and the former are (8) and (14)

∂
∂t

(ρBγ)+~∇ · (ρBγ~v) = 0 (18)

∂~v
∂t

+(~v ·~∇)~v = − (1− v2)
µB

(
~∇h+~v

∂h
∂t

)
(19)

The two pairs are similar. The differences are only in the γ
factors and in the last term of (19), where the appearance of
time derivative reflects the symmetry between space and time.

III. THE KDV EQUATION

In this section we follow the treatment developed in [1, 8, 9]
to obtain the Korteweg-de Vries equation in one dimension
through the combination of (14) and (8). Concerning the
hadronic medium we shall consider three cases: I) ordinary
nuclear matter at baryon density ρ0 for which the following
saturation condition holds:

∂
∂ρB

(
ε

ρB
−M

)

ρB=ρ0

= 0 (20)

In case II) we have ordinary and saturated nuclear matter de-
scribed by the relativistic mean field model developed in [1]
and called modified Quantum Hadrodynamics (MQHD). In
case III) we have hadronic matter at arbitrary constant baryon
density. This last choice is motivated by a future study of
dense stars. We can represent these three systems with the
equation of state:

ε = α1ρB +α2ρB
2 +α3ρB

3 +βρB~∇2ρB (21)

where αi and β are constants.
This Ansatz is similar to the energy density used in [1, 8, 9]

and is consistent with the EOS obtained with the approach
based on the density functional theory [2].

Using (21) to evaluate (15) and its derivatives we find:

~∇h = ΦρB~∇ρB +φ~∇ρB +ω~∇(~∇2ρB) (22)

and

∂h
∂t

= ΦρB
∂ρB

∂t
+φ

∂ρB

∂t
+ω

∂
∂t

(~∇2ρB) (23)

where

Φ≡
{

6α3 cases I and III
3Mcs

2

ρ02 case II (24)

φ≡




2α2 case III
−4α3ρ0 case I
−2Mcs

2

ρ0
case II

(25)

ω≡
{

β cases I and III
gV

2

mV 4 case II
(26)

We now repeat the steps developed in [1, 9] and introduce
dimensionless variables for the baryon density and velocity:

ρ̂ =
ρB

ρ0
, v̂ =

v
cs

(27)

We next define the “stretched coordinates” ξ and τ as in
[8–10]:

ξ = σ1/2 (x− cst)
R

, τ = σ3/2 cst
R

(28)

where R is a size scale and σ is a small (0 < σ < 1) expansion
parameter chosen to be [10]:

σ =
| u− cs |

cs
(29)

where u is the propagation speed of the perturbation in ques-
tion. We then expand (27) around the equilibrium values:

ρ̂ = 1+σρ1 +σ2ρ2 + . . . (30)

v̂ = σv1 +σ2v2 + . . . (31)

After the expansion above (14) and (8) will contain power se-
ries in σ (in practice we go up to σ2). Since the coefficients
in these series are independent of each other we get a set of
equations, which, when combined, lead to the KdV equation
for ρ1:

∂ρ1

∂τ
+

(
3
2

+
Φρ0

2

2µcs2 − cs
2
)

ρ1
∂ρ1

∂ξ
+

(
ωρ0

2µcs2R2

)
∂3ρ1

∂ξ3 = 0

(32)
with the condition

(Φρ0 +φ)ρ0

µcs2 = 1 (33)
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IV. SOLUTION OF THE KDV EQUATION

The equation (32) has a well known soliton solution. We
may rewrite the last equation back in the x − t space obtain-
ing a KdV-like equation for ρ̂1 with the following analytical
solitonic solution:

ρ̂1(x, t) =
3(u− cs)

cs

(
3
2 + Φρ02

2µcS2 − cs2

)×

×sech2
[√

µcs(u− cs)
2wρ0

(x−ut)
]

(34)

where ρ̂1 ≡ σρ1.
This solution is a bump which propagates with speed u,

without dissipation and preserving its shape.
The expressions given by (32), (33) and (34) depend on the

choices given by (24), (25) and (26).
In case II (MQHD), the constraint (33) implies that µ = M

and the general equation (32) becomes:

∂ρ1

∂τ
+(3− cs

2)ρ1
∂ρ1

∂ξ
+

(
gV

2ρ0

2MmV 4cs2R2

)
∂3ρ1

∂ξ3 = 0 (35)

with the solution given by:

ρ̂1(x, t) =
3(u− cs)

cs
(3− cs

2)−1×

× sech2
[

mV
2

gV

√
(u− cs)csM

2ρ0
(x−ut)

]
(36)

As a consitency check we take the non-relativistic limit,
which, in this case, means taking a small sound speed c2

s → 0.
In this limit (3− cs

2) ∼= 3 and (35) and (36) coincide the re-
sults previously obtained in [1]:

∂ρ1

∂τ
+3ρ1

∂ρ1

∂ξ
+

(
gV

2ρ0

2Mcs2mV 4R2

)
∂3ρ1

∂ξ3 = 0 (37)

and

ρ̂1(x, t) =
(u− cs)

cs
×

× sech2
[

mV
2

gV

√
(u− cs)csM

2ρ0
(x−ut)

]
(38)

It is interesting to observe the supersonic nature of the solu-
tions (36) and (38), which is manifest in the arguments of the
square roots. As a final remark about (34) we notice that, for

Φρ0
2

2µcS2 < cs
2− 3

2
(39)

the solution (34) becomes negative and, in view of (30), can
be interpreted as a rarefaction wave as in [8].

V. CONCLUSIONS

We have extended the results of our previous work [1],
showing that it is possible to obtain the KdV solitons in rel-
ativistic hydrodynamics with an appropriate EOS. Taking the
non-relativistic limit (c2

s → 0) we were able to recover the pre-
vious results.
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