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The inability of otherwise successful dynamical models to reproduce the “HBT radii” extracted from two-
particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the “RHIC HBT
Puzzle”. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT
radii agree with certain combinations of the space-time widths of the source which can be directly computed
from the emission function, without having to evaluate, at significant expense, the two-particle correlation func-
tion. We here study the validity of this approach for realistic emission function models some of which exhibit
significant deviations from simple Gaussian behaviour. By Fourier transforming the emission function we com-
pute the 2-particle correlation function and fit it with a Gaussian to partially mimic the procedure used for
measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We
find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the
data than the values previously extracted from the space-time widths of the emission function. Although serious
discrepancies between the calculated and measured HBT radii remain, we show that a more “apples-to-apples”
comparison of models with data can play an important role in any eventually successful theoretical description
of RHIC HBT data.
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I. INTRODUCTION

Two-particle intensity interferometry is widely used to
characterize the space-time aspects of the freeze-out config-
uration in relativistic heavy ion collisions [1]. It is common
to condense this information in terms of characteristic length
scales of the “homogeneity regions” [2] from which particles
of a given momentum originate.

In this paper we discuss the degree to which homogene-
ity lengths extracted in quite different ways may be validly
compared. Throughout our study, we restrict ourselves to in-
terference effects between identical, non-interacting bosons,
resulting from Bose-Einstein statistics. Since final state in-
teractions (e.g. Coulomb effects) affect most interferometry
studies, our study may be regarded (1) as a proof-of-principle
example that care must be taken to perform “apples-to-apples”
comparisons, and (2) as an estimate of the magnitude of the
differences for two popular theoretical models.

The homogeneity length scales are extracted in experiments
by assuming that the homogeneity region can be approxi-
mated by a Gaussian-profile ellipsoid in configuration space,
resulting in a Gaussian two-particle momentum correlation
function, and performing a semi-analytic Gaussian fit to the
relative momentum dependence of the measured correlation
function (see e.g. [1] for details). Following common prac-
tice, we will refer in the following to the size parameters ob-
tained from Gaussian fits to the correlation function as “HBT
radii”.

Fitting experimental data to functional forms other than
Gaussian is common in studies of elementary particle colli-
sions, for which Gaussian fits clearly fail. In heavy ion col-
lisions, the Gaussian ansatz works relatively well, but, es-
pecially with the high quality and high-statistics data sets
now available at RHIC, finer, non-Gaussian structures may

be physically interesting. Instead of inventing ad-hoc func-
tional forms with which to fit the correlation functions, or
functionally expanding about a Gaussian fitting form [3, 4],
imaging [5–7] the homogeneity region is perhaps the most
promising route to explore these structures. Indeed, recent ex-
perimental imaging studies [41, 42] show clear signs of non-
Gaussian behaviour. In this paper we do not take up this is-
sue. Instead, we note that most experimental studies in heavy-
ion physics to date have used the Gaussian ansatz [1], and we
explore some ways in which HBT radii obtained in this way
from data may be compared to model calculations.

If the homogeneity region is indeed Gaussian in profile,
then the HBT radii agree exactly with appropriate combina-
tions of the root-mean-squared (RMS) variances of its spa-
tial distribution [8]. Given a theoretical model for the freeze-
out configuration, calculating these space-time variances is
much easier than computing and fitting the correlation func-
tion. Many comparisons between models and data therefore
use this short-cut, comparing the space-time variances directly
to the experimental HBT radii. However, the homogeneity re-
gion is seldom perfectly Gaussian; Fig. 1 shows two-particle
separation distributions from a Blast-wave model [23] which
has successfully reproduced much of the data from the soft
sector at RHIC.

This raises the question to what extent some of the per-
sistently observed discrepancies between model predictions
and measurements of the HBT radii [1]– the so-called “RHIC
HBT Puzzle”– might be due to such an “apples-with-oranges”
comparison. Indeed, HBT radii calculated with Boltz-
mann/cascade models which are based on Gaussian fits to the
simulated correlation functions agree somewhat better with
measurements than do radii based on an extraction of space-
time variances from hydrodynamic calculations [1]. Whether
this is due to a more realistic modeling of the collision in
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FIG. 1: Projections of spatial freeze-out distributions (in lab frame)
along the out (x), side (y), and long (z) directions, for pions with pT =
0.25 GeV/c (solid line) and 0.5 GeV/c (dashed line). From [23].

the Boltzmann/cascade approach or the shortcomings of the
comparison of variances with HBT radii in the hydrody-
namic case is unclear. Similarly, differences between hy-
drodynamic calculations of space-time variances [9, 10] and
Gaussian HBT radii fitted to three-dimensional [11–13] and
one-dimensional [14, 15] correlations have been observed.
However, since these calculations were performed using dif-
ferent initial conditions and other parameters, it is unclear
whether this, or the different extraction methods, were respon-
sible for the observed differences.

Focus exclusively on the “HBT Puzzle,” per se, may
be misplaced, since the transition from deconfined matter
(sQGP) to confined matter is likely a crossover transition
rather than a strong first-order one; in other words, there is
no large latent heat associated with the transition. In this case,
the large HBT radii initially predicted by models with a strong
phase transition [10], are not expected after all [1]. In any
event, our task here is to evaluate the degree of validity of
methods of comparing model calculations to data.

Isolating the effect of the method itself is best done by using
the same hydrodynamic model and parameters, and compar-
ing radii calculated in different ways. One such study [16]
compared space-time variances with “Gaussian radii” ex-
tracted from moments of the calculated correlation function.
For identical kaon correlations, the radii extracted were al-
most independent of the method used. In the present study,
we use a more sophisticated technique to emulate the three-
dimensional Gaussian fits used by experimentalists, and we
focus on pion correlations, for which the “HBT Puzzle” has
been studied in detail. In our study, we find that the method
used to extract the radii does, indeed, matter.

One cascade model (MPC [17]) which reports RMS vari-
ances shows discrepancies with data similar to the hydrody-
namic models. Studies [18–20] performed within the Boltz-
mann/cascade framework show that space-time variances of
the freeze-out configuration and Gaussian fits to the correla-
tor can yield quite different radius parameters, mostly due to
long tails in the spatial freeze-out distribution from resonance
decays which strongly affect the space-time variances but are
not reflected by Gaussian fits to the correlation function, ac-

cording to hydrodynamic calculations [21]. (See, however,
the recent study by Kisiel et al [22], which addresses this is-
sue in detail in the context of a blast-wave parameterization.)
Hydrodynamic calculations of the space-time variances there-
fore usually do not include resonance decay contributions in
the emission function [9]. Still, the comparison in [9] involves
two differently determined quantities, and in the present paper
we eliminate this shortcoming.

To do so requires two additional steps beyond the calcula-
tion of the model emission function: (i) The correlation func-
tion must be computed via Fourier transformation (for nonin-
teracting identical particles) or by folding with a relative wave
function that includes final state interaction effects (for with
long-range final state interactions). This is straightforward al-
beit numerically expensive since it involves multiple space-
time integrals. (ii) A Gaussian fit to the three-dimensional
correlation function must be performed, including a correla-
tion strength parameter λ as in the experiment.

We here concentrate on non-interacting pairs of identical
particles as the practically most important case and also in or-
der to simplify as much as possible the computation of the cor-
relator. For the second step we develop an analytical Gaussian
fit algorithm which reduces the multi-dimensional fit problem
to a simple set of linear equations for diagonalizing a four-
dimensional matrix. This should help theoretical modelers to
overcome the barrier of unfamiliarity when faced with a multi-
parameter fitting problem.

We apply our procedure to emission functions from hydro-
dynamic calculations [9] and from the blast-wave parameter-
ization [23]. Both generate non-Gaussian freeze-out distri-
butions, due in large measure to finite-size effects coupled
with strong collective flow which is known to be important
at RHIC. On the way, we also discuss and analyze Gaussian
fits to 1-dimensional projections of the 3-dimensional correla-
tor. This allows for comparison with earlier work along these
lines [14, 21] and first introduces our new analytic Gaussian
fit algorithm in an easy and transparent simpler setting.

Much of this work has been presented previously [40].

II. VARIANCES VERSUS HBT RADII

Experimentally, the correlation function between two
identical particles, as a function of their relative mo-
mentum qqq≡ pppa−pppb and their average (pair) momentum
KKK≡(pppa+pppb)/2, is given by

C(qqq,KKK) =
A(qqq,KKK)
B(qqq,KKK)

, (1)

where A(qqq,KKK) is the signal distribution and B(qqq,KKK) is the ref-
erence or background distribution which is ideally similar to
A in all respects except for the presence of femtoscopic corre-
lations (see e.g. [1] for details). C(qqq,KKK) is the modification
to the conditional probability for measuring particle b with
momentum pppb =KKK− 1

2 qqq if particle a has been measured with
momentum pppa =KKK+ 1

2 qqq, due to two-particle effects sensitive
to space-time separation. The explicit KKK-dependence reflects
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the fact that the separation distribution may depend on the av-
erage momentum of the pair [2] and in general does so for
exploding sources [24].

Theoretically, the correlation function can be calculated
from the emission function S(ppp,x) describing the probability
to emit a particle from spacetime point x with momentum ppp,
by convoluting it with the two-particle relative wave function
[1]. For pairs of non-interacting identical particles one has
simply [1, 3]

C(qqq,KKK)≈ 1+
∣∣∣∣
∫

d4xS(KKK,x)eiq·x
∫

d4xS(KKK,x)

∣∣∣∣
2

. (2)

Here q · x=q0t − qqq · xxx, with q0 =Ea−Eb =βββ · qqq where
βββ=KKK/K0 =2KKK/(Ea+Eb) is the average velocity of the pair.
The ≈ sign in Eq. (2) indicates the “smoothness approxima-
tion” which replaces both pppa and pppb by KKK inside the emission
functions in the denominator [3]. Equation (2) can be decom-
posed as

C(qqq,KKK) = 1+ 〈cos(q · x)〉2 + 〈sin(q · x)〉2 (3)

where 〈. . .〉 indicates the (KKK-dependent) space-time average
with the emission function:

〈 f 〉 ≡
∫

d4x f (x)S(KKK,x)∫
d4xS(KKK,x)

. (4)

If S(KKK,x) is a four-dimensional Gaussian distribution of
freeze-out points, the correlation function will likewise be
Gaussian in the relative momentum qqq. It takes a particularly
simple form for midrapidity pairs (with vanishing longitudi-
nal pair momentum, KL =0) from central collisions between
equal-mass spherical nuclei [1, 8]:

C(qqq) = 1+λe−(q2
oR2

o+q2
s R2

s +q2
l R2

l ). (5)

Here qo, qs, ql are the relative momentum components in
the Bertsch-Pratt (“out-side-long”) coordinate system [1, 8].
The pair momentum dependence of the correlation function
C(qqq,KKK) leads to KKK-dependencies of the “HBT radii” Ro, Rs,
and Rl (which characterize the relative momentum widths of
the correlation function) and of the “correlation strength” λ.
For fully chaotic theoretical Gaussian sources λ≡1, but for
experimental correlation functions usually λ<1. Even though
we here perform a theoretical model analysis, we keep λ as a
parameter because Gaussian fits to non-Gaussian correlation
functions generally also yield λ 6=1, and experimentally such
non-Gaussian effects on the extracted λ cannot be separated
from other origins of reduced correlation strength (such as
contamination from misidentified particles and contributions
from resonance decays [1]). The HBT radii defined by Eq. (5)
convey all available geometric information about the source
S(KKK,x).

For Gaussian sources the radius parameters Ro, Rs, and Rl
can be calculated directly from the source distribution S as
RMS variances. For midrapidity pairs with KL =0 one finds
[8]

R2
o = 〈x̃2

o〉−2β〈x̃ot̃〉+β2〈t̃2〉,
R2

s = 〈x̃2
s 〉, R2

l = 〈x̃2
l 〉, (6)

where β=KT /K0 is the magnitude of the (transverse) pair ve-
locity (which points in the xo direction), and

x̃µ ≡ xµ−〈xµ〉 (7)

denotes the distance from the (KKK-dependent) center of the ho-
mogeneity region for particles with momentum KKK.

Experimentalists commonly extract HBT radii by fitting
their experimental correlation functions (1) with the func-
tional form (5). In contrast, most (but not all) theoretical
model predictions for HBT radii are based on a calculation of
the space-time variances of the emission function and assum-
ing the validity of Eqs. (6) which holds for Gaussian sources.
Of course, there is no a priori reason to expect a source
with a perfectly Gaussian profile. Even the simplest flow-
dominated freeze-out parameterizations produce clear non-
Gaussian tails and edges [23]. On the experimental side, high-
statistics measurements show non-Gaussian behaviour, which
is, however rarely treated quantitatively [4]. In the presence
of such non-Gaussian features, the issues are (1) whether the
two approaches yield significantly different results, and (2)
whether either method characterizes the physically interesting
length scales of the source sufficiently well. Here, we address
the first issue in the context of blast-wave and hydrodynamic
models.

Our calculations do not include experimental “noise”, par-
ticle mis-identification, or contributions from the decay of
long-lived resonances which can reduce the fit parameter λ
in Eq. (5) from its theoretical value of unity [1, 21]. Instead,
this parameter absorbs (and reflects) some of the effects of fit-
ting a non-Gaussian function to a Gaussian form. This will,
of course, also happen in experiment whenever the correlation
function deviates from a simple Gaussian. This particular con-
tribution to the fitted correlation strength λ has so far received
little attention. The model results presented here should help
to assess the possible influence of non-Gaussian features in
the data on the fitted values of λ.

III. DIRECT CALCULATION OF HBT RADII

As explained in the Introduction, we here use model emis-
sion functions to compute the correlation function according
to Eqs. (2,3) and then fit the latter with a Gaussian, using a
procedure very similar to the one used in experiment. The
main difference is that the theoretical correlation function can
be calculated with arbitrary precision, so the notion of a sta-
tistical error does not enter. Still, we will see that the fitting
problem can be formulated in a quite analogous way.

In the following subsection we introduce the algorithm for
Gaussian fits through 1-dimensional cuts or projections of the
3-dimensional correlation function. The full algorithm for 3-
dimensional Gaussian fits is presented in Sec. III B.

A. One-dimensional Gaussian fits

In Section VI of their paper, Wiedemann and Heinz [21]
calculated correlators for various model emission functions
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and extracted parameters from fits to one-dimensional slices
of the three-dimensional correlation function. Although those
authors called them “HBT radii”, we will call them “1D
radii” to distinguish them from radii extracted from full three-
dimensional fits of the type performed by experimentalists.

In a given direction i (i = o,s, l) they calculate the correlator
along one of the axes i: C(qi;q j 6=i=0). They then find the 1D
radius R2

1D,i and the “directional lambda parameter” λi which
best approximates the correlator according to

C(qi;q j 6=i=0)≈ 1+λi e−q2
i R2

1D,i . (8)

In particular, they calculated the correlator for a set of N
values q(k)

i (similar to experimentally binning the correlation
function into N qqq-bins) and minimized numerically the quan-
tity

N

∑
k=1

[
ln

(
C(q(k)

i ;q(k)
j 6=i=0)−1

)− lnλi +R2
1D,i(q

(k)
i )2

]2
. (9)

This is reminiscent of the quantity typically minimized by
experimenters, although in this case one also takes into ac-
count the experimental uncertainty of the measured correlator
by weighting each term in the sum (bin) with the inverse ex-
perimental error:

χ2
1D,i ≡ (10)

N

∑
k=1


 ln

[
C

(
q(k)

i ;q(k)
j 6=i=0

)−1
]− lnλi +R2

1D,i(q
(k)
i )2

σ′ (k)1D,i




2

.

Here, σ′ (k)1D,i represents the uncertainty in bin k on the quantity

to be fitted, namely ln
[
C

(
q(k)

i ;q(k)
j 6=i=0

)−1
]
. It is related to the

uncertainty σ(k)
1D,i on the measured correlator C(q(k)

i ;q(k)
j 6=i=0)

itself by

σ′ (k)1D,i =
d ln

[
C

(
q(k)

i ;q(k)
j 6=i=0

)−1
]

dC
(
q(k)

i ;q(k)
j 6=i=0

) ·σ(k)
1D,i

=
σ(k)

1D,i

C
(
q(k)

i ;q(k)
j 6=i=0

)−1
. (11)

Minimization of the quantity (9) as in [21] is equivalent to
setting all uncertainties σ′ (k)1D,i to the same constant value, in-
dependent of k. However, uncertainties on experimental cor-
relation functions typically have approximately constant (k-
independent) uncertainties on the bin contents C(q(k)

i ;q(k)
j 6=i=0)

themselves [25]. Although statistical uncertainties on cal-
culated correlators may in principle be vanishingly small,
the weighting factor

[
C

(
q(k)

i ;q(k)
j 6=i=0

)−1
]2 which appears in

Eq. (10) as a result of Eq. (11) will in general affect the
resulting fit parameters. We choose to mimic the experi-
mental situation by minimizing Eq. (10), assuming constant
(i.e. k-independent) and infinitesimally small errors on C,
σ(k)

1D,i =σ1D,i→0.

Minimizing χ2
1D,i in Eq. (10) with respect to the fit parame-

ters lnλi and R2
1D,i by setting

∂χ2
1D,i

∂ lnλi
= 0 ,

∂χ2
1D,i

∂R2
1D,i

= 0 , (12)

we find after minimal algebra

lnλi =
X2,iY2,i−X0,iY4,i

Y 2
2,i−Y0,iY4,i

, (13)

R2
1D,i =

X2,iY0,i−X0,iY2,i

Y 2
2,i−Y0,iY4,i

, (14)

where the quantities

Xn,i =
N

∑
k=1

(
q(k)

i
)n

(
σ′ (k)1D,i

)2 ln
[
C

(
q(k)

i ;q(k)
j 6=i=0

)−1
]
, (15)

Yn,i =
N

∑
k=1

(
q(k)

i
)n

(
σ′ (k)1D,i

)2 (16)

are directly calculable from the calculated correlator. Note
that the constant error σ1D,i of the correlator drops out from
the ratios in Eqs. (13,14), so the limit σ1D,i→0 mentioned
above is well-defined.

Minimization of χ2
1D,i differs significantly from the exper-

imentalists’ three-dimensional fits. In particular, it assumes
complete factorization of the correlation function in the o,s, l
directions. For at least two reasons, this need not be so in
reality:

(i) In a full three-dimensional fit, the three directions
are coupled by requiring a single λ parameter, indepen-
dent of direction i. After all, according to Eq. (8)
lim|qqq|→0 C(qqq)= limqi→0 C(qi;q j 6=i=0)=1+λi should be inde-
pendent of direction i. Thus, allowing “directional lambda
parameters” may cause the 1D fits to differ significantly from
3D fits.

(ii) Perhaps more importantly, fitting separately along the
qi axes accounts for only a set of zero measure of the full
three-dimensional correlation function. In particular, the cor-
relation function may contain in the exponent terms such as
q2

oq2
s or q4

oq2
l . (For symmetry reasons [26] odd powers of qi

vanish at midrapidity for central collisions between equal nu-
clei.) Such higher order terms will affect the 3D fits of the
experimentalist, but have no effect on equation (10).

We therefore now turn to full three-dimensional Gaussian
fits. We will see that the above analytic expressions are easily
generalized for this case.

B. Three-dimensional Gaussian fit algorithm

Proceeding as in the previous subsection, we start from the
general three-dimensional Gaussian ansatz (5) which can be
written as

ln
(
C(qqq)−1

)
= lnλ− (

q2
oR2

o+q2
s R2

s +q2
l R2

l
)
. (17)
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If the correlation function C
(
qqq(k)) in bin k has error σk, the

error on ln(C−1) is given as in (11) by

σ′k =
σk

C
(
qqq(k)

)−1
. (18)

We minimize

χ2 =
N

∑
k=1




ln
(
C

(
qqq(k))−1

)− lnλ+ ∑
i=osl

(
q(k)

i
)2R2

i

σ′k




2

(19)

by setting

∂χ2

∂ lnλ
= 0 ,

∂χ2

∂R2
i

= 0 (i = o,s, l) . (20)

This leads to a set of 4 coupled linear equations,

∑
β

TαβPβ = Vα , (21)

where α and β take the values ø,o,s, l. The vectors appearing
here are

P =
(
lnλ,R2

o,R
2
s ,R

2
l
)
, (22)

Vø = −
N

∑
k=1

ln
(
C

(
qqq(k))−1

)
(
σ′k

)2 , (23)

Vi = +
N

∑
k=1

(
q(k)

i
)2

(
σ′k

)2 · ln
(
C

(
qqq(k))−1

)
, (24)

while the symmetric 4×4 matrix T has components

Tøø = −
N

∑
k=1

1(
σ′k

)2 ,

Tøi = +
N

∑
k=1

(
q(k)

i
)2

(
σ′k

)2 , (25)

Ti j = −
N

∑
k=1

(
q(k)

i
)2 (

q(k)
j

)2

(
σ′k

)2 .

In Equations (24) and (25) i, j=o,s, l as usual. Note the cor-
respondences Vα ↔ Xn,i and Tαβ ↔ Yn,i between the 3D and
1D cases.

The set of linear equations (21) is easily solved alge-
braically by diagonalizing the matrix Tαβ.

IV. PREVIOUS MODEL COMPARISONS

In Figs 2 and 3 are shown comparison of experimentally-
measured HBT radii at RHIC to Boltzmann/cascade and hy-
drodynamic models, respectively [1], for pion correlations
measured at midrapidity in central collisions at RHIC. In gen-
eral, the Boltzmann/cascade models do better than the hydro
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FIG. 2: (Color online) “HBT radii” calculated [9, 15, 28, 39] in hy-
drodynamic models, compared to experimental radii extracted from
fits. The calculated radii are discussed in the text. Compilation
from [1].
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FIG. 3: (Color online) “HBT radii” calculated [17, 18, 20, 38]
in Boltzmann-cascade models, compared to experimental radii ex-
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pilation from [1].

calculations (or hybrid calculations [28] using hydro as an ini-
tial stage). This may contain important information; the Equa-
tion of State in Boltzmann/cascade models is generally stiffer
than that used in the hydro calculations. However, the differ-
ence may also come from the fact that different quantities are
being compared.

None of the hydrodynamic calculations have generated
HBT radii directly comparable to the data. The results for
the Hirano calculation [15] are the “1D radii” R1D,i dis-
cussed in Section III A. The quantities reported by Zschi-
esche [39] are calculated similarly. Finally, the quantities re-
ported for the Heinz and Kolb hydro [9] and the Soff hybrid
hydro+cascade [28] are the spatial variances of Equation 6.

The Boltzmann/cascade calculation which least reproduces
the data– the MultiParton Cascad (MPC) [17]– also computes
spatial variances (Equation 6). In the more successful Boltz-
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“HBT parameters” calculated from the analytic expressions given in
Sec. III B.

mann/cascade calculations, labelled AMPT [20], RQMD [18],
and HRM [38], full generation of a three-dimensional corre-
lation function and a fit (Equation 5) to it, emulating the ex-
perimental method, is performed. These represent the most
apples-to-apples comparisons, and, very significantly, best de-
scribe the data. It is this type of comparison which we attempt
here, using the algorithm of Section III B.

V. APPLICATION TO BLAST-WAVE MODEL

Many variants of “hydrodynamically-inspired” models of
freeze-out have recently been used to calculate spatial RMS
variances which then were compared to experimental HBT
radii. A recent example is reported in reference [23]. The
model itself is very simplistic and ignores, for example, reso-
nance decay contributions which may be important [21]. We
ignore such issues with the model itself and simply use it here
to discuss differences between RMS variances and Gaussian
HBT radii.

We use “realistic” model parameters which best describe
the data [4]. Specifically, we take R=13.3 fm for the source
radius, T =97 MeV for the temperature, ρ0 =1.03 for the
maximum transverse flow rapidity, τ=9 fm/c for the average
freeze-out time, and ∆τ=2.83 fm/c for the emission duration
(see [23] for details).
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FIG. 5: (Color online) Solid (red) curves show one-dimensional
slices of the three-dimensional correlation function calculated with
Eq. (3) from the blast-wave parameterization, for midrapidity pions
with KT = 0.3 GeV/c. Dashed (blue) curves show slices of the three-
dimensional Gaussian form of Equation (5), with “HBT parameters”
calculated from the analytic expressions given in Sec. III B.
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to one of ten values of KT : 0.0, 0.1, 0.2, . . . , 0.9 GeV/c. Curves
corresponding to high KT are at low (high) values of R1D,i (λ1D,i).

A. Correlation functions and analytic fits: results

Equation (12) of [23] gives the functional form for the
single-pion emission function in the blast-wave model. Us-
ing this for S(KKK,x), we calculate the correlation function for
pion pairs with longitudinal pair momentum KL =0, using a
Monte Carlo technique to numerically perform the integrals
in Eq. (3).

As with experimental data, the correlation function is eval-
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Eqs. (21) and plotted as a function of the maximum allowed value
of any q-component; see text for details. Each curve corresponds to
one of ten values of KT : 0.0, 0.1, 0.2, . . . , 0.9 GeV/c. Curves corre-
sponding to high KT are at low (high) values of Ri (λ). The Rl curve
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uated in finite-sized three-dimensional bins in (qo,qs,ql) of
width 2.5 MeV/c in each direction. One-dimensional slices of
the correlation function in the “out”, “side”, and “long” direc-
tions are shown in Figs. 4 and 5, for midrapidity pion pairs
with KT =0 and KT =0.3 GeV/c, respectively.

The slices of the correlation functions appear quite
Gaussian, and they are tracked well by the three-dimensional
Gaussian fit; the fitted correlation strength λ is very close to
1. The radius parameters calculated from the RMS variances
(6) agree quite well with the HBT radii extracted from the
three-dimensional Gaussian fit by solving Eqs. (21); both sets
are given in the Figures. Upon closer inspection one notices,
however, that the fitted outward and longitudinal radii, Ro and
especially Rl , tend to be systematically smaller than those ex-
tracted from the spatial RMS variances; the opposite is true
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FIG. 9: (Color online) Three-dimensional HBT fit parameters R1D,i
and λ1D,i as a function of KT , calculated from the blast-wave para-
metrization with Eqs. (21). For a given KT , the vertical red line rep-
resents the variation with fit range (see Fig. 8). Blue stars represent
the corresponding radius parameters calculated from the RMS vari-
ances using Eq. (6). Black circles show STAR data [4], with error
bars removed for clarity.

for the sideward radii Rs for which the RMS variances give
slightly smaller values than the Gaussian fit. While these dif-
ferences are small for the blast-wave model parameterization
(at least with the “realistic” parameters studied here), they
will be significantly larger (with the same basic tendencies
as found here) for the hydrodynamic model source studied in
Sec. VI.

The Gaussian fit parameters given in Figs. 4 and 5 corre-
spond to using the largest possible qqq-range in the sums over
k in Eqs. (24,25), discarding only those data points for which
C is so close to 1 that the Monte Carlo integration sometimes
yields negative values for C−1. Due to small but noticeable
deviations of the correlation function from a pure Gaussian,
the Gaussian fit parameters depend on the number of data
points used. We study this sensitivity to the fit range in the
following subsection.

B. Fit-range study

Since no measured correlation function is ever perfectly
Gaussian, experimentalists typically perform so-called “fit
range studies.” Here, the measured correlation function is
fitted with the Gaussian form (5), using data points in a re-
stricted range of qqq. With correlation functions in the one-
dimensional quantity Qinv it is common to study the varia-
tion of fit parameters as the first few (lowest-Qinv) data points
are left out of the fit. This is because statistical fluctuations
in these bins may be quite large, and due to the visible non-
Gaussian nature of the measured correlation function there.
Three-dimensional correlation functions do not suffer from
these issues, and so usually the experimentalist includes all
data points with |qi|<qmax and studies variations of the fit pa-
rameters as qmax is varied; any such variations are typically
folded into systematic errors on the HBT radii.

Here, we follow the experimentalists’ approach. Using the
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correlation function generated from the blast-wave model, we
calculate HBT parameters from 1D and 3D Gaussian fits as
discussed in Sections III A and III B, restricting the k-sums in
Eqs. (15), (16), (24), and (25) to include only those data points
where all three q-components have magnitudes less than qmax
[27]. Thus, we will not calculate unique HBT radii, but a finite
range for each fit parameter.

For various values of KT , Fig. 6 shows the evolution of the
1D radii with qmax. Except for Rl at low KT , the parameter
variation with fit range is quite mild, corresponding to a small
“non-Gaussian systematic error” on the radii. In Fig. 7 the
range of this variation, indicated by vertical lines, is plotted
as a function of KT . Consistent with the theorem [8] that the
spatial RMS variances (6) of the source control the curvature
of the correlator C(qqq) at qqq=0, the blue stars in Fig. 7 coincide
with the qmax→0 limit of the fitted 1D radii. The largest fit-
range variations, indicating the biggest non-Gaussian effects
in the correlator, are seen at small pair momentum KT . The
fit-range sensitivity is most pronounced for Rl (where at low
KT it can exceed 0.5 fm) but almost negligible for Ro and Rs.
In short, the 1D Gaussian fits to the two transverse projections
of the correlation function give length scales consistent with
the spatial RMS variances of the source distribution, but non-
Gaussian features along the longitudinal projection cause the
RMS variances to overestimate the longitudinal 1D HBT ra-
dius Rl by up to 0.5 fm at low KT if a reasonable fit range qmax
is used to extract the latter. This discrepancy is significantly
larger than the combined statistical and systematic error on
the experimental value for Rl [4].

Figures 8 and 9 show the same study for the three-
dimensional Gaussian fits. For reasons explained in Sec. III A,
the non-Gaussian effects in a unified 3D Gaussian fit are ex-
pected to differ from those in 1D fits. Indeed, in the unified
3D fit non-Gaussian influences also appear in Ro, and both Ro
and Rl now show fit-range variations which exceed the com-
bined statistical and systematic errors of the data [4]. The
largest fit-range sensitivity is still seen in the longitudinal di-
rection. In Ref. [23] the blast-wave model parameters were
determined by comparing RMS variances with the measured
HBT radii (see Figs. 7 and 9), using the experimental errors
on the latter to extract error estimates for the model parame-
ters. The results presented here suggest that if the authors had
instead compared the measured data with HBT radii extracted
from a 3D Gaussian fit to the calculated correlation function,
they would have found somewhat different model parameters
whose mean values in some cases might even have fallen out-
side the likely parameter range quoted in Table II of Ref. [23].
In particular, such an “apples-to-apples” comparison may al-
low for somewhat larger fireball lifetimes τ and/or emission
durations ∆τ than quoted in Ref. [23]. While such an im-
proved blast-wave model fit is numerically expensive and out-
side the scope of the present paper, it may be a worthwhile
future project.

VI. HBT RADII FROM HYDRODYNAMICS

Non-viscous (“ideal”) hydrodynamical calculations have
successfully reproduced differential momentum spectra (at

least perpendicular to the beam direction) at RHIC, including
their anisotropies in non-central collisions and the dependence
of these anisotropies on the masses of the emitted hadrons [9].
As in the blast-wave model calculations, very strong collective
flow is a critical ingredient to reproduce the data. (Of course,
in the blast-wave parameterization such flow is put in by hand
while it arises naturally in the hydrodynamical model.)

Most (but not all [11–13, 15, 16]) hydrodynamic predic-
tions of HBT radius parameters have been based on calcu-
lations of the spatial RMS variances from the hydrodynami-
cally generated emission function, using Eqs. (6) [9, 10]. In
spite of the hydrodynamic model’s impressive success in de-
scribing hadron spectra, these predictions of HBT radii were
a failure: The calculated longitudinal radii Rl were too large
(although this problem was less severe in Hirano and Tsuda’s
work [15]), while the predicted sideward radius Rs was too
small, and both Rs and Ro showed much less dependence on
KT in theory than seen in the data. This, together with similar
failures by other dynamical models (see [1] for a review), has
become known as the “RHIC HBT Puzzle”.

Various possibilities to explain and correct this failure have
been suggested. They include a more realistic modeling of the
final freeze-out stage [28], exploration of fluctuations in the
initial state and ambiguities in the hydrodynamic decoupling
criterion [29], viscous effects due to incomplete thermaliza-
tion (i.e. inapplicability of ideal fluid dynamics) [30], dif-
ferent (more Landau-type) initial conditions leading to strong
longitudinal hydrodynamic acceleration [31], and the use of
more realistic or different equations of state (EoS) for the ex-
panding matter [32]. None of these suggestions, individually
or in combination, has been convincingly shown to be able
to solve the HBT puzzle. Motivated by the blast-wave study
in the preceding section, we therefore explore here one fur-
ther possibility: that previous comparisons of the data with
hydrodynamic models might have been misleading since the
RMS variances from hydro-generated sources differ signifi-
cantly from HBT radii extracted from a Gaussian parameter-
ization of the correlation function. Indications that this is in-
deed the case have already emerged from the work on 1D pro-
jections of Hirano and Tsuda [15] and Kolb [14], and with our
new analytic 3D Gaussian fit algorithm we can improve on
their analysis and study this question in more detail.

For our study of HBT radii from the hydrodynamic model
we use two different sets of emission functions, obtained from
running the hydrodynamic code with two different equations
of state (EoS). Both EoS describe the quark-gluon plasma
(QGP) as a free gas of massless particles, but they differ
in their treatment of the late hadronic stage when the fire-
ball has cooled below the critical temperature Tc≈165 MeV
for hadronization. The “CE EoS” [33, 34] assumes that the
hadron resonance gas remains not only in thermal, but also in
chemical equilibrium until final kinetic freeze-out. This fails
to reproduce the observed hadron yields which correspond to
chemical equilibrium at a temperature of about 170 MeV [35].
The “NCE EoS” [15, 36, 37] takes the immediate decoupling
of hadron abundances at Tc into account by introducing non-
equilibrium chemical potentials for each hadron species which
ensure that the particle yields are held fixed as the temperature
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and density continue to decrease. While the CE EoS was used
for the hydrodynamic model predictions made for RHIC be-
fore the accelerator turned on and the hadron abundances were
measured, the NCE EoS is more realistic and has been used
in most hydrodynamic studies since 2002. We here explore
emission functions obtained with either EoS.

Figures 10-12 present 1D projections and 1D and 3D fit
results, analogous to those from the previous section, for the
emission function from hydrodynamic calculations using the
CE EoS. Figs. 13-15 show the same for the NCE EoS. Several
observations are in order.

As is apparent from Figs. 10 and 13, the best 3D Gaussian
fits do not fully reproduce the correlation function, even
though the correlation function projections themselves appear
rather Gaussian. Clearly, aspects of the correlation function
not apparent in the one-dimensional projections are partially
driving the 3D fit. Further, it is interesting to note that, while
the projections in the “side” direction appear the worst re-
produced by the fit, the greatest discrepancy between RMS
variances and HBT radii are in fact in the “out” and “long”
directions (c.f. Figs. 12 and 15). Both of these points empha-
size that the three-dimensional correlator can contain impor-
tant information which does not appear in its one-dimensional
projections, and thus in the one-dimensional fits. Particularly
important in this case are strong non-Gaussian features in the
longitudinal direction which cause a significant suppression
of the correlation strength parameter λ of the 3D Gaussian fit.
This in turn creates the appearance of a “bad fit” in the side-
ward direction even though the 1D sideward projection looks
quite Gaussian itself.

One draws the same conclusion by examining the fit-range
systematics. As mentioned, non-Gaussian effects generate a
variation of the HBT parameters with qmax. In the three-
dimensional fits (c.f. Figs. 11 and 14), the strong non-
Gaussian features in the ql direction now affect all four fit
parameters, generating strong fit-range sensitivities also for
Ro and λ.

There may (and in general will) be other properties of the
three-dimensional correlation function to which the 1D pro-
jections and their Gaussian fits are not sensitive but which
affect the 3D Gaussian fit. The extracted values for Ro and
Rs thus in general depend significantly on the detailed con-
ditions under which the Gaussian fit is performed. Hence, a
meaningful and accurate comparison between models and ex-
perimental data requires that the Gaussian fit to the theoreti-
cal correlation functions is done under similar conditions and
constraints (e.g. fit range) as the in experiment.

VII. DISCUSSION AND CONCLUSIONS

Let us close with some general observations and summarize
our conclusions.

Except inasmuch as it couples HBT radii in a 3D fit, we
have not focused here on the λ parameter, since comparison
to measurements of λ is significantly complicated by exper-
imental artifacts [1]. This is also the reason why tests of
consistency between different experiments generally compare
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FIG. 10: (Color online) Solid (red) curves show one-dimensional
slices of the three-dimensional correlation function calculated with
Eq. (3) from the hydrodynamic model with CE Equation of State, for
midrapidity pions with KT = 0.3 GeV/c. Dashed (blue) curves show
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“HBT parameters” calculated from the analytic expressions given in
Sec. III B.
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HBT radii, not λ. In all of the idealized calculations pre-
sented in this report C(|qqq|=0)=2, so a purely Gaussian corre-
lation function (generated by a purely Gaussian source) would
yield λ=1, with no fit-range systematics. Indeed, we find that
limqmax→0 λ=1 (see e.g. Fig. 11) as expected, but that its value
declines as more bins are included in the fit. In experimental
data, several factors cause λ to fall below its nominal value
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Eq. (3) from the hydrodynamic model with NCE Equation of State,
for midrapidity pions with KT = 0.3 GeV/c. Dashed (blue) curves
show slices of the three-dimensional Gaussian form of Equation (5),
with “HBT parameters” calculated from the analytic expressions
given in Sec. III B.

of unity. Our calculations confirm the generally held folklore
that non-Gaussian effects may be important to understanding
λ.

Of more fundamental interest are the characteristic length
scales of the emission region. We have seen that RMS vari-
ances of model-calculated source functions, which are fre-
quently compared to experimentally extracted HBT radii, may
systematically differ from “fitted” HBT radii which character-

ize the shape of the correlation function from the same model.
Since the latter quantity provides the best “apples-to-apples”
comparison to published experimental data, this can be an im-
portant observation.

Previous attempts [14, 15, 21] to estimate the effect in hy-
drodynamical calculations have focused on numerical fits to
several one-dimensional projections of the calculated correla-
tion function. We here presented an analytic method to extract
these “1D HBT radii” from the projections, and further gener-
alized it to the full three-dimensional case. The 1D projections
represent a set of zero measure of the full three-dimensional
correlation function and, as we have seen, may not be sensitive
to important three-dimensional information. This information
influences the unified three-dimensional fit to the correlation
function. Since the unified 3D fit most closely mimics the
procedure of experimentalists, these effects are relevant for
comparisons between models and data.

The magnitude of these effects are model dependent. The
non-Gaussian nature of emission regions in the blast-wave pa-
rameterization has been noted before [23]. It was shown here
to generate only minor deviations from Gaussian behaviour in
the transverse projections of the correlation function, but the
longitudinal projection shows significant non-Gaussian fea-
tures. In a unified 3D Gaussian fit, non-Gaussian features
were seen to generate fit-range sensitivities for all four fit-
parameters, leading to significant downward shifts of both Rl
and Ro, especially at low KT , relative to predictions based on
the spatial RMS variances of the blast-wave source.
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These tendencies were found to be even more strongly ex-
hibited by the HBT radii extracted from hydrodynamic model
sources. The differences between HBT radii extracted from
3D Gaussian fits of the correlator and the values (6) calcu-
lated from the spatial RMS variances are quite significant and
thus relevant in considerations of the “RHIC HBT puzzle”.
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In particular, for both equations of state considered here, the
HBT radii in the “out” and “long” directions are significantly
lower (and closer to the data) than the corresponding RMS
variances which have been the basis of many “puzzle” discus-
sions (c.f. Figs. 12 and 15). As in the blast-wave model, these
3D Gaussian fit effects seem to be mostly driven by strong
non-Gaussian features in the longitudinal projection of the
correlator. Combining improvements of using the NCE EoS
and the use of HBT radii instead of RMS variances brings
the hydrodynamic calculations for the longitudinal radius Rl
into fair agreement with the data over the entire measured KT
range. A significant improvement is also seen in the outward
direction, but it is mostly concentrated at low KT , and hence
the disagreement between the rather steep KT -dependence of
the measured Ro radii and the much flatter KT -dependence of
the theoretical results is getting worse. The fitted sideward
radii Rs show practically no deviation from the corresponding
RMS variances, and the well-known [10] problem that the hy-
drodynamically predicted values are significantly smaller and
show much less KT -dependence than the data is not alleviated
by our improved comparison between theory and data.

While the results presented here cannot offer a resolution
of all aspects of the “RHIC HBT Puzzle”, they refocus our

perception of where the most severe problems are located.
The strong non-Gaussian effects in ql direction and the re-
sulting large downward shift of the fitted longitudinal radii
(as compared to the corresponding RMS variances) largely
eliminate the discrepancies between hydrodynamically pre-
dicted and measured Rl values. A number of authors have
interpreted the smallness of the measured Rl values as evi-
dence for a short fireball lifetime τ f <10 fm/c, inconsistent
with the O(15fm/c) lifetimes predicted [9] by the hydrody-
namic model. The analysis presented here resolves this prob-
lem. On the other hand, even when using the properly ex-
tracted Gaussian fit values for Rs and Ro and after taking into
account the resulting decrease of Ro at low KT , the theoreti-
cally predicted ratio Ro/Rs is still significantly larger than 1
over the entire measured KT interval, in contradiction to the
data. Furthermore, the decline of both Ro and Rs with increas-
ing pair momentum is still much too weak in the model, in
spite of the large transverse flow generated by the hydrody-
namic expansion. These aspects of the HBT Puzzle remain
serious and must be addressed by other theoretical improve-
ments.

Finally, one should remember that the raw experimental
correlation functions hardly ever appear very Gaussian, due
to additional distortions by the final state Coulomb interac-
tions between the two charged particles. Modern methods of
extracting the HBT radii from the measured correlator include
these Coulomb effects selfconsistently in the fit function [1],
leading to more complicated (numerical) fit algorithms than
the analytical one presented in Section III. Nonetheless, the
measured HBT radii extracted from such self-consistent 3D
fits are affected by non-Gaussian structures in the underlying
Bose-Einstein correlations in much the same way as discussed
here for the simpler case of non-interacting particles. Thus,
while Coulomb interactions should be included in future stud-
ies, our analysis should provide a good estimate of the direc-
tion and magnitude of non-Gaussian effects in blast-wave and
hydrodynamical models, and it points out the importance of
such effects in the comparison of theory to experiment.
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