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We investigate the possibility that charged compact objects could be the accelerators of high energy cosmic
rays. In order to do so, we choose to first solve numerically a system of differential equations describing
the structure of charged compact objects, including the generalization of the Tolman-Oppenheimer-Volkoff
equation for this class of objects. We assume a polytropic equation of state for the fluid and, for simplicity, a
linear relation between charge density and the fluid energy density. We obtain upper limits for the charge such
objects can acquire and study the stability of these equilibrium configurations.
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I. INTRODUCTION

The possibility that stars could actually contain a non-
vanishing net charge was first pointed out by Rosseland [1]
in 1924. He modeled the star as a gas of positive ions and
electrons and concluded that, due to their greater kinetic en-
ergy, the electrons tend to escape from the star more often
than the ions. The star will then acquire a net positive charge.
The process will be carried on until the electric field induced
in the star stops more electrons from escaping. Harrison and
Bally [2] further showed that the maximum electric charge a
star can acquire through this process should be∼ 100(M/M¯)
C.

Recently other mechanisms to induce electric charge into
compact objects, in particular into black holes, have been pro-
posed. In this paper it is not our concern to study these mecha-
nisms. We intend only to study the effects charge would cause
on these objects, and their potential applicability in accelera-
tion of cosmic rays to very high energies.

The highest energy cosmic rays we detect on Earth reach us
with∼ 1020 eV. A naı̈ve energy conservation estimation of the
charge Q a compact object must enclose in order to produce
an electric field capable of accelerating a proton to this energy
provides:

Q∼ 1019(r/R¯) C, (1)

where we assume the ideal case of no losses during propaga-
tion and r is the distance of closest aproximation between the
object an the proton.

To get a feeling about this value, which, for ordinary sit-
uations, is very high compared to the ∼ 100(M/M¯) C, we
analyze a typical constraint on the charge a black hole can
have, by demanding that the singularity is not naked. In the
Reissner-Nordstrøm spacetime, this requirement sets Q2 ≤
M2 and the maximum charge a black hole can have is:

Qmax ∼ 1020(M/M¯) C. (2)

If a black hole could really acquire such a huge charge and
stay stable, it would be a very strong candidate for an high
energy cosmic ray accelerator.

In this work we study what effects a non-vanishing net
charge could cause in the structure of compact stars in gen-
eral. We also analyze the stability of such charged objects,
trying to determine if they could really exist in a stable con-
figuration in nature.

II. THE STRUCTURE OF CHARGED COMPACT STARS

The generalization of the Tolman-Oppenheimer-Volkoff
equation for a charged star was proposed in 1971 by Beken-
stein [3], who also pointed out many arguments against the
stability of such stars. Most of the formalism shown in this
section is on the format presented by Ray et al. [4], whose
results we wanted to reproduce at first.

We take the line element for a spherically symmetric and
static star:

ds2 = eνc2dt2− eλdr2− r2(dθ2 + sin2 θdφ2) (3)

and model the matter inside the star as a perfect fluid plus an
electromagnetic field:

T µ
ν =

(
P+ε)uµuν−Pδµ

ν +
1

4π

(
FµαFαν− 1

4
δµ

νFαβFαβ
)

, (4)

where P is the pressure, ε is the energy density of the fluid and
the electromagnetic tensor is given by:

Fαβ =
∂Aβ

∂xα −
∂Aα

∂xβ , (5)

satisfying Maxwell’s equations:

1√−g
∂

∂xβ (
√−gFαβ) = 4π jα. (6)

Next we solve Einstein’s equations, using the following quan-
tities:

• A spherical surface of radius r, within the star, presents
an electric field given by:

E(r) =
1

ε0r2

∫ r

0
r′2ρcheλ/2dr′. (7)
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• It encloses an electric charge:

Q(r) =
∫ r

0
r′2ρcheλ/2dr′, (8)

where ρch is the star’s charge density.

• The star’s mass inside a spherical shell of radius r is
therefore:

M(r) =
4π
c2

∫ r

0
r′2

(
ε+

ε0E2

2

)
dr′. (9)

The (00) component of Einstein’s equations gives:

e−λ

r2

(
r

dλ
r
−1

)
+

1
r2 =

8πG
c4

(
ε+

ε0E2

2

)
, (10)

which can be rewritten in the following form:

d
dr

[
r
(
1− e−λ)] =

8πG
c4 r2

(
ε+

ε0E2

2

)
. (11)

Integrating with respect to r, we obtain:

e−λ =−2G
c2r

M(r)+1. (12)

Using these expressions, the four differential equations for
the equilibrium of charged stars turn out to be the aforemen-
tioned generalized Tolman-Oppenheimer-Volkoff equation:

dP
dr

=−
G

[
M +4πr3

(
P
c2 − ε0E2

2c2

)]
(ε+P)

c2r2
(

1− 2GM
c2r

) +ρchEeλ/2, (13)

and

dE
dr

=−2E
r

+
ρcheλ/2

ε0
, (14)

dM
dr

= 4πr2
(

ε
c2 +

ε0E2

2c2

)
, (15)

dλ
dr

=
8πG
c2 reλ

(
ε
c2 +

ε0E2

2c2

)
−

(
eλ−1

r

)
. (16)

Since we have 6 variables, P, E, M, λ, ρch and ε, and 4
equations, we need two other equations in order to solve the
system of eqs. (13)-(16). One of them relates the charge den-
sity ρch and the fluid energy density ε. It is actually not easy to
guess what this relation should be, so we use, for simplicity,
the relation suggested by [4]:

ρch = f ε, f = const. (17)

A polytropic equation of state will play the role of the other
missing equation:

P = κ
(

ε
c2

)Γ
. (18)

We model the interior of the star as a non-relativistic Fermi
gas of nuclei and electrons [5]. In this case the exponent Γ is
5/3 and κ is given by:

κ =
~2

15πme

(
3π2Z
AmN

)5/3

. (19)

The value of the constant κ depends on the type of ions that
form the star. We again follow the steps of [4] and choose
κ = 0.05 fm8/3 (c = ~= 1), which corresponds in SI units to
κ = 8.7×103 kg−2/3m4/s2.

III. SOLVING THE EQUATIONS

Inserting eqs. (17) and (18) into eqs. (13)-(16) we end up
with a system of four coupled differential equations with four
variables, namely P(r), E(r), M(r) and λ(r), which can be
solved numerically. The boundary conditions are given by:

E(r = 0) = M(r = 0) = λ(r = 0) = 0 and P(r = 0)≡ Pc.
(20)

Here the boundary condition for λ arises from eqs. (12) and
(15), via L’Hôpital’s rule.
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FIG. 1: Total mass× total radius for different values of f (in units of
(MeV/fm3)1/2/km). The stars on the right side of the graphic have
the smallest values of Pc, while the ones on the left side have the
largest ones.

The parameters we have control over are Pc and f , the pro-
portionality constant in eq. (17), since we fix Γ = 5/3 and
κ = 0.05 fm8/3. For each pair (Pc, f ) there is a different solu-
tion.

The typical densities inside neutron stars are of the order of
the nuclear density:

ρnuc ' 1014 g/cm3. (21)

More compact objects such as black holes have densities of
a few orders of magnitude higher. We integrate the equations
for values of Pc within the range 5× 10−2 MeV/fm3 ≤ Pc ≤
5× 103 MeV/fm3, which corresponds to 1.5× 1013 g/cm3 ≤
ρc ≤ 1.5×1016 g/cm3.
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Figure 1 shows the total mass against the radius obtained
for stars with the Pc values specified and two different val-
ues of f . The case f = 0 corresponds to an uncharged
star. We see that the effects in the structure of the stars
due to the presence of charge begin to be important for
f ∼ 3× 10−4 (MeV/fm3)1/2/km. While testing various val-
ues of f , we found out that for values larger than f = 1.14×
10−3 (MeV/fm3)1/2/km all the dependent variables numeri-
cally diverge, making the system impossible to solve.

IV. RESULTS

Figure 2 shows the total charge enclosed by the stars against
their radius, obtained for the same range of Pc used in Fig-
ure 1. We see that these configurations yield charges of∼ 1020

C, much larger than the ∼ 100(M/M¯) C estimated to exist
due to the process described in section I.
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FIG. 2: Total charge × total radius.
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FIG. 3: Total electric field on the surface × radius inside the star.

Figure 1 shows that there is, for each value of f , a maxi-
mum mass star. The bevahior of the electric field inside this
maximum star is shown in Figure 3. Although the maximum

value of the electric field is achieved inside the star, its value
on the surface is still very large (∼ 1021 N/C).

The solutions of eqs. (13)-(16) are configurations in hydro-
static equilibrium but are not guaranteed to be stable, which
leads us to the next considerations.

A. Stability

A necessary condition for stability [5] is that, as the central
density increases, the configuration satisfying eqs. (13)-(16)
must be more massive, i.e.:

dM(ρc, f )
dρc

> 0. (22)

We found out that the more charged a star is, the smaller is
the number of stable configurations that can be achieved.
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FIG. 4: M× ρc × f . Configurations that appear in the portion of
the surface contained in the ρc×M plane that has positive slope are
stable.

This behavior goes on until f reaches its critical value,
above which there are no stable configurations at all. These
results are shown in Figure 4.

We see that the presence of charge can be associated with
instability, in the sense that it is less probable to achieve sta-
bility in charged stars than in neutral ones.

B. Charge regeneration

An interesting effect induced by the presence of charge is
the so called “charge regeneration” [3]. At the same time that
charge contributes to the expansion of the star (as can be seen
in Figures 1 and 2), it also contributes to its collapse, since it
increases the total mass (eq. (9)).

The contribution to the gravitational force will overwhelm
the contribution to expansion if:

∫ r

0
E2r′2dr′ > E2r3. (23)
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FIG. 5: Fraction o f the star su f f ering regeneration× f ×Pc.

We tested this condition in each step of the integration for
each pair (Pc, f ) studied. Results are shown in Figure 5. We
found out that regeneration can occur in some depths of the
star and not in others. The z axis of figure 5 represents this
feature, showing the percentage of the star that suffers regen-
eration.

Our attention was called to charge regeneration because we
thought it might be related to the stability issue and to the
critical value of f . But, comparing Figure 4 and 5, we see
that there is no correlation between the area where charge re-
generation occurs and the instability area. We also see from
Figure 5 that charge regeneration occurs for the highest values
of f , but depends on the value of Pc, while the critical value
for f is the same for all values of Pc.

C. The critical value for f

The existence of a critical value for f is reasonable, since
it is natural to expect a limit for the amount of charge matter
can hold. We do not know however if the value we obtained
numerically for this limit is physical. We can only say that
the equations cannot be solved for values of f greater than the
critical one. To get a feeling about the meaning of this value,

let us evaluate the hypothetical case of a star with total mass M
and total charge Q in equilibrium, with charge balancing the
gravitacional force. For an infinitesimal volume of the star’s
surface containing charge q and mass m:

kQq = GMm ⇒ kρ2
ch = Gρ2. (24)

For real stars pressure must be taken into account, so
eq. (24) should be rewritten as:

kρ2
ch < Gρ2, (25)

or

f <
( G

kc4

)1/2
= 1.15×10−3 1

km

(MeV
fm3

)1/2
. (26)

This value is suggestively close to the critical value we ob-
tained for f . We can therefore interpret it as representing the
proportion between charge and energy necessary to support a
star in the limiting case where there is no pressure. Since this
case is completely unrealistic, we should expect stars to have
much lower values for f .

V. CONCLUSION

We saw that, at least in principle, compact objects can hold
huge amounts of charge in stable configurations. But, as a
consequence, they have also huge electric fields on their sur-
face. These electric fields are three orders of magnitude larger
than the critical eletric field for pair production in vacuum:

Ecritical ∼ 1018 N/C, (27)

causing discharge of the objects.
Besides this one, other astrophysical mechanisms, such as

the interaction with a nearby plasma, might contribute as well
to the loss of charge. This seems to limit the usefulness of
these compact objects as realistic accelerators of high energy
cosmic rays.
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