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Gauge/String Duality and Hadronic Physics
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We review some recent results on phenomenological approaches to strong interactions inspired in gauge/string
duality. In particular, we discuss how such models lead to very good estimates for hadronic masses.
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I. INTRODUCTION

Let us start by briefly reviewing some early results on
strong interactions which lead to the proposal of string the-
ory. These results date back to the decade of 1960. The first
is the experimental observation, in hadronic scattering, of an
apparently infinite tower of resonances with mass and angular
momenta related by

J ∼ m2 α′ (1)

where α′ ∼ 1(GeV )−2 is the Regge slope.
Another important fact is that the properties of hadronic

scattering in the so called Regge regime are nicely described
by the amplitude postulated by Veneziano (in terms of Man-
delstan variables (s, t,u))

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)−α(t))
(2)

where Γ(z) is the Euler gamma function and α(s) = α(0)+
α′s.

A strong motivation for relating hadrons to strings is the
fact that these two results of eqs. (1) and (2) can be reproduced
from a relativistic bosonic string[1, 2]. A relativistic bosonic
string can be described by the action

S = − 1
4πα′

∫
dτdσ

√−ggab∂aXµ∂bXµ . (3)

After quantization, one finds that the spectrum of excitations
shows up in representations satisfying eq. (1). The string scat-
tering amplitudes also reproduce the Veneziano result eq. (2).

On the other hand, some problems concerning a possible
string description of hadronic physics have been a challenge
for physicists for a long time. One of them is the behavior
of the scattering amplitudes at high energy. If one considers
the Regge limit, corresponding to s → ∞ , with fixed t : the
Veneziano amplitude behaves as

A∼ sα(t) , (4)

where α(t) = α(0)+α′ t , in agreement with experimental re-
sults. Actually this was one of the inputs for building up the

Veneziano amplitude. However considering high energy scat-
tering at fixed angles that correspond to the limit s→ ∞ with
s/t fixed the amplitude behaves as (soft scattering)

AVen. ∼ exp{−α′s f (θ)} (5)

while experimental results for hadrons show a hard scattering
behavior

Aexp. ∼ s(4−∆)/2 , (6)

that is reproduced by QCD[3, 4].
As we will discuss later, this apparent obstacle to describing

strong interactions using string theory was solved recently by
Polchinski and Strassler[5].

In the mean time it was realized that string theory contains
massless spin two excitations that can be associated with the
graviton. This allows one to interpret string theory as a quan-
tum theory for gravity. In fact the symmetry groups for the
possible string theories are large enough to contain also all
the fields of the standard model. So presently string theory is
a candidate for a unified theory for all interactions.

In this review we are going to discuss recent results con-
cerning the relation between string theory and QCD. QCD has
been tested and confirmed with success in high energy exper-
iments. But QCD is non perturbative at low energies. Lat-
tice calculations give us very important results in this regime.
However it seems that we are still far from a complete descrip-
tion of the complexity of strong interactions. In particular,
important aspects like confinement and mass generation still
lack of a satisfactory description. Presently there are many in-
dications that string theory can be useful in the description of
strong interactions in the non perturbative regimes of QCD.

An early connection between SU(N) gauge theories (for
large N) and string theory was realized long ago by ’t
Hooft[6]. A few years ago a very important result was ob-
tained by Maldacena[7] relating string theory in anti-de Sit-
ter (AdS) space with gauge theories in Minkowski space.
He established a correspondence between string theory in
AdS5×S5 space-time and N = 4 superconformal Yang Mills
SU(N) theory for large N in its four dimensional boundary.
This is known as AdS/CFT correspondence[7–9].

In the AdS/CFT correspondence we have an exact duality
between a four dimensional gauge theory and string theory in
a ten dimensional space. However, in this formulation, the
gauge theory has no energy scale as it is conformal. There are
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many attempts to search for exact dualities involving gauge
theories more similar to QCD[10–13].

Although it involves a conformal gauge theory, the
AdS/CFT correspondence has been a very important source of
inspiration for searching QCD results from string theory. The
first idea of breaking conformal invariance in the AdS/CFT
context, proposed by Witten, is to consider an AdS Schwarz-
schild black hole as dual to a non-supersymmetric Yang Mills
theory[14]. This approach was used to calculate glueball
masses in [15–21].

II. QCD SCATTERING AND STRING THEORY

Recently Polchinski and Strassler[5] introduced an infrared
cut off in the AdS space and reproduced the hard scattering
behavior of strong interactions at fixed angles from string the-
ory. Inspired in the AdS/CFT correspondence they assumed a
duality between gauge theory glueballs and string theory dila-
tons in an AdS slice and found the QCD scaling.

This scaling was also obtained in [22] from a mapping be-
tween quantum states in AdS space and its boundary found in
[23]. We considered an AdS slice as approximately dual to a
confining gauge theory. The slice corresponds to the metric

ds2 =
R2

(z)2

(
dz2 +(d~x)2 −dt2

)
, (7)

with 0≤ z≤ zmax ∼ 1/µ where µ is an energy scale chosen as
the mass of the lightest glueball. We used a mapping between
Fock spaces of a scalar field in AdS space and operators on
the four dimensional boundary, defined in [23]. Considering
a scattering of two particles in m particles one finds a relation
between bulk and boundary scattering amplitudes[22]

SBulk ∼ SBound.

(√α′

µ

)m+2
K(m+2)(1+d) (8)

where d is the scaling dimension of the boundary operators
and K is the boundary momentum scale. This leads to the
result for the amplitude

ABoundary ∼ s(4−∆)/2 , (9)

where ∆ is the total scaling dimension of scattered particles.
This reproduces the QCD scaling of eq. (6).

For some other results concerning QCD scattering proper-
ties from string theory see also [24–30].

III. SCALAR GLUEBALL MASSES

Using the phenomenological approach of introducing an
energy scale by considering an AdS slice we found estimates
for scalar glueball mass ratios[31, 32]. In the AdS5 bulk we

took dilaton fields satisfying Dirichlet boundary conditions at
z = zmax

Φ(z,~x, t) =
∞

∑
p=1

∫ d3k
(2π)3

z2 J2(upz)

zmax wp(~k)J3(upzmax)

× {ap(~k) e−iwp(~k)t+i~k·~x + h.c.} ,

where wp(~k) =
√

u2
p +~k2 and the functions Jν with ν = 2,3

are Bessel functions of order ν . The momentum associated
with the z direction is

up =
χ2 , p

zmax
, (10)

where χ2 , p are the zeroes of the Bessel functions:
J2(χ2 , p) = 0 .

On the boundary (z = 0) we considered scalar glue-
ball states JPC = 0++ and their excitations 0++∗, 0++∗∗
with masses µp , p = 1,2, .... Assuming an approximate
gauge/string duality the glueball masses are taken as propor-
tional to the dilaton discrete modes:

up

µp
= const.

So, the ratios of glueball masses are related to zeros of the
Bessel functions

µp

µ1
=

χ2 , p

χ2 ,1
.

Note that these ratios are independent of the size of the slice
zmax . Our estimates compared with SU(3) lattice [33, 34] and
AdS-Schwarzshild [15] (in GeV) are shown in Table I.

4d State lattice, N = 3 AdS-BH AdS slice
0++ 1.61±0.15 1.61 1.61
0++∗ 2.8 2.38 2.64
0++∗∗ - 3.11 3.64
0++∗∗∗ - 3.82 4.64
0++∗∗∗∗ - 4.52 5.63
0++∗∗∗∗∗ - 5.21 6.62

TABLE I: Four dimensional glueball masses in GeV with Dirichlet
boundary conditions. The value 1.61 of the third and fourth columns
is an input taken from lattice results.

3d State lattice, N = 3 lattice, N → ∞ AdS-BH AdS slice
0++ 4.329±0.041 4.065±0.055 4.07 4.07
0++∗ 6.52±0.09 6.18±0.13 7.02 7.00
0++∗∗ 8.23±0.17 7.99±0.22 9.92 9.88
0++∗∗∗ - - 12.80 12.74
0++∗∗∗∗ - - 15.67 15.60
0++∗∗∗∗∗ - - 18.54 18.45

TABLE II: Three dimensional glueball masses in units of string ten-
sion with Dirichlet boundary conditions. The value 4.07 is an input
from lattice.
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Dirichlet lightest 1st excited 2nd excited
glueballs state state state

0++ 1.63 2.67 3.69
2++ 2.41 3.51 4.56
4++ 3.15 4.31 5.40
6++ 3.88 5.85 6.21
8++ 4.59 5.85 7.00
10++ 5.30 6.60 7.77

TABLE III: Higher spin glueball masses in GeV with Dirichlet
boundary condition. The value 1.63 is an input from lattice.

A similar approach was used also for glueball masses in
QCD3, taken as dual to scalar fields is AdS4. In this case the
Bessel functions are J3/2 and the mass ratios take the form

µp

µ1
=

χ3/2 , p

χ3/2 ,1
. (11)

Our results for QCD3 are shown in Table II, again compared
with lattice [33, 34] and AdS-Schwarzshild [15] results.

For some other results concerning glueball masses using
gauge/string duality see for instance [35–38].

IV. HIGHER SPIN STATES AND REGGE TRAJECTORIES

Recently, very interesting results for the hadronic spec-
trum were obtained by Teramond and Brodsky[39] consider-
ing scalar, vector and fermionic fields in a sliced AdS5 × S5

space. It was proposed that massive bulk states corresponding
to fluctuations about the AdS5 metric are dual to QCD states
with angular momenta (spin) on the four dimensional bound-
ary. This way the spectrum of light baryons and mesons has
been reproduced from a holographic dual to QCD inspired in
the AdS/CFT correspondence.

We used a similar approach to estimate masses of glueball
states with different spins[40]. The motivation was to com-
pare the glueball Regge trajectories with the pomeron trajec-
tories. For soft pomerons [41] experimental results show that

J ≈ 1.08 + 0.25M2 (GeV ) . (12)

It is conjectured that the soft pomerons may be related to
glueballs. Recent lattice results are consistent with this
interpretation[42].

We assume that massive scalars in the AdS slice with mass
µ are dual to boundary gauge theory states with spin J related
by:

(µR)2 = J(J +4) . (13)

We consider both Dirichlet and Neumann boundary condi-
tions and the results for the four dimensional glueball masses
with even spin are shown in tables III and IV respectively.

We found non linear relations between spin and mass
squared. We considered linear approximations representing
Regge trajectories

J = α0 + α′M2 . (14)

Neumann lightest 1st excited 2nd excited
glueballs state state state

0++ 1.63 2.98 4.33
2++ 2.54 4.06 5.47
4++ 3.45 5.09 6.56
6++ 4.34 6.09 7.62
8++ 5.23 7.08 8.66

10++ 6.12 8.05 9.68

TABLE IV: Higher spin glueball masses in GeV with Neumann
boundary condition. The value 1.63 is an input from lattice.

For Neumann boundary conditions for the states J++ with J =
2,4, ...,10 we found

α′ = (0.26±0.02)GeV−2 ; α0 = 0.80±0.40 ,
(15)

as shown in Figure 1.

5 10 15 20 25 30 35 40

2

4

6

8

10

M2 (GeV2)

J

FIG. 1: Spin versus mass squared for the lightest glueball states with
Neumann boundary conditions from table IV. The line corresponds
to the linear fit.

For Dirichlet boundary conditions, taking the states J++ with
J = 2,4, ...,10 we found a linear fit with

α′ = (0.36± 0.02)GeV−2 ; α0 = 0.32±0.36 ,
(16)

as shown in Figure 2.
So, Neumann boundary conditions give a glueball trajec-

tory consistent with that of pomerons, eq. (12). These
kind of boundary conditions appear in the Randall Sundrum
model[43] as a consequence of the orbifold condition.

V. WILSON LOOPS AND QUARK ANTI-QUARK
POTENTIAL

Confinement criteria for QCD can be discussed with the
help of Wilson loops which give the binding energy of the
system. Phenomenological results imply that the quark anti-
quark potential has the form
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FIG. 2: Spin versus mass squared for the lightest glueball states with
Dirichlet boundary conditions from table III. The line corresponds to
the linear fit.

ECornell(L) = −4
3

a
L

+ σL + constant , (17)

where , a = 0.39 and σ = 0.182GeV 2 .
In the AdS/CFT correspondence Wilson loops for a heavy

quark anti-quark pair in the conformal gauge theory can be
calculated from a static string in the AdS space[44, 45]. The
corresponding energy is a non confining Coulomb potential.

For an excellent review and extension to other metrics see
[46].

We calculated Wilson loops for a quark anti-quark pair in
D3-brane space finding different confining behaviors depend-
ing on the quark position[47].

Recently we calculated[48] the energy of a static string
in an AdS slice between two D3-branes with orbifold con-
dition. The energy for configurations with endpoints on a
brane grows linearly for large separation between these points.
The derivative of the energy has a discontinuity at some crit-
ical separation. Choosing a particular position for one of the
branes we find configurations with smooth energy. In the
limit where the other brane goes to infinity the energy has a
Coulombian behaviour for short separations and can be iden-
tified with the Cornell potential eq. (17). This identification
leads to effective values for the string tension, the position of
the infrared brane and the AdS radius

R =
√

a
3σC2

1
= 1.4 GeV−1 , (18)

where C1 =
√

2π3/2/[Γ(1/4)]2 .
These results suggest an approximate duality between static

strings in an AdS slice and a heavy quark anti-quark configu-
ration in a confining gauge theory.

For other interesting results concerning gauge/string duality
and QCD see for instance [49–59].
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