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Investigating the Tetraquark Structure of the New Mesons
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Using the QCD sum rule approach we investigate the vertex associated with the decay D0(0+) → D+π−,
where the scalar meson D0(0+) is considered as a four-quark state (cd)(ūd̄). Although our results for the
mass and partial decay width are smaller than the mass and the total decay width of the broad scalar meson
D∗0

0 (2308) reported by BELLE Collaboration, we can not discard the possibility that the BELLE’s resonance
can be interpreted as the four-quark state studied here.
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The recent observations of the very narrow resonances
D+

sJ(2317) by BaBar [1], D+
sJ(2460) by CLEO [2], and

X(3872) by BELLE [3], all of them with masses below quark
model predictions, have stimulated a renewed interest in the
spectroscopy of open charm and charmonium states. Due to
their narrowness and small masses, these new mesons were
considered as good candidates for four-quark states by many
authors [4]. The idea of mesons as four-quark states is not
new. Indeed, even Gell-Mann in his first work about quarks
had mentioned that mesons could be made out of (qq̄), (qqq̄q̄)
etc. [5]. The best known example of applying the idea of
four-quark states for mesons is for the light scalar mesons
(the isoscalars σ(500), f0(980), the isodublet κ(800) and the
isovector a0(980)) [6, 7]. In a four-quark scenario, the mass
degeneracy of f0(980) and a0(980) is natural, the mass hier-
archy pattern of the nonet is understandable, and it is easy to
explain why σ and κ are broader than f0(980) and a0(980).

In refs. [8, 9] the method of QCD sum rules (QCDSR) [10–
12] was used to study the two-point functions for the mesons
D+

sJ(2317) and X(3872) considering them as four-quark states
in a diquark-antidiquark configuration. The results obtained
for their masses are given in Table I.

Comparing the results in Table I with the resonance masses
given by: D+

sJ(2317) and X(3872), we see that it is possible to
reproduce the experimental value of the masses using a four-
quark representation for these states.

The study of the three-point functions related to the decay
widths D+

sJ(2317) → D+
s π0 and X(3872) → Jψπ+π−, using

the diquark-antidiquark configuration for DsJ and X , was done
in refs. [13, 14]. The results obtained for their partial decay
widths are given in Table II.

From Table II we see that the partial decay width obtained
in ref. [13], supposing that the mesons D+

sJ(2317) is a four-
quark state, is consistent with the experimental upper limit.
However, in the case of the meson X(3872), the partial decay
width obtained in ref. [14] is much bigger than the experimen-

TABLE I: Numerical results for the resonance masses

resonance DsJ X
mass (GeV) 2.32±0.13 3.93±0.15

TABLE II: Numerical results for the resonance decay widths

decay D+
sJ → D+

s π0 X → J/ψπ+π−
Γ (MeV) (6±2)×10−3 50±15

Γexp
tot (MeV) < 5 < 2.3

tal upper limit to the total width.
In ref. [14] some arguments were presented to reduce the

value of this decay width, by imposing that the initial four-
quark state needs to have a non-trivial color structure. In
this case, its partial decay width can be reduced to Γ(X →
J/ψπ+π−)) = (0.7± 0.2) MeV. However, that procedure
may appear somewhat unjustified and, therefore, more study
is needed until one can arrive at a definitive conclusion about
the structure of the meson X(3872).

In ref. [8], besides the four-quark state (cq)(s̄q̄) represent-
ing the meson D+

sJ(2317), it was also studied the configura-
tion (cq)(ūd̄) associated with a possible scalar meson that we
will call D(0+) (the 0+ stands for JP). The mass obtained
for this state is: mD(0+) = (2.22±0.21) MeV, in a very good
agreement with the prediction made in ref. [15] for the D(0+)
scalar meson: mD(0+) = (2.215±0.002) MeV. This value was
obtained in ref. [15] by supposing that the meson D(0+) is
the chiral partner of the meson D, with the same mass dif-
ference as the chiral pair D+

sJ(2317)−Ds. The authors of
ref. [15] have also evaluated the decay widths D+

sJ → D+
s π0

and D(0+) → Dπ± obtaining: Γ(D+
sJ → D+

s π0) = 21.5G2
A

keV and Γ(D(0+)→Dπ±) = 326G2
A MeV, where they expect

GA ∼ 1.
Here, we extend the calculation done in refs. [8, 13] to

study the vertex associated with the decay D0(0+)→ D+π−.
The QCDSR calculation for the vertex, D0(0+)D+π−, centers
around the three-point function given by

Tµ(p, p′,q) =
∫

d4xd4y eip′.x eiq.y〈0|T [ jD(x) j5µ(y) j†
0(0)]|0〉,

(1)
where j0 is the interpolating field for the scalar D0(0+) meson
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[8]:

j0 = εabcεdec
[
(dT

a Cγ5cb)(ūdγ5Cd̄T
e )

]
, (2)

where a, b, c, ... are colour indices and C is the charge con-
jugation matrix. In Eq. (1), p = p′ + q and the interpolating
fields for the π− and D+ mesons are given by:

j5µ = ūaγµγ5da, jD = id̄aγ5ca. (3)

The calculation of the phenomenological side proceeds by
inserting intermediate states for D, π and D(0+), and by using

the definitions: 〈0| j5µ|π(q)〉 = iqµFπ, 〈0| jD|D(p′)〉 = m2
D fD
mc

,
〈0| j0|D(0+)(p)〉= λ0. We obtain the following relation:

T phen
µ (p, p′,q) =

λ0m2
D fDFπ gD(0+)Dπ/mc

(p2−m2
D(0+))(p′2−m2

D)(q2−m2
π)

qµ

+continuum contribution , (4)

where the coupling constant, gD(0+)Dπ, is defined by the on-
mass-shell matrix element: 〈Dπ|D(0+)〉= gD(0+)Dπ. The con-

tinuum contribution in Eq.(4) contains the contributions of all
possible excited states.

In the case of the light scalar mesons, considered as
diquark-antidiquark states, the study of their vertices func-
tions using the QCD sum rule approach at the pion pole
[11, 12, 16], was done in ref.[17]. It was shown that the de-
cay widths determined from the QCD sum rule calculation
are consistent with existing experimental data. Here, we fol-
low refs. [13, 17] and work at the pion pole. The main rea-
son for working at the pion pole is that one does not have
to deal with the complications associated with the extrapola-
tion of the form factor [18]. The pion pole method consists
in neglecting the pion mass in the denominator of Eq. (4) and
working at q2 = 0. In the OPE side one singles out the leading
terms in the operator product expansion of Eq.(1) that match
the 1/q2 term. Since we are working at q2 = 0, we take the
limit p2 = p′2 and we apply a single Borel transformation to
p2, p′2 → M2. In the phenomenological side, in the structure
qµ we get [13]:

T phen(M2) =
λ0m2

D fDFπ gD(0+)Dπ

mc(m2
D(0+)−m2

D)

(
e−m2

D/M2 − e
−m2

D(0+)
/M2

)
+A e−s0/M2

+
∫ ∞

u0

ρcc(u) e−u/M2
du, (5)

where A and ρcc(u) stands for the pole-continuum transitions and pure continuum contributions, with s0 and u0 being the
continuum thresholds for D(0+) and D respectively. For simplicity, one assumes that the pure continuum contribution to the
spectral density, ρcc(u), is given by the result obtained in the OPE side. Therefore, one uses the ansatz: ρcc(u) = ρOPE(u). In
Eq.(5), A is a parameter which, together with gD(0+)Dπ, has to be determined by the sum rule.

In the OPE side we single out the leading terms proportional to qµ/q2. Transferring the pure continuum contribution to the
OPE side, the sum rule for the coupling constant, up to dimension 7, is given by:

C
(

e−m2
D/M2 − e

−m2
D(0+)

/M2
)

+A e−s0/M2
= 2〈q̄q〉

[
1

24π2

∫ u0

m2
c

du e−u/M2
u
(

1− m2
c

u

)2

− mc〈q̄q〉
6

e−m2
c/M2

]
, (6)

with

C =
λ0m2

D fDFπ

mc(m2
D(0+)−m2

D)
gD(0+)Dπ. (7)

In the numerical analysis of the sum rules, the values
used for the meson masses, quark masses and condensates
are: mD(0+) = 2.2 GeV, mD = 1.87 GeV, mc = 1.2 GeV,
〈q̄q〉 = −(0.23)3 GeV3. For the meson decay constants we
use Fπ =

√
2 93MeV and fD = 0.20 GeV [19]. We use

u0 = 6 GeV2 and for the current meson coupling, λ0, we
are going to use the result obtained from the two-point func-
tion in ref. [8]. Considering 2.6 ≤ √

s0 ≤ 2.8 GeV we get
λ0 = (3.3±0.3)×10−3 GeV5.

In Fig. 1 we show, through the dots, the right-hand side
(RHS) of Eq.(6) as a function of the Borel mass. We use

the same Borel window as defined in ref.[8]. To deter-
mine gD(0+)Dπ we fit the QCDSR results with the analyti-
cal expression in the left-hand side (LHS) of Eq.(6). Us-
ing

√
s0 = 2.7GeV we get: C = 1.25× 10−3 GeV7 and

A = 1.47×10−3 GeV7. Using the definition of C in Eq.(7) and
λ0 = 3.3×10−3 GeV5 (the value obtained for

√
s0 = 2.7GeV)

we get gD(0+)Dπ = 6.94 GeV. Allowing s0 to vary in the
interval 2.6 ≤ √

s0 ≤ 2.8 GeV, the corresponding variation
obtained for the coupling constant is 5 GeV ≤ gD(0+)Dπ ≤
7.5 GeV.

The coupling constant, gD(0+)Dπ, is related to the partial de-
cay width through the relation:

Γ(D0(0+)→ D+π−)



58 Brazilian Journal of Physics, vol. 37, no. 1, March, 2007

1 1.2 1.4 1.6 1.8 2
M

2
(GeV

 2
)

0.0e+00

5.0e−05

1.0e−04

1.5e−04

R
H

S
 X

 L
H

S
 (

G
eV

7 )

FIG. 1: Dots: the RHS of Eq.(6), as a function of the Borel mass.
The solid line gives the fit of the QCDSR results through the LHS of
Eq.(6).

=
1

16πm3
D(0+)

g2
D(0+)Dπ

√
λ(m2

D(0+),m
2
D,m2

π), (8)

where λ(a,b,c) = a2 + b2 + c2− 2ab− 2ac− 2bc. Allowing
s0 to vary in the range discussed above we get:

Γ(D0(0+)→ D+π−) = (120±20)MeV. (9)

In Table III we show the partial decay width obtained in
ref. [15], in ref. [13] and here for different decays. From the

results in Table III we see that if one uses GA = 0.6, the result
presented here and the result in ref. [13] are consistent with
the results presented in ref. [15] for both decays.

Table III: Numerical results for the resonance partial decay widths
from different approaches

decay ref. [15] ref. [13] this work
D+

sJ → D+
s π0 21.5 G2

A keV (6±2) keV
D0(0+)→ D+π− 326 G2

A MeV 120±20 MeV

It is important to notice that the BELLE Collaboration [20]
has reported the observation of a rather broad scalar meson
D∗0

0 (2308) in the decay mode D∗0
0 (2308)→ D+π− with a to-

tal width Γ ∼ 270 MeV. Although both, the mass and the
total decay width reported in [20], are bigger than the values
found for the meson D(0+) studied here, we can not discard
the possibility that the BELLE’s resonance can be interpreted
as a four-quark state.

We have presented a QCD sum rule study of the ver-
tex function associated with the strong decay D0(0+) →
D+π−, where the scalar D(0+) meson was considered as
diquark-antidiquark state. We get for the partial decay width:
Γ(D0(0+)→ D+π−) = (120±20) MeV.
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