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We present a review of our numerical studies of the running coupling constant, gluon and ghost propagators,
ghost-gluon vertex and ghost condensate for the case of pure SU(2) lattice gauge theory in the minimal Landau
gauge. Emphasis is given to the infrared regime, in order to investigate the confinement mechanisms of QCD.
We compare our results to other theoretical and phenomenological studies.
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I. INTRODUCTION

The strong force — one of the four fundamental interac-
tions of nature along with gravity, electromagnetism and the
weak force — is the force that holds together protons and
neutrons in the nucleus. The strong interaction is described
by Quantum Chromodynamics (QCD) [1]. This description
is based on a model of elementary particles — the quarks
— possessing “color charge” and interacting through the ex-
change of gauge fields — the gluons (equivalent to the pho-
tons in the electromagnetic interaction). QCD is a quantum
field theory, with local SU(3) gauge symmetry, correspond-
ing to three possible colors. The fact that the gauge group
of QCD is non-Abelian implies that the gluons possess color
charge and therefore interact with each other, as opposed to
the photons. The only parameters of the theory are the masses
of the various types (called “flavors”) of quarks considered
and the value of the strong coupling constant.

A unique feature of the strong force is that the particles
that feel it directly — quarks and gluons — are completely
hidden from us, i.e. they are never observed as free particles.
This phenomenon, known as confinement, makes QCD much
harder to handle theoretically than the theories describing the
weak and electromagnetic forces. Indeed, the coupling con-
stant αs of the strong interaction becomes negligible only in
the limit of small distances, or equivalently in the limit of high
energy or momentum. This property is called asymptotic free-
dom. At larger distances (i.e. smaller energies) there is an in-
crease in the intensity of the interaction and it is believed that
the force of attraction between quarks is constant, for suffi-
ciently large distances, determining the confinement of quarks
and gluons inside the hadrons. The fact that αs is not negli-
gible at low energies makes the study of important phenom-
ena such as the mechanism of quark and gluon confinement,
the hadron mass spectrum and the deconfining transition at
finite temperature inaccessible to calculations using perturba-
tion theory. These phenomena must therefore be studied in a
nonperturbative way.

The nonperturbative study of QCD is possible in the lattice
formulation of the theory, introduced by Wilson in 1974 [2].
This formulation offers a convenient nonperturbative regular-
ization, preserving the theory’s gauge invariance. The essen-
tial ingredients for the lattice formulation are: 1) path-integral
quantization, 2) continuation to imaginary or Euclidean time

and 3) lattice regularization (given by the discretization of
space-time). The combination of the first two ingredients
makes the theory equivalent to a model in classical statistical
mechanics: indeed, in Euclidean space a path integral for the
quantum theory is equivalent to a thermodynamic average for
the corresponding statistical mechanical system. For QCD,
the square of the bare coupling constant g0 of the field theory
corresponds directly to the temperature 1/β of the statistical
mechanical model.

The third ingredient — the lattice discretization — repre-
sents an ultraviolet regularization. In fact, the lattice spac-
ing a corresponds to a high-momentum cutoff, since momenta
higher than ∼ 1/a cannot be represented on the lattice. In this
way the ultraviolet divergences, appearing in the calculation
of physical quantities, are suppressed and the theory is well
defined. Of course, in order to recover the continuum-space
theory we must take the limit a→ 0. In this process it is nec-
essary to “tune” the bare parameters of the theory in such a
way that physical quantities converge to finite values, which
can then be compared to experiment. In particular, in the limit
a → 0, a correlation length ξ measured in units of the lattice
spacing, i.e. ξ/a, must go to infinity. In other words, the lat-
tice theory considered must approach a critical point, i.e. a
second-order phase transition. Thus, the study of the contin-
uum limit in quantum field theories on the lattice is analo-
gous to the study of critical phenomena in statistical mechan-
ics. The correspondence between Euclidean field theories and
classical statistical mechanics allows the application of usual
statistical-physics methods to the study of QCD. In particu-
lar, one may perform numerical simulations by Monte Carlo
methods, which are based on a stochastic description of the
systems considered [3].

Despite the similarity of the methods, the Monte Carlo sim-
ulation of gauge theories is much more complex than in the
case of the usual statistical mechanical models, requiring great
computational effort and specific numerical techniques for the
production of the data. Moreover, we must consider three lim-
its in order to obtain the desired physical results from the sim-
ulation data: 1) the infinite-volume limit (or thermodynamic
limit), 2) the continuum limit (i.e. the value of a must be suf-
ficiently small when compared to the relevant distance for the
problem) and 3) the chiral limit (in order to consider physical
values for the masses of the light quarks). The above limits
are not independent, since to get to the continuum limit and
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to be able to consider small masses for the quarks one needs
a sufficiently large number of lattice points (corresponding to
a small enough lattice spacing and to a large enough physical
size of the lattice), which increases considerably the compu-
tational effort.

The study of lattice QCD constitutes a so-called Grand
Challenge computational problem [4]. Indeed, simulations
of full QCD — i.e. including effects of dynamical fermi-
ons — for quark masses in the region of physical values
are still extremely slow and they are in general carried out
on supercomputers, involving the effort of large collabora-
tions such as the UKQCD in the United Kingdom and the
JLQCD in Japan. Also, several research groups have built
QCD-dedicated computers, using parallel architecture. Ex-
amples are the Hitachi/CP-PACS machine at the University
of Tsukuba in Japan [5], the QCDSP and QCDOC machines at
Columbia University in the USA [6], and the APE machines
[7] at various research centers in Europe. These computers
range from about 1 to 10 teraFLOPS . In addition to these
large projects, many groups base their simulations on clus-
ters of workstations or personal computers (PC’s) [8]. These
systems do not yet provide the same efficiency in paralleliza-
tion as the machines with parallel architecture, but their cost
is much lower. In addition to the computational power, the
numerical and analytical techniques used in the simulations
and in the interpretation of the produced data are of great im-
portance in the field. Significant progress has been achieved
through the development of more efficient simulation algo-
rithms, new methods for interpolation and extrapolation of
the numerical data and a better understanding of the system-
atic effects to which the simulation may be subject, such as
finite-volume effects and discretization errors. Progresses in
the field are reported annually at the Lattice conference [9].

Despite the great computational difficulty, numerical stud-
ies of QCD have already provided important contributions to
the study of the strong force [10]. In particular, numerical
simulations of QCD are now able to produce calculations of
the strong coupling constant αs(µ0), taken at a fixed reference
scale µ0, with precision comparable to the experimental one or
better [11]. These results are presently included in the world
average for this quantity [12]. Also, the mass spectrum of the
light hadrons (including the two light quarks and the strange
quark) has been determined (with great precision) [13] for the
quenched case, in which the configurations are produced with-
out considering effects of dynamical quarks. One does not
obtain complete agreement with the experimental spectrum,
but the observed discrepancies are of at most 10%. Similar
calculations are now being performed for the full-QCD case.
Finally, lattice simulations constitute the only known evidence
for the quark-deconfining transition at finite temperature [14]
and its predictions are of direct interest for the current exper-
iments in search of new states of matter in the laboratories
Brookhaven and CERN.

There is presently great interest in the results of the simula-
tions described above and one hopes to be able to solve many
theoretical questions about QCD and the standard model
[15]. Indeed, lattice-QCD simulations are now able to pro-
vide quantitative predictions with errors of a few percent.

This means that these simulations will soon become the main
source of theoretical results for comparison with experiments
in high-energy physics [16], enabling a much more complete
understanding of the physics of the strong force.

A. Lattice QCD at the IFSC–USP

Since the beginning of 2001 we have been carrying out a
project on numerical simulations of lattice gauge theories at
the Physics Department of the University of São Paulo in São
Carlos (IFSC–USP), funded by FAPESP [17]. The project
included the installation of 2 PC clusters (with a total of 28
processing nodes). The resulting computer power is of ap-
proximately 40 gigaFLOPS for peak performance. We have
performed production runs since July of 2001 and have started
intensive parallel simulations in November 2002. Our main
research topic (see Sections II–VII below) is the investigation
of the infrared behavior of various propagators and vertices in
Landau gauge with the goal of verifying the so-called Gribov-
Zwanziger confinement scenario [18, 19]. In order to reduce
the computational cost of the simulations, we consider the
pure SU(2) gauge theory, including studies in three (instead
of the usual four) space-time dimensions.

Besides the topics described below, we also carry out nu-
merical studies of: gauge-fixing algorithms [20], Gribov-copy
effects [21], the chiral phase transition of QCD with two dy-
namical fermions [22], the equation of state of spin models
with Goldstone modes [23], cluster percolation [24] and short-
time dynamics for spin models [25].

II. CONFINEMENT SCENARIOS IN LANDAU GAUGE

As said above, the study of the infra-red (IR) limit of QCD
is of central importance for understanding the mechanism of
confinement and the dynamics of partons at low energy. De-
spite being non-gauge-invariant, gluon and ghost propagators
are powerful tools in the (non-perturbative) investigation of
this limit [26, 27]. In fact, according to the Gribov-Zwanziger
[18, 28, 29] and to the Kugo-Ojima [30] confinement scenar-
ios in Landau gauge, the ghost propagator must show a diver-
gent behavior in the IR limit — stronger than p−2 — for van-
ishing momentum p. This strong IR divergence corresponds
to a long-range interaction in real space, which may be re-
lated to quark confinement. At the same time, according to
the former scenario, the gluon propagator must be suppressed
and may go to zero in the IR limit [18, 28, 29, 31]. This would
imply that the real-space gluon propagator is positive and neg-
ative in equal measure, i.e. reflection positivity is maximally
violated [32, 33]. As a consequence, the Euclidean 2-point
function cannot represent the correlations of a physical par-
ticle. This result may be viewed as an indication of gluon
confinement [26].

These theoretical predictions have been confirmed by stud-
ies using Dyson-Schwinger equations (DSE’s) [26, 27]. In
particular, studies of DSE’s in Landau gauge have found [34–
36] an IR behavior of the form G(p)∼ p−2κ−2 = p−2aG−2 for
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the ghost propagator and of the form D(p)∼ p4κ−2 = p2aD−2

for the gluon propagator with the same exponent κ (i.e. with
aG = aD/2). In 4d one usually finds κ & 0.5 for pure SU(Nc)
gauge theory. Note that κ > 0.5 implies D(0) = 0. For the
3d case the exponents are aG ≈ 0.4 and aD ≈ 1.3. Note
that in the d dimensional case [34, 35] the relation between
aD and aG is given by aD = 2aG + (4− d)/2, implying for
the quantity αs(p) = (g2/4π)D(p)G2(p)p6 the IR behavior
p2(aD−2aG) = p4−d . Thus, in the 4-dimensional case the run-
ning coupling αs(p) displays and IR fixed point.

Numerical studies of lattice gauge theories confirm the IR
divergence of the Landau ghost propagator [21, 37, 38] and
an IR suppression of the gluon propagator. More precisely, a
decreasing gluon propagator at small momenta has been ob-
tained for the 3d SU(2) Landau case using very large lattices
[39] and — recently — in the 4d SU(3) Landau case with the
use of asymmetric lattices [40]. Similar results has also been
obtained for the the equal-time three-dimensional transverse
gluon propagator in 4d SU(2) Coulomb gauge [41]. In this
last case, one also obtains an excellent fit of the transverse
propagator by a Gribov-like formula. Finally, direct support
to the Gribov-Zwanziger and to the Kugo-Ojima scenarios has
been presented in [42] and in [43], respectively.

Thus, the two nonperturbative approaches above seem to
support the Gribov-Zwanziger and the Kugo-Ojima confine-
ment scenarios in Landau gauge. However, the agreement be-
tween the two methods is still at the qualitative level. More-
over, recent lattice studies [44, 45] seem to indicate a null IR
limit for αs(p), instead of a finite nonzero value. At the same
time, a study based on DSE’s [46] showed that torus and con-
tinuum solutions are qualitatively different. This suggests a
nontrivial relation between studies on compact and on non-
compact manifolds and could have important implications for
lattice studies. Also, the nonrenormalizability of the ghost-
gluon vertex — proven at the perturbative level [47], con-
firmed on the lattice [45, 48] (for p & 200 MeV) and used
in DSE studies to simplify the coupled set of equations —
has been recently criticized in Ref. [44]. Thus, clear quantita-
tive understanding of the two confinement scenarios is still an
open problem.

III. INFINITE-VOLUME LIMIT

The study of the IR behavior of propagators and vertices,
i.e. for momenta smaller than 1 GeV, requires careful consid-
eration of the infinite-volume limit. Indeed, since the small-
est non-zero momentum that can be considered on a lattice
is given by pmin ≈ 2π/L — where L is the size of the lattice
in physical units — it is clear that one needs to simulate at
very large lattice sizes in order to probe the small-momentum
limit. The consideration of very large lattice sizes requires
parallelization and high efficiency of the code in order to ob-
tain good statistics in the Monte Carlo simulation. Thus, an
optimized parallel code is of great importance [49]. Our nu-
merical code is parallelized using MPI; for the random num-
ber generator we use a double-precision implementation of
RANLUX (version 2.1) with luxury level set to 2.
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FIG. 1: Plot of the rescaled gluon propagator aD(0)/Z(a) as a func-
tion of the momentum for V = 803 and β = 4.2(×), 5.0(¤), 6.0(♦).
Error bars are obtained from propagation of errors.

A. Very large lattice side

In Ref. [39] we have evaluated the lattice gluon propagator
D(k) and study it as a function of the momentum p(k) in the
3d SU(2) Landau case, using data from the largest lattice side
to date, i.e. up to 1403. This allowed us to consider momenta
as small as 51 MeV (in the deep IR region) and physical lattice
sides almost as large as 25 fm.

In order to compare lattice data at different β’s, we apply the
matching technique described in [50], i.e. the propagators are
multiplied by a factor Z(a) depending on β or, equivalently,
on the lattice spacing a. The method works very well (see
Fig. 1); indeed, data obtained using different β values nicely
collapse into a single curve. We find that the gluon propaga-
tor decreases in the IR limit for momenta smaller than pmax,
which corresponds to the mass scale M in a Gribov-like prop-
agator D(p) = p2/(p4 + M4). From the plot we can estimate
pmax = M = 0.8+0.2

−0.1
√

σ = 350+100
−50 MeV, in agreement with

Ref. [51]. (Here σ is the string tension.)
In Fig. 2 we plot the rescaled gluon propagator at zero mo-

mentum, namely aD(0)/Z(a), as a function of the inverse lat-
tice side L−1 = 1/(aN) in physical units (fm−1). We see that
aD(0)/Z(a) decreases monotonically as L increases, in agree-
ment with Ref. [52]. It is interesting to notice that these data
can be well fitted using the simple Ansatz d +b/Lc both with
d = 0 and d 6= 0 (see Figure 2). In order to decide for one
or the other result one should go to significantly larger lattice
sizes.

Also, in Ref. [39] we have shown that the data for the gluon
propagator are well fitted by Gribov-like formulae, yielding
an IR critical exponent κ≈ 0.65 in agreement with recent an-
alytic results (see Section II). Recently [53] we have extended
this analysis to the ghost propagator, considering lattice vol-
umes up to 803 for the coupling β = 4.2. A fit to the data
using the fitting function b/pa (in the interval p ≤ 0.5 GeV)
gives a = 2.40(2). This result would imply aG ≈ 0.4, also in
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agreement with the results reported in Section II above.

B. Asymmetric lattices

Recently, very asymmetric lattices [40, 54] have been con-
sidered in order to explore the IR limit od QCD. As a test
of this method, we have extended [55] the gluon propagator
study presented in [39] [for the 3d SU(2) case in minimal
Landau gauge], by including results for the ghost propagators
from very large lattices. At the same time, we evaluated the
propagators using also asymmetric lattices, in order to verify
possible systematic effects related to the use of asymmetric
lattices (as suggested in [45]), by comparing the results to the
ones obtained for symmetric lattices.

We find, for both propagators, clear evidences of system-
atic effects at relatively small momenta, i.e. p . 1.5

√
σ ≈

650MeV. In particular, the gluon (respectively, ghost) prop-
agator is less suppressed (respec. enhanced) in the IR limit
when considering asymmetric lattices than for the case of
symmetric lattices (see Fig. 3). This implies that the esti-
mates for the IR critical exponents aG and aD are systemat-
ically smaller in the asymmetric case compared to the sym-
metric one.

Also, for the gluon propagator and considering the asym-
metric lattices, one would estimate a value M . 0.25/a≈ 0.22
GeV as a turnover point in the IR, i.e. the momentum pmax =
M for which the propagator reaches its peak. On the other
hand, considering the largest (symmetric) lattice volumes, i.e.
V = 1403 (see the top plot in Fig. 3), the gluon propagator is
clearly a decreasing function of p for p . 0.5/a, correspond-
ing to M . 0.435 GeV. This is in agreement with the result
reported in Section III A above. We thus see a difference of
almost a factor 2 between the momentum-turnover point in the
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FIG. 2: Plot of the rescaled gluon propagator at zero momentum as
a function of the inverse lattice side. We also show the fit of the data
using the Ansatz d + b/Lc, both with d = 0 and with d 6= 0. Error
bars are obtained from propagation of errors.

FIG. 3: Plot of the gluon propagator D(p) (top) and of the ghost
propagator G(p) (bottom) as a function of p for lattice volumes V =
82× 140(×), 122× 140(¤), 162× 140(♦) and V = 1403 (©). All
quantities are in lattice units. Note the logarithmic scale on the y axis
in the bottom plot. Errors represent one standard deviation.

symmetric and asymmetric cases.
Finally, we have seen that the extrapolation to infinite vol-

ume of results obtained using asymmetric lattices is also most
likely affected by systematic errors. We conclude that, even
though using an asymmetric lattice does not modify the qual-
itative behavior of the two propagators, one should be careful
in extracting quantitative information from such studies.

IV. REFLECTION-POSITIVITY VIOLATION

The relation between reflection positivity and Euclidean
correlation functions can be made explicit by considering the
spectral representation [26, 56]

D(p) =
∫ ∞

0
dm2 ρ(m2)

p2 +m2 (1)
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FIG. 4: Real-space propagator C(t) as a function of t for coupling
β = 5.0 and lattice volume V = 1403. Errors have been evaluated
using bootstrap with 1000 samples. All quantities are in lattice units.

for the Euclidean propagator in momentum space. Then, the
statement of reflection positivity is equivalent to a positive
spectral density ρ(m2). This implies that the temporal cor-
relator at zero spatial momentum D(t,p = 0) can be written
as

C(t) ≡ D(t,0) =
∫ ∞

0
dωρ(ω2)e−ω t . (2)

Clearly, a positive density ρ(ω2) implies that C(t) > 0. No-
tice that having C(t) positive for all t does not ensure the posi-
tivity of ρ(ω2). On the other hand, finding C(t) < 0 for some t
implies that ρ(ω2) cannot be positive, suggesting confinement
for the corresponding particle.

On the lattice, the real-space propagator can be evaluated
using

C(t) =
1
N

N−1

∑
k0=0

e−2π ik0t/N D(k0,0) , (3)

where N is the number of points per lattice side and D(k) is
the propagator in momentum space. If the lattice action sat-
isfies reflection positivity [57], then we can write the spectral
representation

C(t) = ∑
n

rne−Ent , (4)

where rn are positive-definite constants. Clearly, this implies
that C(t) is non-negative for all values of t.

Numerical indications of a negative real-space lattice Lan-
dau gluon propagator have been presented in the 3d SU(2)
case [58], in the magnetic sector of the 4d SU(2) case at finite
temperature [59] and, recently, in the 4d SU(3) case for one
“exceptional” configuration [33].

Using data from the largest lattice sides to date, we ver-
ify explicitly (in the 3d case) [32] the violation of reflection

FIG. 5: Fit of C(t) as a function of t (in f m) using a sum of two
Gribov-like propagators for lattice volume V = 1403 and coupling
β = 4.2. We also display the two Gribov-like propagators separately.

positivity for the SU(2) lattice Landau gluon propagator (see
Fig. 4). In particular, the propagator becomes negative at
t ≈ 0.7 f m and the minimum is reached at tmin ≈ 1 f m (see
Fig. 5). Note that the Gribov-like propagator

C(t) =
e−Mt/

√
2

2M
cos

(
Mt√

2
+

π
4

)
(5)

has its minimum at tmin = π/(M
√

2). Thus, the above re-
sult for tmin would imply M ≈ π/

√
2 f m−1 ≈ 2.22 f m−1 =

438MeV = 0.995
√

σ, where σ is the string tension. Let us
also recall that the momentum-space Gribov-like propaga-
tor has its maximum at pmax = M (see Section III A above).
Moreover, we find that finite-size effects seem to become
important only at t & 3 f m. This means that our data for
t ∈ [0,3] f m are essentially infinite-volume continuum results.
In the scaling region, the data are well described by a sum
of Gribov-like formulas (see Fig. 5), with a light-mass scale
m≈ 0.74

√
σ = 325MeV .

It has been suggested [60, 61] that the violation of spectral
positivity in lattice Landau gauge be related to the quenched
auxiliary fields used for gauge fixing. We note that the fitting
form proposed for C(t) in [61] describes reasonably well our
data up to t = 3 f m — yielding a light-mass scale of about
1.14

√
σ = 500MeV — but cannot account for the oscillatory

behavior observed at very large separations.

V. GHOST-GLUON VERTEX

In the framework of quantum field theory, Faddeev-Popov
ghosts are introduced in order to quantize non-Abelian gauge
theories. Although the ghosts are a mathematical artifact and
are absent from the physical spectrum, one can use the ghost-
gluon vertex and the ghost propagator to calculate physical
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observables, such as the QCD running coupling αs(p), using
the relation

αs(p) = α0
Z3(p) Z̃2

3(p)

Z̃2
1(p)

. (6)

Here α0 = g2
0/4π is the bare coupling constant and Z3(p),

Z̃3(p) and Z̃1(p) are, respectively, the gluon, ghost and ghost-
gluon vertex renormalization functions. The above formula
gets simplified if one considers the Landau gauge. Indeed,
in this case the vertex renormalization function Z̃1(p) is finite
and constant, i.e. independent of the renormalization scale p,
at least to all orders of perturbation theory [47, 62]. Of course,
it is important to verify in a non-perturbative way that this re-
sult really holds. If it does, one can consider in the Landau
gauge a definition of the running coupling constant that re-
quires only the calculation of the gluon and ghost propagators
[63].

In Refs. [48] we have studied the reduced ghost-gluon ver-
tex function Γabc

µ (0, p) and the renormalization function Z̃1(p)
in minimal Landau gauge at the asymmetric point (0; p,−p)
in the SU(2) case. We find that the vertex function has the
same momentum dependence of the (lattice) tree-level vertex
— i.e. ∼ p̂ cos(π p̃a/L) ∼ sin(2π p̃a/L) — and that Z̃1(p) is
approximately constant and equal to 1, at least for momenta
p & 1 GeV (see Fig. 6). This is a direct non-perturbative veri-
fication of the perturbative result reported above. In particular,
using the result obtained at the largest value of β considered
(i.e. β = 2.4) we obtained Z̃−1

1 (p) = 1.02+6
−7, where errors in-

clude Gribov-copy effects and discretization errors related to
the breaking of rotational invariance.

Recently, this study has been extended (in the 3d case) [65]
to other kinematical configurations, including in particular the
symmetric point p2 = q2 = k2. We find that the vertex is es-
sentially constant and of order one, for all momentum con-
figurations (see Fig. 7), confirming the results obtained in the
4d case [45, 48]. This result is also in agreement with pre-
dictions from functional methods in the 3d case [66]. In the
same reference we also present the first numerical study of the
Landau-gauge three-gluon vertex in the 3d case and results for
the spectrum of the Faddeev-Popov operator, which plays an
important role in the Gribov-Zwanziger scenario [18, 28, 67].
In particular we have shown that (see Fig. 7 in Ref. [65])
the smallest non-zero eigenvalue of the Faddeev-Popov ma-
trix goes to zero when the infinite-volume limit is approached.
As a consequence, in the continuum limit, the average lattice
Landau configuration should belong to the first Gribov hori-
zon, supporting the Gribov-Zwanziger mechanism of confine-
ment (see also [42]).

VI. GHOST CONDENSATES

The QCD vacuum is known to be highly non-trivial at
low energies [68]. This non-trivial structure manifests itself
through the appearance of vacuum condensates, i.e. vacuum
expectation values of certain local operators. In perturba-
tion theory these condensates vanish, but in the SVZ-sum-

FIG. 6: Results for Z̃−1
1 (p) for the lattice volume V = 164 as a

function of p = p̂/a in GeV, considering symmetric momenta, i.e.
with 4 equal components. We show data obtained using two differ-
ent gauge-fixing methods (with and without the so-called smearing
method [64]). Error bars were evaluated using the bootstrap method
with 250 samples.

FIG. 7: The scalar quantity Gcc̄A(q,k,φ), defined in Eq. (27) of Ref.
[65], as a function of the magnitude of the incoming anti-ghost mo-
mentum q. Full symbols correspond to β = 4.2 and open symbols to
β = 6.0; circles are used for V = 203 and triangles for V = 303. We
plot data for the case with the three momenta equal.

rule approach [69] they are included as a parametrization of
non-perturbative effects in the evaluation of phenomenologi-
cal quantities. The two main such operators are αsFµνFµν and
mqψqψq; their vacuum expectation values are the so-called
gluon and quark condensates. Both of these operators have
mass dimension four.

In recent years, (gauge-dependent) condensates of mass di-
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mension two have also received considerable attention [29,
70–82]. In particular, the gauge condensate 〈Ab

µAb
µ〉 has been

largely studied, since it should be sensitive to topological
structures such as monopoles [70] and it could play an im-
portant role in the quark-confinement scenario through mono-
pole condensation [83]. Moreover, the existence of a gauge
condensate would imply a dynamical mass generation for the
gluon and ghost fields [29, 71]. Possible effects of the gauge
condensate 〈Ab

µAb
µ〉 on propagators and vertices (in Landau

gauge) have been studied through lattice simulations in Refs.
[44, 84], yielding 〈Ab

µAb
µ〉 ≈ 3 GeV2.

Other vacuum condensates of mass dimension two consid-
ered by several groups are the ghost condensates. These con-
densates were first introduced in SU(2) gauge theory in max-
imally Abelian gauge (MAG) [72–74, 85]. More recently, the
same condensates have been studied in other gauges [75, 76],
such as the Curci-Ferrari and the Landau gauges. In all cases it
was found that the ghost condensates are related to the break-
down of a global SL(2,R) symmetry [26, 76]. In MAG the di-
agonal and off-diagonal components of the ghost propagators
are modified [72, 77] by ghost condensation. Similar results
have been obtained in other gauges [75, 78]. In particular, in
Landau gauge it was shown [78] that the off-diagonal (anti-
symmetric) components of the ghost propagator Gcd(p) are
proportional to the ghost condensate v.

Finally, a mixed gluon-ghost condensate of mass dimension
two has also been studied by several authors [73, 75, 79–81],
using various gauges. This mixed condensate is of particular
interest when considering interpolating gauges [80]. Indeed,
it allows to generalize and relate results obtained in different

FIG. 8: Results for the Binder cumulant U for the quantity φb(p) as
a function of the lattice side L (in GeV−1) for various lattice volumes
V and momentum with p̃ = N/4. We show the data corresponding to
asymmetric momenta [for β = 2.2 (¤), β = 2.3 (©) and β = 2.4 (4)]
and to symmetric momenta (with the corresponding filled symbols
for each β). Errors have been estimated using the bootstrap method
with 10,000 samples.

gauges for the gauge condensate 〈Ab
µAb

µ〉 and the ghost con-
densates. Moreover, in MAG this mixed condensate would
induce a dynamic mass for the off-diagonal gluons [81], giv-
ing support to the Abelian-dominance scenario [86]. Thus, the
various gauge and ghost condensates could all play an impor-
tant role in the dual superconducting scenario of quark con-
finement [87], being related to monopole condensation and to
Abelian dominance.

In Ref. [88] we carried out a thorough investigation of ghost
condensation in the so-called Overhauser channel for pure
SU(2) Yang-Mills theory in minimal Landau gauge. In par-
ticular, we evaluate numerically the off-diagonal components
of the ghost propagator Gcd(p) as a function of the momen-
tum p. We find that 〈φb(p)〉= εbcd 〈Gcd(p)〉/2 is zero within
error bars, but with large fluctuations. At the same time, we
see clear signs of spontaneous breaking of a global symmetry,
using the quantity φb(p) as an order parameter. As in the case
of continuous-spin models in the ordered phase (see for exam-
ple [89]), spontaneous symmetry breaking is supported by two
(related) observations: 1) by comparing the statistical fluctu-
ations for the quantities φb(p) and |φb(p)|; 2) from the non-
Gaussian shape of the statistical distribution of φb(p), which
can be observed by considering a histogram of the data or by
evaluating the so-called Binder cumulant (see Fig. 8). Since,
in Landau gauge, the vacuum expectation value of the quan-
tity φb(p) should be proportional (in the Overhauser channel)
to the ghost condensate v [78], it seems reasonable to conclude
that the broken symmetry is the SL(2,R) symmetry, which is
related to ghost condensation [26, 76]. This interpretation has
been recently criticized in Ref. [90]. There, the nonzero value
obtained for the Binder cumulant has been explained by con-
sidering multi-dimensional Gaussian distributions and a mod-
ified definition for the Binder cumulant. We note however
that the order parameter considered in our study, i.e. the mag-
nitude of φb(p), is a scalar quantity. Therefore, in analogy
with studies of O(N)-vector models (see for example [91]),
the standard definition of the Binder cumulant should apply to
our study as well.

Let us note that, from our data, the Binder cumulant U
seems to be approximately null at small lattice volume and to
converge to a value U ≈ 0.45 for physical lattice side L & 15
Gev−1 ≈ 3 fm, corresponding to a mass scale of less than 100
MeV.

In Ref. [88] we have also shown that the sign of φb(p) is
related to the sign of the Fourier-transformed gluon field com-
ponents Ã(q) and that φb(p) has discretization effects similar
to those obtained for the ghost-gluon vertex [48]. Then, us-
ing the rescaled quantity |L2 φb(p)/cos(πp̃a/L) |, we find (at
small momenta) a behavior p−z with z≈ 4, in agreement with
analytic predictions [78]. On the other hand, from our fits
we find that the ghost condensate v is consistent with zero
within error bars, i.e. the quantity |L2φb(p)/cos(π p̃a/L) |
does not approach a finite limit at small momenta, at least for
p≥ 0.245 GeV. Using the Ansatz

Gcd(p) =
p2 δcd + vεcd

p4 + v2 , (7)

we obtain for the ghost condensate the upper bound v¿ 0.058
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FIG. 9: Fit for the running coupling αs(p) using eq. (10) with C =
0.072(8), a = 1.9(3), Λ = 1.31(1) and m = 1.0(6).

GeV2. More precisely, our data rule out values of v greater
than 0.058 GeV2 ≈ (240 MeV)2 but would still be consis-
tent with a ghost condensate v . 0.025 GeV2 ≈ (160 MeV)2.
Let us note that, in analytic studies [73, 78, 82, 92] one finds
that the ghost condensate induces a tachyonic gluon mass pro-
portional to

√
v, which modifies the dynamic gluon mass re-

lated to the gauge condensate 〈Ab
µAb

µ〉. Thus, one should ex-
pect a relatively small ghost condensate v in order to obtain
a global (non-tachyonic) gluon mass. Let us recall that a dy-
namic gluon mass of the order of a few hundred MeV has been
considered in several phenomenological studies [93]. A sim-
ilar mass scale was also obtained in numerical studies of the
gluon propagator in Landau gauge [32, 39, 51].

VII. RUNNING COUPLING

Of great importance for phenomenological purposes is the
running coupling strength αs(p) [63] defined in Eq. (6) above.
In particular, this quantity enters directly the quark Dyson-
Schwinger equation (DSE) and can be interpreted as an effec-
tive interaction strength between quarks [94]. Let us note that,
working in Landau gauge and in the momentum-subtraction
scheme, the running coupling (6) can be written as [63]

αs(p) = α0 F(p)J2(p) , (8)

where F(p) and J(p) are, respectively, the gluon and the ghost
form factors and we used the result Z̃1(p) = 1. As explained
in Sec. II above, studies using DSE’s have found that, if the IR
sum rule 2aG−aD = 0 is satisfied, then this running coupling
develops a fixed point in the IR limit (see for example [35])

lim
p→0

αs(p) = αc = constant, (9)

with αc ≈ 8.92/Nc in the SU(Nc) case for κ≈ 0.596.

FIG. 10: Plot of the gluon propagator D(p) as a function of p for
lattice volume V = 524 at β = 2.2. All quantities are in lattice units
(here a ≈ 1 GeV−1). Errors represent one standard deviation. The
larger value at p = 0 is probably due to an insufficient number of
gauge-fixing iterations.

This quantity has been studied numerically by several
groups (see for example [33, 44, 95]). In Ref. [96] we have
evaluated this running coupling constant and tried a fit to the
data using the fitting function

αs(p) = C p4/
[
(p4 +m)s(a)

]
(10)

where s(a) = (11/24π2) log [1+(p2/Λ2)a]. Note that if a =
2 one finds a fixed point in the IR limit equal to αc =
24π2CΛ4/11m. Also, this fitting functions satisfies the lead-
ing ultraviolet behavior ∼ 1/ log [(p2/Λ2)] for the running
coupling. Results are reported in Fig. 9; we find a = 1.9(3)
and αc = 24π2CΛ2/11m ≈ 4.6, in agreement with the result
reported above. Similar results have also been obtained in
[38]. We stress that in Refs. [38, 96] we have compared re-
sults obtained using two slightly different lattice formulations,
yielding consistent results in all cases considered.

As said in Section II above, recent lattice studies [44, 45]
seem to indicate a null IR limit for αs(p), instead of a fi-
nite nonzero value αc. We should stress, however, that in
these studies special care must be taken in order to eliminate
finite-size effects, especially when the IR region is consid-
ered. Indeed, we know that, if the the gluon propagator is
not suppressed at small momenta, the true infrared regime is
surely not reached yet. This is a difficult numerical task since
we have checked that in the 4d SU(2) case a lattice volume
V = 524 at β = 2.2, corresponding to a physical lattice side of
about 10 fm, is still not sufficient to show a decreasing prop-
agator in the limit of small momenta (see Fig. 10). We note
that in Fig. 1 of [44] and in Fig. 3 of [45] the running cou-
pling starts to decrease for a momentum p ≈ 0.5 GeV. Thus,
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from our discussion in Section III A above, considering the re-
sults shown in Fig. 10 and also the results reported in [50, 52],
we can say that the data considered in [44, 45] for momenta
p . 500 MeV are most likely affected by strong finite-size
effects.

VIII. CONCLUSIONS

The Gribov-Zwanziger and the Kugo-Ojima confinement
scenarios in Landau gauge are well supported, at the qualita-
tive level, by several studies based on different analytical and
numerical approaches. On the other hand, as we have shown

here, a comprehensive analysis of these confinement scenar-
ios at the quantitative level using lattice numerical simulations
could represent a very challenging task.
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