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An Extensive Search for Overtones in Schwarzschild Black Holes
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In this paper we show that with standard numerical methods it is possible to obtain highly precise results for
quasi normal modes (QNMs). In particular, secondary modes are obtained by numerical integration done in
the well-known time-domain grid. We have compared such numerical results to the also well-known 6th-order
WKB method and have found a striking degree of agreement, which could be as good as seven significant figures
for the fundamental mode and three for the first overtone. We have chosen the Schwarzschild BH (black hole)
to start with because it is the simplest and most well-known of all BHs, so it provides a very safe testing ground
to the aforementioned numerical method.
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I. INTRODUCTION

Wave propagation around black holes is an active field of
research (see [1],[2]). The perspective of gravitational wave
detection in a near future and the great recent development
of numerical general relativity have increased even further the
activity on this field [3]. Gravitational waves should be espe-
cially strong when emitted by black holes. The study of the
propagation of perturbations around them is, hence, essential
to provide templates for the gravitational wave identification.
A recent challenge has been posed by advances in the black
hole merger problem, in which the ringdown phase character-
isation from the numerical wave profile is poorly understood,
so that the techniques here employed and discussed may be of
interest in that context. Thus, activity in this field is develop-
ing quickly [1],[4].

The Schwarzschild black hole is very well known [2, 5]
but it is important to get reassured about the robustness of the
methods and results. Therefore, here, we embark in a detailed
study of the secondary modes by means of the subtraction of
the first modes in the time domain. The method, though very
simple has not been used in the literature due to numerical er-
rors intrinsic to the method. However, we were able to use
simple standard methods to show that the results are valid im-
plying an acuracy of up to seven figures for the dominant (fun-
damental) mode and sometimes three for the secondary mode
(or first overtone).

In what follows, we have used the geometric system of
units, for which c = G = 1. This means that the masses have
dimension of length. The conversion factor to CGS/MKS
units is c2/G.

II. FUNDAMENTAL MODES AND FIRST OVERTONES

We begin with a series of tables on the frequencies of the
QNMs for the Schwarzschild black holes, for the scalar, elec-
tromagnetic (EM) and axial gravitational perturbations. We
have employed, throughout our discussion, M = 1.0, since the
Schwarzschild BH frequencies scales as Mω = const. For the
grid spacing, we have used h = 10−2m throughout. In what

follows, we have used the notation ωDOM for the dominant
mode, ωSEC for the first overtone and, whenever applicable,
ωT ER for the second overtone. We have also listed the quan-
tities δωi, i = DOM,SEC,T ER, which are the estimated er-
rors for the corresponding frequency values. Such errors were
computed using the method described in detail in the Appen-
dix.

Blank spaces, wherever they appear, indicate lack of reli-
able data for the mode in question.

Before continuing, a few remarks are due: as expected, the
scalar field oscillated very little for ` = 0 compared to higher
` values, so we had to remove its power-law tail numerically
(see corresponding note in the Appendix) to get a clearer pic-
ture of the corresponding oscillations and then compute its
first overtone. The second overtone was not clearly visible for
` < 6, and even so only for ` = 8 and higher we could perform
minimally acceptable fittings on it.
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FIG. 1: Fundamental mode and first overtone, for the electromag-
netic ` = 8 field. The second overtone appears very clearly..

The Figs. (1) and (2) show that the second overtone appears
clearly only for very high ` (` > 6), and it is the reason why
we have blank spaces for this overtone in tables (I) and (II).

We have compared our data to those generated via 6th-order
WKB computations, from [5] and 3rd-order WKB from [6].
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TABLE I: Frequencies for the Schwarzschild BH of M = 1.0 in the case of a scalar field, for different ` values.
` ωDOM δωDOM ωSEC ωT ER

0 0.107306−0.103929i − − −
1 0.292939−0.0976663i − − −
2 0.483644−0.0967590i 3E−7 0.470−0.300i −
3 0.675367−0.0964997i 2E−7 0.667−0.288i −
4 0.867417−0.0963923i 2E−7 0.859−0.287i −
5 1.059614−0.0963337i 6E−7 1.050−0.283i −
6 1.251891−0.0963060i 9E−8 1.224−0.283i −
7 1.444214−0.0962866i 7E−7 1.433−0.282i −
8 1.636565−0.0962724i 1E−6 1.629−0.288i 1.584−0.422i
9 1.828959−0.0962639i 1E−6 1.822−0.288i 1.791−0.404i
10 2.021329−0.0962568i 1E−6 2.014−0.288i 1.990−0.405i
11 2.213730−0.0962522i 1E−6 2.207−0.288i 2.174−0.440i
12 2.406139−0.0962487i 1E−6 2.400−0.288i 2.371−0.440i

TABLE II: Frequencies for the Schwarzschild BH of M = 1.0, in the case of an electromagnetic field, for different ` values.
` ωDOM δωDOM ωSEC ωT ER

1 0.248229−0.0924905i − − −
2 0.457595−0.0950044i 5E−8 0.440−0.290i −
3 0.656899−0.0956165i 2E−8 0.648−0.286i −
4 0.853096−0.0958605i 2E−7 0.844−0.285i −
5 1.047915−0.0959821i 9E−8 1.039−0.282i −
6 1.242000−0.0960523i 9E−8 1.232−0.282i −
7 1.435647−0.0960959i 7E−7 1.424−0.281i −
8 1.629012−0.0961250i 6E−8 1.621−0.288i 1.577−0.425i
9 1.822180−0.0961452i 1E−6 1.815−0.288i 1.788−0.407i
10 2.015214−0.0961596i 1E−6 2.008−0.288i 1.984−0.410i
11 2.208148−0.0961714i 2E−6 2.199−0.285i 2.164−0.442i
12 2.401004−0.0961800i 1E−6 2.395−0.288i 2.365−0.427i
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FIG. 2: Fundamental mode and first overtone, for the scalar ` = 7
field. The second overtone also appears, though not in a very evident
manner.

When it comes to notation, we have employed ` for the multi-
pole index (as before), n for the overtone index (n = 0 for the
fundamental, n = 1 for the first overtone, and so on). ωNUM
refers to our numerical data, ωWKB1 refers to the WKB data

from paper [5] and ωWKB2, to paper [6]. We were also able to
compare our data to a few data compiled two decades ago by
E.W. Leaver, who employed yet another method based on con-
tinuous fraction equations. See [7], [8] and references therein.

These comparison tables leave no room for doubts when
it comes to the fundamental mode, n = 0. For all fields and
`-values, the data from our numerical simulations and those
from the 6th-order WKB method showed a high-degree agree-
ment, with differences between 1 part in 104 and 1 part in
105, for both Re(ω) and Im(ω), especially for higher `-values.
When it comes to the first overtone, for all fields under study,
the agreement between both sets of data was not so impres-
sive, hovering around 1−2% for Re(ω) and 2−3% for Im(ω)
for low ` (typically up to ` = 6) and improving for higher `,
to a few parts in 1000 for Re(ω) and around 0.5% or so for
Im(ω). The second overtone showed much higher discrep-
ancies, especially for Im(ω), with differences around 15% is
some cases, while for Re(ω) this difference usually hovers
around 1− 2% (with two exceptions for ` = 8, when it was
much bigger - almost 8% for the axial field).

As for the data from Leaver [7],[8], we have, for the
gravitational axial perturbation and ` = 2, ω = 0.373672−
0.088962i when n = 0 and ω = 0.346711− 0.273915i when
n = 1. For n = 0 this matches very well with our result,
ω = 0.37367− 0.08896i. For n = 1, the agreement is not
so good, because we got ω = 0.352−0.272i but Leaver’s re-
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TABLE III: Frequencies for the Schwarzschild BH of mass M = 1.0, in the case of an axial field, for different ` values.
` ωDOM δωDOM ωSEC ωT ER

2 0.37367−0.08896i 6E−6 0.352−0.271i −
3 0.599444−0.0927031i 5E−9 0.586−0.278i −
4 0.809180−0.0941643i 4E−8 0.797−0.279i −
5 1.012297−0.0948713i 3E−7 1.002−0.279i −
6 1.212013−0.0952667i 2E−7 1.203−0.286i −
7 1.409741−0.0955106i 2E−7 1.401−0.286i 1.361−0.432i
8 1.606202−0.0956724i 3E−7 1.594−0.280i 1.474−0.515i
9 1.801801−0.0957836i 1E−6 1.795−0.287i 1.770−0.411i
10 1.996796−0.0958649i 2E−7 1.990−0.286i 1.967−0.408i
11 2.191345−0.0959263i 2E−7 2.188−0.287i 2.154−0.415i
12 2.385555−0.0959724i 2E−7 2.379−0.287i 2.353−0.446i

TABLE IV: Frequencies for the Schwarzschild BH of M = 1.0, in the case of a scalar field, for different ` and n values, and their comparison
to WKB data.

` n ωNUM ωWKB1 ωWKB2

0 0 0.107306−0.103929i 0.1105−0.1008i 0.1046−0.1152i
1 0 0.292939−0.0976663i 0.2929−0.0977i 0.2911−0.0980i
1 1 − 0.264−0.307i 0.2622−0.3074i
2 0 0.483644−0.0967590i 0.4836−0.0968i 0.4832−0.0968i
2 1 0.470−0.300i 0.4638−0.2956i 0.4632−0.2958i
2 2 − 0.4317−0.5034i 0.4317−0.5034i
3 0 0.675367−0.0964997i 0.675366−0.0965006i −
3 1 0.667−0.288i 0.660671−0.292288i −
4 0 0.867417−0.0963923i 0.867416−0.0963919i −
4 1 0.859−0.287i 0.855808−0.290877i −
5 0 1.059614−0.0963337i 1.05961−0.0963368i −
5 1 1.050−0.283i 1.05004−0.290154i −
6 0 1.251891−0.0963060i 1.25189−0.0963051i −
6 1 1.224−0.283i 1.24375−0.289736i −
7 0 1.444214−0.0962866i 1.44421−0.0962852i −
7 1 1.433−0.282i 1.43714−0.289473i −
8 0 1.636565−0.0962724i 1.63656−0.0962719i −
8 1 1.629−0.288i 1.63031−0.289297i
8 2 1.584−0.422i 1.61797−0.483757i
9 0 1.828939−0.0962639i 1.82893−0.0962626i −
9 1 1.822−0.288i 1.82333−0.289173ii
9 2 1.791−0.404i 1.81225−0.483235i

10 0 2.021329−0.0962568i 2.02132−0.0962558i −
10 1 2.014−0.288i 2.01625−0.289083i
10 2 1.990−0.405i 2.0062−0.482854i
11 0 2.213730−0.0962522i 2.21372−0.0962507i −
11 1 2.207−0.288i 2.20909−0.289015i
11 2 2.174−0.417i 2.19989−0.482567i
12 0 2.406139−0.0962487i 2.40613−0.0962467i −
12 1 2.400−0.288i 2.40186−0.288963i
12 2 2.371−0.440i 2.39338−0.482347i

sult agrees very well with the 6th-order WKB result on both
cases. When we looked at the ` = 3 case for the same per-
turbation, Leaver’s results were ω = 0.599443− 0.092703i
when n = 0 and ω = 0.582644−0.281248i when n = 1. Our
results were 0.599444− 0.0927031i and 0.587− 0.278i, re-
spectively. Again, the agreement between Leaver’s results
and ours is excellent for the n = 0 mode, but not so good
for n = 1: ours were higher by about 1% for both Re(ω)
and Im(ω). And the 6th-order WKB and Leaver’s results

again agreed very well on both cases (see Table VI). For the
` = 4 case, Leaver’s figures were ω = 0.80918− 0.094165i
(n = 0) and ω = 0.79663− 0.28433i (n = 1). Our data were
ω = 0.809180− 0.0941643i (n = 0) and ω = 0.797− 0.279i
(n = 1), this time showing a better agreement for Re(ω), at
least. We were not able to check Leaver’s results for higher
` values, so we cannot yet say whether the discrepancies be-
tween our data and Leaver’s data will remain for n = 1 and
higher when ` icreases beyond 5. But for the n = 0 modes the
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TABLE V: Frequencies for the Schwarzschild BH of M = 1.0, in the case of an electromagnetic field, for different ` and n values, and their
comparison to WKB data.

` n ωNUM ωWKB1 ωWKB2

1 0 0.248229−0.0924905i 0.2482−0.0926i 0.2459−0.0931i
1 1 − 0.2143−0.2941i 0.2113−0.2958i
2 0 0.457595−0.0950044i 0.4576−0.0950i 0.4571−0.0951i
2 1 0.440−0.290i 0.4365−0.2907i 0.4358−0.2910i
2 2 − 0.4009−0.5017i 0.4023−0.4959i
3 0 0.656899−0.0956165i 0.6569−0.0956i 0.6567−0.0951i
3 1 0.648−0.286i 0.6417−0.2897i 0.6415−0.2898i
3 2 − 0.6138−0.4921i 0.6151−0.4901i
3 3 − 0.5814−0.6955i 0.5814−0.6955i
4 0 0.853096−0.0958605i 0.853095−0.0958601i −
4 1 0.844−0.285i 0.841267−0.289315i −
5 0 1.047915−0.0959821i 1.04791−0.095981i −
5 1 1.039−0.282i 1.03822−0.289104i −
6 0 1.242000−0.0960523i 1.242−0.0960512i −
6 1 1.232−0.282i 1.23379−0.288982i −
7 0 1.435647−0.0960959i 1.43564−0.0960947i −
7 1 1.424−0.281i 1.42852−0.288906i −
8 0 1.629012−0.0961250i 1.629−0.0961236i −
8 1 1.621−0.288i 1.62272−0.288855i −
8 2 1.577−0.425i 1.61032−0.483028i −
9 0 1.822180−0.0961452i 1.82217−0.0961439i −
9 1 1.815−0.288i 1.81655−0.288819i −
9 2 1.788−0.407i 1.80542−0.48265i −

10 0 2.015214−0.0961596i 2.01521−0.0961587i −
10 1 2.006−0.288i 2.01012−0.288793i −
10 2 1.984−0.410i 2.00003−0.482374i −
11 0 2.208148−0.0961714i 2.20814−0.0961697i −
11 1 2.199−0.285i 2.20349−0.288773i −
11 2 2.161−0.442i 2.19426−0.482167i −
12 0 2.401004−0.096180i 2.40099−0.0961782i −
12 1 2.395−0.288i 2.39672−0.288758i −
12 2 2.365−0.427i 2.38822−0.482007i −

agreement between both sets of results seemed to be beyond
any doubt to us.

In short, from the few data we have from Leaver’s work,
we might say that Leaver’s data seem to be more precise for
the Schwarzschild case. Our method, however, may be useful
when the perturbative potentials are too awkward or compli-
cated to conform to an analytic or semi-analytic method of
computing quasinormal frequencies, so that direct numerical
integration remains the sole option for that goal.

A brief remark is due on the scalar ` = 0 case. As we had
already pointed out in this text, we had to subtract the power-
law tail from the original field, so that we could have a suf-
ficent number of oscillations to render any frequency fitting
meaningful. For that particular case, however, the agreement
between our data and 6th-order WKB was not perfect, since
we got ω = 0.107306−0.103929i, while the 6th-order WKB
result was ω = 0.1106−0.1008i, that is, a discrepancy of 3%
for Re(ω) and 7% for Im(ω). See Fig. (3).

APPENDIX A: ON THE NUMERICAL METHOD FOR
OBTAINING THE WAVE PROFILES

We provide here a brief sketch of the method employed to
find the wave profiles - let the grid in which the method oper-
ates be called x− t grid - from which we have later extracted
the dominant mode and the overtones - the latter theme will
be thoroughly treated in the next section.

The x− t grid provides direct integration in the time do-
main, using a numerical method which is second-order in time
(denoted t) and fourth-order in the spatial coordinate (the so-
called tortoise coordinate in a Schwarzschild spacetime, de-
noted x). Let Ψ(x, t) represent the field (whatever its nature)
at a given x and a given t. Let δx and δt represent the spac-
ing along x and t, respectively. Both δx and δt are constant,
though δt < δx for reasons we shall see immediately. Hence,
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TABLE VI: Frequencies for the Schwarzschild BH of mass M = 1.0, in the case of an axial field, for different ` and n values, and their
comparison to WKB data.

` n ωNUM ωWKB1 ωWKB2

2 0 0.37367−0.08896i 0.373691−0.088891i 0.3732−0.0892i
2 1 0.352−0.272i 0.346297−0.27348i 0.3460−0.2749i
2 2 − 0.2985−0.4776i 0.29852−0.47756i
3 0 0.599444−0.0927031i 0.599443−0.0927025i 0.5993−0.0927i
3 1 0.587−0.278i 0.582642−0.28129i 0.5824−0.2814i
3 2 − 0.551594−0.479047i 0.5532−0.4767i
4 0 0.809180−0.0941643i 0.809178−0.0941641i 0.8091−0.0942i
4 1 0.797−0.279i 0.796631−0.284334i 0.7965−0.2844i
4 2 − 0.7727−0.4799i 0.772695−0.4799i
5 0 1.012297−0.0948713i 1.0123−0.0948706i −
5 1 1.002−0.279i 1.00222−0.285817i −
6 0 1.212013−0.0952667i 1.21201−0.0952659i −
6 1 1.203−0.286i 1.20357−0.28665i −
7 0 1.409741−0.0955106i 1.40974−0.0955096i −
7 1 1.401−0.286i 1.40247−0.287164i −
7 2 1.361−0.432i 1.38818−0.480709i −
8 0 1.606202−0.0956724i 1.60619−0.0956707i −
8 1 1.594−0.280i 1.59981−0.287504i −
8 2 1.474−0.515i 1.58721−0.480804i −
9 0 1.801801−0.095784i 1.80179−0.0957828i −
9 1 1.795−0.288i 1.7961−0.287741i −
9 2 1.770−0.440i 1.78483−0.48087i −
10 0 1.996796−0.0958649i 1.99679−0.0958639i −
10 1 1.990−0.286i 1.99165−0.287912i −
10 2 1.967−0.408i 1.98145−0.48087i −
11 0 2.191345−0.0959263i 2.19133−0.0959245i −
11 1 2.185−0.287i 2.18665−0.28804i −
11 2 2.154−0.415i 2.17734−0.480952i −
12 0 2.385555−0.0959724i 2.38554−0.095971i −
12 1 2.379−0.287i 2.38124−0.288138i −
12 2 2.353−0.446i 2.37268−0.480979i −

one may evolve the field Ψ in time via

Ψ(t0 +δt,x0) =

− Ψ(t0−δt,x0)+(2−δ2xV (x0)− 5δt2

2δx2 )Ψ(t0,x0)+

+
4δt2[Ψ(t0,x0 +δx)+Ψ(t0,x0−δx)]

3δx2 −

− δt2[Ψ(t0,x0−2δx)+Ψ(t0,x0 +2δx)]
12δx2 . (A1)

In the prescription (A1), one computes the field Ψ at (x, t) =
(x0, t0 +δt) from the values of the field at 5 different points at
the instant t0 and from the value of the field in one point at the
instant t0−dt. At the initial instant tini, one specifies not only
Ψ, but also ∂Ψ

∂t , for the whole spatial range xini < x < x f in. The
very structure of (A1) causes xmax to increase by 2δx and xmin
to decrease by the same amount - the algorithm develops in
time like an inverted cone - and the integration stopped for a
predetermined value of t (or time steps). An illustration of the
method is provided in Fig. (A).

A point of paramount importance is to be stressed for the
current method: the time spacing δt must be always smaller
in magnitude than the spacing in x, δx. That is, if m = δt

δx
< 1.

This is necessary to preserve numerical stability. This m is
called mesh ratio.

As for the initial conditions in use, they make little differ-
ence in the final result, since we are interested in the quasi-
normal ringdown of the fields, which do not depend on the
initial condition. We have used an initial Gaussian pulse of
unit magnitude centered at x = 0, due to its ease of implemen-
tation.

APPENDIX B: FINDING THE OVERTONES
NUMERICALLY

Having presented the x− t grid to find the wave profile, we
can turn to the problem of extracting the dominant mode and
its overtones from them. Hence, in this section, we present a
thorough explanation on the method of extracting the dom-
inant mode, the secondary (and, whenever applicable, the
tertiary) mode: we have taken the first (or dominant) mode
(n = 0) from the original wave profile and then performed an
oscillatory fitting on it, in order to extract the data on its oscil-
latory frequency ωR, amplitude A and decay rate ωI . A ques-
tion which rises naturally is: given the original wave profile,
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FIG. 3: Fundamental mode with and without tail, for the scalar ` = 0
field. Notice how the oscillations are masked by the power-law tail.
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how do we recognize the dominant mode, since the overtones
also contribute to the wave profile ?

The answer is that we expect the overtones to decay much
faster than the dominant mode, so that their contribution
shows up at the early stages of the waveform (transient part
and the early ringdown phase). Hence the late-time ringdown
phase is completely dominated by this n = 0 mode, and the
aforementioned quantities A,ωI ,ωR are taken at this phase.
The reader, upon looking again at the Figs. (1) and (2), will
be convinced that this is indeed the case.

These data on the n = 0 mode were taken with the max-
imum number of significant digits possible (usually 8 or 9),
and we subtracted the fitted function from the original wave
profile. That fitted function had the form

Ψ0 = Aexp(iω0
Rt)exp(−ω0

I t), (B1)

so that we could see the remainder of this operation.
In all cases (except for the ` = 0,1 scalar and ` = 1 EM

field), after performing the subtraction above, we could find a

remainder of the form

ΨR = Bexp(iω1
Rt)exp(−ω1

I t)+∆, (B2)

in which ω1 6= ω0, characterizing a secondary mode (the first
overtone), and with similar amplitudes (A ≈ B). The term ∆
is just the Ψ0 term, but with a much reduced amplitude, in-
dicating that the fitting operation has its precision limitations.
This can be seen in the form of parallel curve envelopes in the
Figs. (1) and (2), for example. Needless to say, we picked the
n = 1 mode fitting data at the end of its own quasinormal ring-
ing phase, for the same reasons outlined above for the n = 0
mode.

A similar procedure was adopted to find the second over-
tone, this time applying the oscillatory fitting to the first over-
tone, in which a new remainder similar to that seen in (B2)
was seen. In this latter case, however, only the very high
`-values could yield any valuable result when an oscillatory
fitting was applied to it. This is directly related to the de-
gree of precision to which we could find the amplitude and
the frequencies ωR and ωI : since the number of significant
figures for them was around 3. Less significant figures trans-
late into greater errors in the subtraction process to find the
tertiary mode, which in turn translates into somewhat blurred
wave profiles for that tertiary mode. Another difficulty in-
volved in finding it is that it decays much faster than the n = 0
and n = 1, which means it is available for extraction only at
the very early stages of the original waveform. This very re-
duced time interval for mode extraction compromises the os-
cillatory fitting quality and is responsible for the n = 1 mode’s
much lower number of significant figures when compared to
the n = 0 mode, since the n = 2 mode is used to estimate the
n = 1 mode’s fitting precision.

The fact that in some cases we cannot see the n = 1 mode
can be easily explained: these cases correspond to very low
values for `, namely ` = 0,1, for which very few oscillations
appear even for the dominant mode, thus rendering it very
difficult, if not impracticable, to extract an overtone from the
corresponding wave profiles. The n = 2 mode, in turn, is usu-
ally only detectable for higher values of ` (` > 6). We are still
figuring out why this happens.

Now it is the time to estimate the precision of the first fit-
ting. As we can see again in the aforementioned figures, there
is a given time tc for which the secondary mode and the dom-
inant mode are roughly equal in magnitude, that is

Bexp(iω1
Rt)exp(−ω1

I t)≈ δ(Aexp(iω0
Rt)exp(−ωIt)). (B3)

The variation of the dominant mode can be expressed as

δ(Aexp(iω0
Rt)exp(−ωIt)) = (δA)exp(iω0

Rt)exp(−ωIt)+

+ Aiexp(iωRt)exp(−ωIt)[δω0
R + iδω0

I ]t. (B4)

In what follows, we assume δA to be much smaller than A.
Such approximation implies

Bexp(iω1
Rt)exp(−ω1

I t)≈ Aitδωexp(iω0
R)exp(−ω1

I t), (B5)

in which we have used δω = δω0
R + iδω0

I .Working with the
moduli of the quantities above, we arrive at

|δω|≈ |B
A
|exp(−[ω1

I −ω0
I ])t

t
. (B6)
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Upon substituting t = tc and noting that |A|≈ |B|, we arrive at

|δω|≈ exp(−[ω1
I −ω0

I ])tc
tc

. (B7)

Such an estimate was done for each field and for each `-value,
and |δω| was compared to |ω|, so as to determine the approx-
imate degree of precision in the computation of the dominant
mode frequency. A similar estimate can also be done, in prin-
ciple, for the first overtone fitting precision. We have deter-
mined the ratio m = | δω

ω | - for the n = 0 mode - to be smaller
than 10−6, in all cases we have dealt with, except for the axial
` = 2 case, for which m ≈ 10−5 (hence its smaller number of

significant figures).

A final remark is needed for the scalar field, in the ` = 0
case. Since this particular field decays as a power-law tail
quite soon in the time domain (compared to higher ` fields),
we had to perform a power-law fitting (the classical power-
law tail of the fields evolving in a Schwarzschild spacetime)
on its tail and then subtract it from the original mode, there-
fore unveiling oscillations decaying beneath the tail, as al-
ready seen in Fig. (3). The numerical unveiling of its first
overtone was then tried in the same way as in all the remain-
ing fields, though we failed to get a clear picture of it, for the
reasons described earlier in this Appendix.
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