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We prove that a spherically symmetric exterior solution of the field equations of a metric nonsymmetric theory
of gravitation coupled with the electromagnetic field is necessarily static.
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I. INTRODUCTION

Recently [1] we have shown that the solution of the field
equations of a metric nonsymmetric theory of gravitation [2-
I,II] outside a spherically symmetric time-dependent matter
distribution is necessarily static. This is the analogue of the
theorem of Birkhoff of general relativity (GR). Here we ex-
tend the result to the situation in which electromagnetic field
is also present, that is, when the time-dependent source is
charged . This is the situation for instance for a radially pul-
sating charged sphere. The proof of the result, which we will
call the static theorem, will run along the same lines of GR as
presented, for instance, in [3].

The form of the field equations when the electromagnetic is
included into the theory was studied in [4] and the solution for
a point charged mass was obtained. In what follows we will
be making use of the field equations of that paper.

The paper is organized as follows. In Sec. II we present the
vacuum field equations of the theory and in Sec. III, we prove
the static theorem. In Sec. IV we draw our conclusions.

II. THE VACUUM GRAVITO-ELECTROMAGNETIC
FIELD EQUATIONS

When the electromagnetic field is present, the vacuum grav-
itational field equations of the theory become [4] (κ = 8πG)

Uαβ +Λg(αβ) =
κ

4π
E(αβ) , (2.1)

g(αβ),γ +g(ασ)Γβ
(σγ) +g(βσ)Γα

(σγ)−g(αβ)Γσ
(σγ) = 0, (2.2)

g[αβ],β = 0 , (2.3)

Λg[αβ,γ] =
κ

4π
E[αβ,γ] (2.4)

and

∂ν{
√−g f [g(µα)g(νβ) +(2Z−1)g[µα]g[νβ]

+(1−Z)g[αβ]g[µν]]Fαβ}= 0 . (2.5)

We use the notation a(αβ) = (aαβ +aβα)/2 and a[αβ] = (aαβ−
aβα)/2 for the symmetric and antisymmetric parts of aαβ and
the notation a[αβ,γ] = a[αβ],γ + a[γα],β + a[βγ],α for the curl of
a[αβ]. In the first equation

Uαβ = Γσ
(αβ),σ−Γσ

(σα),β +Γρ
(αβ)Γ

σ
(ρσ)−Γρ

(ασ)Γ
σ
(ρβ) , (2.6)

symmetric because the second term is (see (2.14) below) and
containing only the symmetric part of the connection, is the
analogue of the Ricci tensor. Λ is the cosmological constant
and

Eαβ =
1
4

(
f gαβ−2

∂ f
∂gαβ

)
gλσgρµ(ZFλρFσµ

+(1−Z)[FσρFλµ +FλσFρµ])

− f gµν (
ZFαµFβν +(1−Z)[FανFβµ +FµνFαβ]

)
. (2.7)

Here and in (2.5) Z is an arbitrary parameter. However, the
point charge solution turned out to be independent of Z. Fµν =
Aν,µ−Aµ,ν is the electromagnetic field strength tensor and

f =
√−g√−gs

, (2.8)

where g =det.(gαβ) and gs =det.(g(αβ)). Eαβ is a traceless ten-
sor, gαβEαβ = 0, because we have the relation [4]

gαβ ∂ f
∂gαβ

= 0 . (2.9)

The next two equations involve the symmetric and antisym-
metric parts of gαβ =

√−ggαβ where gαβ is the inverse of gαβ
as defined by

gαβgαγ = gβαgγα = δβ
γ . (2.10)

The second field equation, (2.2), can be solved for the sym-
metric part of the connection giving [2-I],

Γσ
(αβ) =

1
2

g(σλ) (sαλ,β + sλβ,α− sαβ,λ
)

+
(

g(σλ)sαβ−δσ
αδλ

β−δλ
αδσ

β

)
C,λ . (2.11)
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Here

C =
1
4

ln
s
g

(2.12)

and sαβ, symmetric and with determinant s, is the inverse of
g(αβ) as defined by

sαβg(αγ) = δγ
β . (2.13)

In deriving (2.11) from (2.2) we come across the relation

Γσ
(σα) = (ln

−g√−s
),α , (2.14)

which can be re-obtained from that equation. One then sees
that the second term on the right of (2.6) is in fact symmetric.
Equation (2.5) is the inhomogeneous Maxwell equation in the
presence of the metric nonsymmetric field.

Inside the sources of the field the right-hand side of equa-
tions (2.1), (2.3) (2.4) and (2.5) would contain, respectively,
the source terms 8πGT̄(αβ), 4π

√−gSα, 8πGT̄[αβ,γ]/Λ and
−4π

√−gJµ with

T̄αβ = Tαβ−
1
2

gαβT . (2.15)

Tαβ is the stress tensor and T = gµνTµν, Sα is the fermion num-
ber current density and Jµ is the electromagnetic current den-
sity.

III. SPHERICALLY SYMMETRIC VACUUM SOLUTION:
THE STATIC THEOREM

We will then consider the time-dependent spherically
symmetric gravitational-electromagnetic field satisfying the
empty-space field equations (2.1)-(2.5). The metric is the
same one considered in [1], with the components g00, g11 and
g[01] depending on r and t,

g00 = γ(r, t) = eν(r,t) , g11 =−α(r, t) =−eµ(r,t) ,

g22 =−r2, g33 =−r2 sin2 θ ,

g01 =−g10 =−ω(r, t) (3.1)

and all other components equal to zero. The non-zero compo-
nents of the inverse matrix are then

g00 =
α

αγ−ω2 , g11 =− γ
αγ−ω2 ,

g22 =− 1
r2 , g33 =− 1

r2sin2θ
,

g01 =−g10 =
ω

αγ−ω2 . (3.2)

We need also sαβ, whose non-zero components are

s00 =
αγ−ω2

α
, s11 =−αγ−ω2

γ
,

s22 = −r2 , s33 =−r2sin2θ . (3.3)

The determinants have values

g =−(αγ−ω2)r4sin2θ (3.4)

and

s =− (αγ−ω2)2

αγ
r4sin2θ . (3.5)

With these relations equation (2.12) gives

C =
1
4

ln
αγ−ω2

αγ
. (3.6)

As the sources are spherically symmetric only the radial
component of the electric field is present, that is,

F01 = E(r.t) (3.7)

and all other components of Fαβ vanish. Then the non-zero
components of the electromagnetic stress tensor are given by
[4]

E00 =
E2

2α
(1+

ω2

αγ
)(1− ω2

αγ
)−1/2 , (3.8a)

E11 =−α
γ

E00 , (3.8b)

E22 =
E2r2

2αγ
(1− ω2

αγ
)−1/2 , (3.8c)

E33 = E22sin2θ (3.8d)

and

E01 =−E10 =
ωE2

αγ
(1− ω2

αγ
)−1/2 . (3.8e)

Let us see the form acquired by the field equations. From
the onset we see, from the last relation in (3.1) and (3.8e),
that (2.4) is identically satisfied because it involves only the
components g[01] and E[01]. We consider now (2.3). Due to the
last relation in (3.2) there are only two non-trivial components
of that equation, that is, for α = 0 and α = 1.They are

g[01],r = 0 ; g[10],0 = 0 . (3.9)

From (3.4) and the last relation in Eq. (3.2) we have

g[01] =
ωr2

√
αγ−ω2

sinθ . (3.10)



Brazilian Journal of Physics, vol. 37, no. 2A, June, 2007 437

From the equations in (3.9) we see that the quantity

ωr2
√

αγ−ω2
= F (3.11)

is a constant, with respect to both space and time. F is the
conserved fermion charge number. From here it follows that
the combination

αγ
αγ−ω2 = 1+

F2

r4 (3.12)

is time-independent. From this result it follows that the quan-
tity C in (3.6) depends only on r. Therefore only C,r survives
in equation (2.11). We then have

C,λ = δλr
F2

r(r4 +F2)
. (3.13)

Using these two equations we obtain [4] the following values
for the non-zero connection components (a

′
= a,r),

Γ0
(01) =

γ′

2γ
+

F2

r(r4 +F2)
,

Γ1
00 =

γ′

2α
+

γ
α

F2

r(r4 +F2)
,

Γ1
11 =

α′

2α
+

F2

r(r4 +F2)
,

Γ1
22 =− r

α
,

Γ1
33 =− r sin2 θ

α
,

Γ2
(12) = Γ3

(13) =
r3

r4 +F2 ,

Γ2
33 =−sinθcosθ ,

Γ3
(23) = cotθ ,

and (
.
a= a,t)

Γ0
00 =

1
2

.
ν, Γ0

11 =
1
2

eµ−ν .
µ, Γ1

(01) =
1
2

.
µ . (3.14)

These three last relations come from

Γ0
00 =

1
2

α
αγ−ω2

∂
∂t

γ(αγ−ω2)
γα

,

Γ0
11 =

1
2

α
αγ−ω2

∂
∂t

α(αγ−ω2)
αγ

and

Γ1
(01) =

1
2

γ
αγ−ω2

∂
∂t

α(αγ−ω2)
αγ

, (3.15)

when use is made of (3.12).

Let us see now what are the relations that they will bring
about to the field equation (2.1). Putting for short

B = r4 +F2 (3.16)

we obtain the following non-trivial four relations, corre-
sponding first to α = β = 0,

(
γ′

2α
+

γ
α

F2

rB

)′

+

(
γ′

2α
+

γ
α

F2

rB

)(
α′

2α
− γ′

2γ
+

2r3

B

)

+γΛ−1
2

..
µ +

1
4

.
ν

.
µ−1

4
.
µ2

=
κ

4π
E00 , (3.17a)

then to α = β = 1,

(
γ′

2γ
+

F2 +2r4

rB

)′

−
(

γ′

2γ
+

F2

rB

)(
α′

2α
− γ′

2γ

)

−2r3

B

(
α′

2α
+

F2

rB
− r3

B

)

+αΛ− eµ−ν(
1
2

..
µ−1

4
.
ν

.
µ +

1
4

.
µ2

) =
κ
4π

E11 , (3.17b)

next to α = β = 2,

−
( r

α

)′
− r

α

(
γ′

2γ
+

α′

2α
+

2F2

rB

)
+1−Λr2

=
κ
4π

E22 (3.17c)

and finally to α = 0 and β = 1

r3

F2 + r4

.
µ= 0 , (3.17d)

because according to equation (3.8e) E(01) = 0. All these re-
lations reduce to those of GR [3] when F = 0.

From the equation above we see that
.
µ= 0 . (3.18)

Therefore, the additional last terms on the left-hand side of
both equations (3.17a) and (3.17b) drop out. As µ is time-
independent it follows from the second relation in (3.1) that
this is so also for α, that is, it depends only on r, α = α(r).
Multiplying (3.17a) by α/γ and adding the result to (3.17b) we
see, on account of (3.8b), that the right-hand side will vanish,
leading then to the same relation as before [4],

γ′

2γ
+

α′

2α
=

F2

r(F2 + r4)
. (3.19)
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Integration gives

γα = k(t)
(

1+
F2

r4

)−1/2

. (3.20)

Therefore,

γ(r, t) = k(t)γ̄(r) . (3.21)

where

γ̄(r) =
1
α

(
1+

F2

r4

)−1/2

. (3.22)

The fact that γ(r, t) can depend on time only through a time-
dependent factor could be guessed before integration because
(3.19) tell us that γ′/γ is time-independent and, consequently,
γ has to have the form written in (3.21). From this we see
that only the time part of the line element ds2 will contain a
time-dependent coefficient, γdt2 = k(t)γ̄(r)dt2. However, this
time-dependent factor can be made equal to unity by a change
of the time coordinate. In fact it is sufficient to use the new
time coordinate t̄ given by

dt̄ =
√

k(t)dt (3.23)

to obtain the time-independent metric in [4],

ds2 = γ̄(r)dt̄2−α(r)dr2− r2dθ2− r2 sinθdφ2 . (3.24)

Starting from here and following the same steps of the begin-
ning of this section, we obtain Eq. (3.11) with γ̄ replacing
γ,

ωr2
√

αγ̄−ω2
= F . (3.25)

This tell us that ω is also time-independent and given by the
same expression as before in [4],

ω(r) =
rF

(r4 +F2)
3
4

. (3.26)

This follows from (3.25), which gives

ω2 =
αγ̄F2

r4 +F2 (3.27)

and Eq. (3.22).
We consider now equation (2.5)for the electric field in the

redefined metric with γ̄ replacing γ. As gs =−αγ̄r4sin2θ equa-
tion (2.8) gives, recalling (3.4),

f =

√
1− ω2

αγ̄
. (3.28)

Only two non-trivial relations follows from (2.5), those for
µ = 0 and µ = 1. They are

∂
∂r

(
E2r2
√

αγ̄
) = 0 (3.29)

and

∂
∂t

(
Er2
√

αγ̄
) = 0 . (3.30)

¿From this last relation we see that ∂E/∂t = 0, meaning that
E is time-independent.

Therefore, all quantities, the metric coefficients and the
electric field, are independent of time. This proves the sta-
tic theorem: the exterior spherically symmetric gravitational-
electromagnetic field is necessarily static.

We go now to equation (3.17c) and solve for α(r). Using in
(3.8c) the results in (3.19) and the relation

(1− ω2

αγ̄
)−1/2 = (1+

F2

r4 )1/2 , (3.31)

that follows from (3.27), we have

E22 =
Q2

2r2 (1+
F2

r4 )1/2 . (3.32)

Then taking this into (3.17c) together with (3.16), we obtain,
neglecting the small cosmological constant,

−
( r

α

)′
− r

α
3F2

r(F2 + r4)
+1 = G

Q2

r4 (1+
r4

F2 )1/2 . (3.33)

Choosing the constant of integration equal to−2MG (M is the
mass of the charged particle) in such a way that the Reissner-
Nordström (RN) result appears when F = 0, we obtain, as in
[4],

1
α(r)

=
(

1+
F2

r4

)
−

(
1+

F2

r4

)3/4

(
2MG

r
+

GQ2

r
h(r)) ,

(3.34)
where

h(r) =
∫ dr

r (F2 + r4)1/4 , (3.35)

which, as it should, goes to −r−1 when F vanishes. Then
from (3.22), we obtain

γ̄(r)=
(

1+
F2

r4

)1/2

−
(

1+
F2

r4

)1/4

(
2M
r

+
GQ2

r
h(r)) .

(3.36)
Equation (3.35) can be put in the closed form:

h(r) =
1

2|F |1/2 [tan−1
(

1+
r4

F2

)1/4

+
1
2

ln

(
1+ r4

F2

)1/4
−1

(
1+ r4

F2

)1/4
+1

− π
2
] , (3.37)

with the term −π/2 to give the right limit, −r−1, when F
vanishes.
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Now the electric field. From (3.29) it then follows that the
quantity

E(r)r2
√

αγ̄
= Q (3.38)

is a constant, the charge of the system. Using (3.22) we have

E(r) =
Q
r2

(
1+

F2

r4

)−1/4

. (3.39)

This reproduces in fact the point charge RN result Q/r2 for E
when F = 0, that is when g[αβ] = 0, the situation in which we
recover the Einstein-Maxwell field of GR. At large distances,
r >> | F | 1

2 , E(r) goes into the RN Coulomb field but for
small values of r, it behaves as r−1. So all the results of the
time-independent regime are recuperated.
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