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The Design of a Very High-Q Superconductor Electromechanical Clock
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We discuss the properties of an electromechanical oscillator whose operation is based upon the cyclic, quasi-
conservative conversion between gravitational potential, kinetic, and magnetic energies. The system consists
of a strong-pinning type-II superconductor square loop subjected to a constant external force and to magnetic
fields. The loop oscillates in the upright position at a frequency that can be tuned in the range 10-1000 Hz,
and has induced in it a rectified electrical current. The emphasis of this paper is on the evaluation of the major
remaining sources of losses in the oscillations. We argue that such losses should be associated with the viscous
vibration of pinned flux lines in the superconductor Nb-Ti wire, provided the oscillator is kept under vacuum
and the magnetic field is sufficiently uniform. Losses of similar or greater magnitude would be associated with
dragging of the loop against the He atmosphere remaining in the evacuated cryostat. We discuss how other
different sources of loss would become negligible for such operational conditions, so that a very high quality
factor Q exceeding 1010 might in principle be reached by the oscillator. The prospective utilization of such
oscillator as a low-frequency high-Q clock is analyzed.
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I. INTRODUCTION

In a recent paper [1] we discussed the physical principles
of a very simple kind of superconducting electromechanical
oscillator. Its operation would be based upon the cyclic and
quasi-conservative energy conversion between the magnetic
energy associated with the lossless electric currents inside a
superconducting loop, and the kinetic and gravitational po-
tential energies of the vertical oscillations of the loop in the
presence of a system of magnets. The magnetic levitation of
the loop itself is not obtained by hysteretic repulsion against
a dipolar magnetic field [2], but comes straight from uniform
magnetic fields through the Lorentz forces they impose upon
the currents in the loop. Electrical currents in the loop are
obtained from mechanical motion and vice-versa. It is the ob-
jective of the present paper to show theoretically the extreme
stability of such oscillator by performing a calculation of its
quality factor Q, something not included in [1]. We further
discuss the possible application of the oscillator as part of an
extremely stable low-frequency clock.

The layout of the oscillator is depicted in Fig. 1 [1]. Un-
der certain experimental conditions a type-II superconductor
square loop of side length l, mass m, and self-inductance L
would levitate in the upright position while subjected to the
uniform distribution of fields B1 and B2. The length of the
lower side of the loop subjected to B2 is designated as a(< l).
According to the theory in [1], in the “absence” of losses
the loop would perform quasi-harmonic oscillations of fre-
quency Ω = B0a/(mL)1/2, with B0 ≡ B1−B2. The amplitude
of the oscillations is x0 = g/Ω2, and the maximum speed of
the oscillations is ν0 = g/Ω, where g stands for the gravity
acceleration( assuming F = mg in [1]). Such mechanical os-
cillations are accompanied by a rectified current containing
an alternating component of same frequency, and amplitude
i0 = mg/(aB0). In practice, the loop might be fixed to a non-
magnetic (e.g., teflon) frame to increase rigidity and avoid vi-

brations of the thin wire, so that m would stand for the mass
of the whole oscillating set.

II. THEORY

The utilization of a type-II superconductor loop introduces
several possible sources of loss, which must be individu-
ally circumvented. For this purpose the loop should oscillate
in high-vacuum, preferably below 1K. Electrically insulating
magnets should also be used. These measures would decrease
dragging against an atmosphere, and would avoid eddy cur-
rent losses induced in nearby metallic parts. Insulation against
vibrations of the magnets should also be included in the de-
sign. Losses in the superconductor itself are practically elimi-
nated by working well below Tc and by keeping Ω well below
the MHz range, since no eddy currents associated with the
normal electrons in the superconductor would be excited at
these low frequencies[3]. A strong-pinning, high-κ (κ is the
Ginzburg-Landau parameter) material should be used to make
the wire, to avoid flux-creep and hysteresis losses. Flux-creep
occurs when bundles of pinned flux-lines (FL) jump between
pinning-centers inside a type-II superconductor, under the ef-
fect of magnetic forces associated with the current density that
flows in the material. For conventional (i.e., low Tc) supercon-
ductors flux-creep becomes negligible if the current density is
much smaller than the critical current density[4], so that the
experiment must be designed to obey this condition (see be-
low).

Hysteresis is by far the most important source of energy
dissipation in strong-pinning superconductors carrying alter-
nating currents at low frequencies, under external magnetic
fields. Hysteretic losses are associated with the magnetic work
per cycle needed to rebuild the FL array, whose displacements
are essentially irreversible. Therefore, the key for eliminating
hysteresis losses is not allowing the FL in the wire to move ir-
reversibly between pinning centers. Such displacements of
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Figure 1 
FIG. 1: A square type-II superconductor loop of side l is subjected
to a distribution of uniform static fields B1 and B2 greater than the
lower critical field. Note that while the loop oscillates in the vertical
direction no part of its wires is subjected to variable static magnetic
fields, something essential to avoid hysteresis losses [1].

the FL are associated with the establishment of a critical-
state flux profile in the specimen. We recall some results of
Campbell’s work on this subject[5,6] quoted in [1]. Camp-
bell demonstrated that if a type-II superconductor sample is
subjected to a static external field H superimposed to a small
ripple field h of frequency ω, a critical-state flux profile will
be established from the surface only if b = µ0h is greater than
δ≡ (µ0JcBdo)1/2, where Jc is the critical current density of the
material, B ≈ µ0H, and do is the size of the potential energy
well that arrests a flux line (do is measured in [6] and is on the
order of 2 to 6 nm). For lower ripple fields the FL displace-
ments are quasi-reversible (i.e., no losses were measured). In
such conditions the ripple field and the corresponding induced
current will be restricted to a surface layer of thickness λe f f

= (Bdo/(µ0Jc))1/2, which is on the order of micrometers for
strong-pinning materials and B on the order of Tesla. λe f f
is analogous to the penetration depth of type-I superconduc-
tors, but much greater in magnitude. Therefore, to produce
reversible FL displacements only, the current i flowing in a
square loop made with a cylindrical superconductor wire of
radius r should not generate a field greater than δ at any point
on the surface of the wire, and thus i must be restricted by the
criterion [1]

Cµ0i/(2πr)≤ (µ0JcBdo)1/2 (1)

Here C ≈ 1.75 corrects for the concentration of field at the

inner corners of the loop as compared with the field µ0i/(2πr)
produced by an infinite wire of same radius. It must be
stressed that under such conditions the critical state is not
reached since the current density is too small, and this avoids
flux-creep also, in agreement with Campbell’s observation
that no effect of flux-creep was apparent in his data [5,6]. An-
other effect discarded by Campbell was the hysteretic motion
of FL pinned by surface roughness in the specimen, a sub-
ject qualitatively discussed by Melville[7]. Campbell’s results
were fully explainable utilizing bulk-material properties only,
with no intervention of surface effects. This indicates that the
losses associated with surface pinning can be made compar-
atively small. In the discussions below we follow Campbell
and consider that surface effects may be eliminated by using
high-κ, strong-pinning materials [6] and by doing a proper
surface finishing on the wire.

On the other hand, Campbell’s theoretical model com-
pletely neglects energy dissipation associated with the FL os-
cillations inside the pinning wells. This is an oversimplifi-
cation, since the motion of the FL is accompanied by drag-
ging of the normal electrons in their centers, so that a vis-
cous force term proportional to the velocity of the FL should
be included in the theory [8]. In fact, Campbell’s descrip-
tion of the quasi-reversible penetration of flux into a planar
vacuum/superconductor interface can be deduced from the or-
dinary treatment of eddy currents in metals[9] provided one
assumes an imaginary resistivity ρC = (iωη/k)(H/Hc2)ρn,
which takes the viscosity effects partially into account. Here
the notation of [8]( translated to MKS units) is adopted:
η = φ0µ0Hc2/ρn is the flux-flow viscosity, k = Jcφ0/d0 is
the elastic force constant of the pinning interaction, ρn is the
normal-state resistivity, Hc2 is the upper critical field, and φ0
is the flux quantum. With such expression for ρC Camp-
bell’s effective penetration depth λe f f may be obtained at
once from the formula for the eddy currents skin depth[9] as
λe f f = (µ0ω/|ρC|)−1/2. For this purely imaginary resistivity
the phasors J and E= ρCJ become 90o out of phase and thus
no power P = Re <E*J> related to flux motion is dissipated
within this level of approximation.

The more precise treatment of Gittleman and Rosenblum[8]
results in a resistivity ρGR = (iωη/(iωη + k))(H/Hc2)ρn.
There will be losses associated with the real part of ρGR. Since
the ratio η/k is usually much smaller than 10−6 these losses
become extremely small, but not null at low frequencies. Such
treatment of viscous-flow losses associated with the motion of
FL at low currents can be directly applied to the evaluation
of the quality factor Q for the type-II superconductor electro-
mechanical oscillator, since it provides a method for calcu-
lating the power losses due to vibrations of pinned FL. We
take as a realistic example the losses that would be associ-
ated with the oscillations of a loop made with a Nb-48 Wt %
Ti alloy described in detail in [10,11] The physical properties
relevant for the calculations were all carefully determined for
this material, so that a quite precise application of the theory
is possible.
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III. QUALITY FACTOR CALCULATION FOR A
STRONG-PINNING NB-TI OSCILLATOR

Meingast and collaborators[10,11] performed a very de-
tailed study of the physical and microstructural properties of
a Nb-48 Wt. % Ti alloy containing a homogeneous distribu-
tion of α-Ti precipitates. In the present calculations we take
their data for the particular case of a wire drawn to a 0.645
mm diameter. The upper critical field µ0Hc2= 11.5 T at 4.2 K;
the normal state resistivity at the critical temperature (9.5 K)
is ρn= 7× 10−7 ohm.m; the critical current density Jc = 3×
109 A/m2 at 4.2 K, under a magnetic field of 0.6 Tesla. It will
be assumed that the loop is a square of side length l= 5 cm,
and a=3 cm in Fig. 1. Since the average density of this Nb-Ti
alloy is 6.6 g/cm3, the loop mass would be m= 0.431 g. The
self-inductance of the loop L can be calculated from a specific
formula, so that L= 1.5×10−7 H. The static fields produced by
the magnets will be assumed as B1= 0.6 T and B2= 0.3 T, so
that B0= 0.3 T. In order that hysteresis losses be avoided one
of the conditions to be met is that the static fields acting upon
each point of the wires must remain constant to a precision of
about 10% of the ripple field produced by the currents in the
loop, irrespective of the loop vertical displacements. From
the value for δ (see below) this tolerance range should be on
the order of 4×10−4 T. All the parameters needed by the the-
ory can be calculated from these data. We obtain Ω= 1119
rad/s, corresponding to a low frequency of oscillation, f = 178
Hz. The amplitude of oscillation is x0= 7.8 µm, which is quite
small. From relation (1) it is possible to calculate the thresh-
old ripple field δ, which is 3.4×10−3 T, for B = B1= 0.6 T and
d0= 5 nm in (1) (d0 should be similar to the coherence length
measured for the alloy at 4.2 K, ξ= 5 nm), which results in
the threshold current ith= 3.1 A. That is, the loop will oscil-
late without hysteresis losses provided the current induced by
the movement is smaller than ith. This is actually the case,
since the maximum value of the rectified current necessary
for levitation is[1] imax = 2i0 = 2mg/(aB0) = 0.94 A, which
guarantees that the critical state conditions are far from being
reached.

We conclude that if the loop oscillates in perfect vacuum at
absolute zero temperature, the only “major” remaining source
of energy dissipation will be the viscous drag of FL oscillating
inside their pinning wells in a surface layer of thickness λe f f .
According to [8], the power dissipated per unit volume is P =
1/2(ωη)2/((ωη)2 + k2)J2(H/Hc2)ρn, where we neglect the
FL mass and ω = Ω. Inserting the figures into the expressions
for the viscosity and for the elastic constant one obtains η=
3.29×10−8 and k= 1200 (all in MKS units), which makes the
η/k ratio extremely small. This leads to a simplification in the
expression for P, which can be written as

P = 1/2(Ωη/k)2J2(H/Hc2)ρn (2)

The currents in the loop flow within a surface layer of thick-
ness λe f f = 0.63 µm for B2= 0.3 T, and 0.89 µm, for B1= 0.6 T
(the same Jc is used for both fields), so that the effective cross-
sectional area of wire penetrated by currents is Ss= 2πrλe f f =
1.27×10−9 m2 if the field is B2, and 1.79×10−9 m2 if the

field is B1. The current density in (2) is obtained from the am-
plitude of the alternating part of the rectified current, that is,
J = i0/Ss, for each value of Ss. Therefore, the average value
of P from (2) is 1.2×10−6 W/m3. Such power is dissipated
in a thin tubular shell where the FL oscillations actually take
place around the loop. Taking into consideration the varia-
tions in λe f f , the effective power dissipated in the loop is
the product of P times the volume of the tubular shells, so
that PFL= 4.1×10−16 W. The quality factor Q is defined as the
ratio UΩ/PFL, where U is the total energy of the oscillating
system. In this case U = mgx0 = Li20= 3.24×10−8 J, which
results in Q = 8.8×1010.

In reality, the oscilations will not take place under perfect
vacuum and at the absolute zero temperature. The loop will be
subjected to dragging forces due to the remaining atmosphere
inside the cryostat even at high-vacuum conditions. The main
factor affecting dragging is temperature, though. Tempera-
ture will drastically affect the cryostat atmosphere viscosity
ηg. The dragging force per unit length acting upon a slen-
der cylinder due to a rarefied gaseous atmosphere of specific
mass ρ at low oscillating speeds v transverse to its length is
described by the formula[12,13]:

Fd = 4πηgν/(ln(ηg/(νρr))+1/2+2ln2−0.577215) (3)

The losses associated with (3) can in fact be much greater
than those due to the FL oscillations. However, if we take
T = 0.05 K, p= 10−8 Torr, ηg= 1.5×10−10 kg/(m s)[14], r
= 0.3 mm, ν = Ωx0 = 0.009 m/s, maximum, and adopt the
ideal gas equation of state for ρ for the He gas, we obtain Fd=
1.7×10−12 N/m, maximum. Each vertical side of the loop is
subjected to about one half the drag of an horizontal side[15].
For sides (l) 5 cm long, the effective power associated with
Fd will be given by Pd = 3l× (1/2 Fdν) = 1.15× 10−15 W.
This number is about three times the value for PFL due to the
FL oscillations calculated earlier. Taking all these losses into
account, the conclusion is that the Q factor for this oscilla-
tor would have an upper bound of ≈ 2× 1010 under the best
“realistic” working conditions.

IV. THE DESIGN OF A HIGHLY STABLE,
LOW-FREQUENCY CLOCK

Recent developments, widely reported even in the press,
give account of the tremendous advances in miniaturization of
atomic clock design[16]. These are basically optic-electronic
devices with quality factors reaching close to 1010, whereas
ordinary crystal-oscillator clocks have Qs that range from 109,
initially, and decay to 107 as working conditions affect the
overall performance of the device. What we propose in this
paper is not a device that would compete commercially with
atomic or other kinds of clocks for daily use. In reality, our
purpose is essentially scientific. We have discussed how a
low-frequency, extremely precise clock can be built from an
ordinary, large-scale, “mass-spring” system. We have dis-
cussed the main sources of loss, and have suggested working
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conditions to circumvent them. The final design will proba-
bly require improvements. Firstly, the loop will not be left
to oscillate without some kind of measuring device coupled
to it to measure the amplitude and frequency of oscillations.
The simplest option might be the utilization of the reflection
or refraction of a laser beam for this purpose, which would
probably require a cryostat with proper windows below the
loop position. Another technical problem that would certainly
arise in a practical experiment is that of sidewise drifts of the
loop motion. Ways of dealing with this particular problem
can easily be devised with some ingenuity but will not be dis-
cussed here. A price to be paid is of course the decrease of the
attainable Q if, for instance, one decides to make the experi-

ment with the loop fixed to a thin teflon board. Keeping drag
losses low would require even lower temperatures and better
vacuum conditions.

In short, we have discussed a Basic Physics experiment,
quite demanding for its actual implementation, but whose ul-
timate reward might be the achievement of the most stable
conventional oscillator ever built.
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