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Hadron energy spectra induced by one-single nucleon are obtained solving diffusion equations by the method
of characteristics. Our solutions are a generalization of earlier papers that allow us to calculate hadron fluxes
including the energy dependence of the interaction lengths and inelasticities. A comparison with the integral
hadron spectra of the so-called “halo events” detected by the Brazil-Japan Collaboration at Mt. Chacaltaya is
made, in order to test our solutions. A reasonable agreement between then is obtained, considering the rising
with energy of the nucleon inelasticity coefficient.
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I. INTRODUCTION

In the last year, we developed an analytical method [1]
that allow us to calculate with a good precision the hadronic
and electromagnetic components of cosmic rays in the earth’s
atmosphere. Our solutions, obtained with a power law pri-
mary spectra, permit us to include the scaling violation for the
hadron interactions and the energy dependence of the hadron
interaction mean-free paths and inelasticities.

For sake of completeness, we looked for another boundary
condition in order to test our analytical method. If we choose,
for instance, a single nucleon (delta function) as the boundary
condition, the nucleon spectra then obtained is an exact so-
lution. They are presented in the usual modified Bessel func-
tions of order 1. Differently of the common solutions found in
the literature [2–4], the argument of these functions is variable
according to the index of summation. This is a consequence
of the energy dependence of the interaction mean-free path
and inelasticity. This initial condition is important to describe
the flux of the so-called ”halo events” detected with nuclear
emulsion at mountain altitudes and Extensive Air Showers as
well.

The Brazil-Japan Collaboration has detected cosmic-ray
events in the energy range (1013 − 1017)eV with emulsion
chamber exposed at Mt. Chacaltaya. About 20 events have
been observed in the visible energy region E ≥ 1000TeV .
Approximately, half of them [5–8] are associated with an uni-
form darkened wide area on X-ray films. This area, in the
central part, is called ”halo” and so these events are called
”halo events”. Similar experiments at Pamir [9],Fuji [10] and
Kanbala [11] have also observed such events. Recently, a new
experiment [12], using a hadron calorimeter associated with
emulsion chambers at Mt. Chacaltaya, has reported this kind
of events too. Thus, the appearance of a strong concentration
of energy and particles as a halo seems to be a common feature
in this energy region.

After the eighties, these super-families were also compared
with simulated ones using different primary compositions and
models for high-energy nuclear interactions [13–15]. These
simulations cannot describe fully all events with the same

inputs on primary composition and nuclear collision mod-
els. Due to their big values of the hadronic number and en-
ergy, some authors [16] suggested that these events can be
explained as centauro-like ones.

An important issue in the high energy region concerns to the
behavior of the inelasticity, which is defined as the fraction of
energy giving up by the leading hadron in a collision induced
by an incident hadron on a target nucleon or nucleus. This
parameter has been exhaustively studied in several papers, but
until now continues to be an open question. Several authors
have suggested that the average inelasticity coefficient is an
increasing function of the energy [17, 18], whereas others pro-
posed that it is a decreasing one [19–21]. However, high en-
ergy cosmic rays, which reflects the nuclear interaction in the
energy region covering 1 to 100 TeV , are well fitted with a
constant value of the mean inelasticity equal to 0.50 [22, 23].
At higher energies, in which these super-families belong, a
constant value for the inelasticity is no longer valid in order
to explain experimental data. This is why, we think that our
method is important to clarify this particular aspect.

This paper is organized as follows: In section II we obtain
the integral hadron energy spectra. The nucleon spectra, in
real space, is evaluated for the method of residues arriving to
an exact solution. For the meson case, we use a parametriza-
tion made by Portella [24] that relates the charged pion-to-
nucleon ratio at mountain altitudes. In section III we com-
pare these fluxes with the data of some halo events (P06, Ursa
Maior, Andromeda and Mini-Andromeda III) [6–8]. In sec-
tion IV we discuss the results and make some remarks and
conclusions.

II. THE HADRON ENERGY SPECTRA

As described in the Appendix B, the Eq(B.5) represents the
Mellin transform of the nucleon flux.

Considering the single incident nucleon with energy E0 as,

N(E,0) = δ(
E
A
− E0

A
), (1)
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so the Mellin transform of this initial condition is

Ñ(s,0) = (
A
E0

)−s. (2)

By inverting the above Mellin transform, we obtain the nu-
cleon flux in a formal way that reads

N(E, t) = (
E0

A
)−1 1

2πi

∫
(

E
E0

)−(s+1)e−( A
B )β[1−A(s)]t/λN ds. (3)

The only contribution to the flux comes from the essential
pole s = s0 in A(s). To consider this residue, we expand the
exponential function in power series to obtain

Res(s0) =
1

2πi
(

E0

A
)−1 {( E

E0
)−1 e−(A/B)βt/λN

∞

∑
n=0

1
n!

((
A
B

)β t
λN

1
δ
)n

∫
[(

E0

E
)(

A
K

)nκ]s
1

(s− s0)n ds}. (4)

To evaluate the residue, we define the function acting on the (s− s0) powers inside the integral by G(s) = [(E0
E )( A

K )nκ]s = gs.
Since G(s) is analytic in the neighborhood of s = s0, we expand it in a Laurent series about s = s0 so that Res(s0) becomes

Res(s0) =
1

2πi
(

E0

A
)−1 {( E

E0
)−1 e−(A/B)βt/λN

∞

∑
n=0

∞

∑
m=0

1
n!

1
m!

((
A
B

)β t
λN

1
δ
)nG(m)(s0)

∫ 1
(s− s0)n−m ds}. (5)

By taking (n−m) = +1 terms, we pick up the contributions to the essential residue so that

N(E,E0, t) = (
E0

A
)−1 (

E
E0

)−(s0+1) e−(A/B)βt/λN [(
A
K

)κs0((
A
B

)β t
λN

1
δ
)

∞

∑
n=1

1
n!

1
(n−1)!

[
Z2(n)

4
]n−1. (6)

where Z2(n)/4 = (A/K)κs0(A/B)β(t/λN)(1/δ)(lng). The last equation can be rewritten in terms of the modified Bessel functions
of order 1. Thus, results as

N(E,E0, t) = (
E0

A
)−1 (

E
E0

)−(s0+1) e−(A/B)βt/λN [(
A
K

)κs0((
A
B

)β t
λN

1
δ
)

2
Z

I1(Z(n)). (7)

This is semi-divergent. It diverges up to some nth term due
to the factors like ( t

λN
)n. Afterwards, it begins to converge due

to the factorials of n. We notice that, with the energy depen-
dence, g = g(n) is a function of the summation index n, so that
Z(n) is a function of n through lng. For the single incident nu-
cleon case, the fraction E

E0
< 1 so that g is larger than unity and

lng is positive. Consequently, Z2(n) is positive which leads to
the modified Bessel function solution. With κ = 0, g = E0

E is
only a function of E, and lng is then independent of n.

The essential residue here plays a very important role be-
cause it represents the flux at a given atmospheric depth t

λN
.

We remark that this case of single incident nucleon can also
be solved in real space in terms of probability distributions

under the assumption of constant mean-free path and uniform
elasticity [2, 3]. In the Mellin transform space, it can also be
solved by residues under the same assumption [4]. In both
approaches, the results are in terms of the modified Bessel
functions I1(Z) of order 1. Here, we have generalized the ear-
lier works [2, 3] to the case of energy dependent mean-free
path and elasticity. In this case, the argument of the modified
Bessel function is now n-dependent, Z = Z(n).

The pion fluxes at mountain altitudes are obtained from nu-
cleon intensities using a parametrization taken from[24] and
written as
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R =
Πch(E,E0, t)

Πch(E,E0, t)+N(E,E0, t)
= a+bE, (8)

where a = 0.43 and b = 0.04TeV−1 for Mt. Chacaltaya. The
integral flux of hadrons is then easily calculated from Eq. (7)
and the equation above. It can be written as follows

H(≥ E,E0, t) =
∫ E0

E
[N(E

′
,E0, t)+Π(E

′
,E0, t)]dE

′
. (9)

The integral energy spectrum of hadrons for halo events is
presented in the fractional form, that is

fh = E(γ)
h /∑E(γ)

h . (10)

The hadronic visible energy E(γ)
h is the energy of hadrons

detected by means of electromagnetic showers induced by γ−
rays from π0 decays. It is related to the hadron energy as

E(γ)
h = κγE. (11)

We used for κγ (gamma ray inelasticity) the mean value
0.25 [10].

III. NUMERICAL RESULTS

In order to make numerical calculations about the inte-
gral hadron fluxes, we take into account the nucleon collision
mean-free path in the earth’s atmosphere decreasing with the
energy. We have used the expression λN(E) = λN(E

B )−β with
B = 1 TeV , λN = 83 g/cm2 and β = 0.056 which are obtained
from accelerator and EAS data in the region 1 TeV ≤ Elab ≤
1000 TeV [25]. For the pion mean-free path, we assume that
λπ/λN ' 1.4, and that it has the same energy dependence like
the nucleon case [32]. In the present calculation we have only
one free parameter, A(TeV ), which is the normalization factor
of the energy in Mellin’s transform.

Figure 1 below shows a comparison of our integral hadron
fluxes with the data of four halo events detected at Mt. Chacal-
taya by the Brazil-Japan Collaboration. In this figure two lines
appear representing the inelasticity coefficients, rising (dot-
ted) and decreasing (dashed) with energy. Our calculations
are obtained with 0.53≤KN ≤ 0.64 and 0.53≥KN ≥ 0.38 for
dotted and dashed lines, respectively. We notice that the solu-
tion with inelasticity coefficient rising with energy is the best
one, confirming recent results about ordinary families origi-
nated from power law spectrum measured at mountain alti-
tudes [1, 33].

IV. DISCUSSIONS AND CONCLUSIONS

Using a recently method developed by us, we calculated
the nucleon flux at different depths in a wide energy range
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FIG. 1: Our numerically calculated fractional energy spectra of
hadrons in integral form for decreasing and increasing inelasticities,
together with experimental data. The lines are drawn only to guide
the eyes. See text for detailed procedures.

started by one single nucleon. We have generalized earlier pa-
pers which did not include the energy dependence of the colli-
sion mean-free path and of the mean nucleon inelasticity. Our
solution is presented in the usual modified Bessel functions
of order 1. In our solution, the argument of those functions
is variable according the summation index differently of the
common solution found in the literature. This fact is related
directly with the energy dependence of the two parameters
mentioned above.

The meson fluxes are obtained with a parametrization al-
ready mentioned in the text. A comparison with the integral
hadronic spectra measured at Mt. Chacaltaya for 4 halo events
is made. A best fit is obtained for < KN > rising with energy
in the range 2 ≤ Eγ

h ≤ 1000 TeV . The above parametrization
is calculated considering a breaking of scaling law in the frag-
mentation region only.

The effect of the energy variation of the interaction mean-
free path on the integral hadron flux was also worked out.
When the energy increases the collision mean-free path de-
creases, and the number of produced hadrons is enhanced be-
cause the inelastic cross section becomes higher, neverthe-
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less these hadrons are in a lower energy range. Therefore,
these particles are out of the detector’s threshold resulting in a
steeper flux. The same effect appears in the discussion of the
inelasticity coefficient. When the inelasticity rises with energy
the number of produced particles becomes higher. Therefore,
particles in the high energy range are in lower number com-
pared with the cases of the coefficient of inelasticity constant
or decreasing with energy.

Acknowledgments

This work was supported by the Conselho Nacional de De-
senvolvimento Cientı́fico e Tecnológico (CNPq, The Brazil-

ian National Council of Scientific and Technological Devel-
opments) and the Fundacão de Amparo a Pesquisa do Estado
do Rio de Janeiro (FAPERJ, The Research Fostering Founda-
tion of the State of Rio de Janeiro).

Appendix A. Method of characteristics for nucleon diffusion
equations

From considerations of different fundamental physical
processes, the number density flux of nucleons N(E, t) per en-
ergy interval dE centered at energy E at a given atmospheric
depth t is described by

∂N(E, t)
∂t

= −N(E, t)
λ(E)

+
∫ 1

0

∫ ∞

E
u(η)δ(E−ηE ′)

N(E ′, t)
λ(E ′)

dE ′dη

= −N(E, t)
λ(E)

+
∫ 1

0
u(η)

N(E/η, t)
λ(E/η)

1
η

dη (A.1)

where λ(E) is the energy dependent mean-free path, η(E ′) = E/E ′ < 1 is the elasticity, u(η) is the elasticity distribution.
Modelling the mean-free path by a power index β [25],

λ(E) = λN(
E
B

)−β, (A.2)

Eq. (A.1) reads

∂N(E, t)
∂t

=− 1
λN

(
E
B

)βN(E, t)+
1

λN
(

E
B

)β
∫ 1

0
(

1
η

)β+1u(η)N(
E
η

, t)dη (A.3)

where B is the normalization energy of the mean-free path. Instead of introducing mapping operators to the two terms on the
right side of Eq. (A.3) to solve it formally in real space [26], we proceed to use the Mellin transform defined by

Ñ(s, t) =
∫ ∞

0
(

E
A

)sN(E, t)d(
E
A

) (A.4)

N(E, t) =
1

2πi

∫
(

E
A

)−(s+1)Ñ(s, t)ds (A.5)

where the energy E is normalized to some reference energy A, so that the transform does not carry dimension of energy to power
s. Now, Eq. (A.3) in the transform space reads

∂Ñ(s, t)
∂t

= − 1
λN

(
A
B

)βÑ(s+β, t)

+
1

λN
(

A
B

)β
∫ ∞

0
< ηs > (

E/A
< η >

)s+βN(
E/A

< η >
, t)d(

E/A
< η >

) (A.6)

With K as the normalization energy of elasticity, we use the following average model of elasticity [20] to power s

< ηs > =
∫ 1

0
u(η)ηsdη/

∫ 1

0
u(η)dη =

1
(1+δs)

(
E ′

K
)κs

=
1

(s− s0)
1
δ
(

A
K

)κs(
E ′

A
)κs = a(s)(

A
K

)κs(
E/A

< η >
)κs (A.7)

where s0 = −1/δ. For a uniform elasticity distribution, we
have κ = 0, δ = 1, and s0 = −1. In particular, taking s = 1

gives the average elasticity
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< η >=
1

(1+δ)
(

E ′

K
)κ (A.8)

The equation of the flux transform then becomes

(
A
B

)−β ∂Ñ(s, t)
∂t

= − 1
λN

Ñ(s+β, t)

+
1

λN
(

A
K

)κsa(s)Ñ(s+β+κs, t)(A.9)

We notice that, if the energy E in the Mellin transform was
not normalized to some reference energy A, then Ñ(s, t),
Ñ(s + β, t) and Ñ(s + β + κs, t) would have different dimen-
sions in energy which would conceal the effects of the en-
ergy dependence in mean-free path and elasticity. Here, in
Eq. (A.6), they have the same dimension of N(E,0). The
mean-free path factor (A/B)β and the elasticity factor (A/K)κs

are working as the weighting factors among different trans-
forms.

We observe that the nucleon cascade equation, Eq. (A.1),
has two competing terms on the right side. The first term is
the diffusion term that drains the flux N(E, t)dE at E to lower
energies E ′. The second term is the attenuation term that fills
the flux at E by higher energies E ′. Since the mean-free path
scaled by Eq. (A.2) vanishes as E/B goes to infinity with β >
0, the first term would dominate the equation and the spatial
gradient of the flux would be very negative at high energies.
As for the elasticity η = E/E ′ < 1, it goes to zero at a given
E as E ′ goes to infinity. For the average elasticity < η > of
Eq. (A.8) to have the same limit at a given E as E ′/K becomes
infinite, κ has to be negative.

Appendix B. Method of Characteristics

To solve Eq. (A.9), we notice that both β and κ are much
less than s, so that one way to solve this equation is by iter-
ations. Some researchers define two operators in the trans-
form space to represent the two finite difference terms on the
right side of Eq. (A.9) to solve it formally by operators [27].
Following the property β,κ < s, we choose to make a Tay-
lor expansion of the two terms in Ñ(s, t) to get a first order
differential equation. For nucleons we have

λN(
A
B

)−β ∂Ñ(s, t)
∂t

+[β−A(s)(β+κs)]
∂Ñ(s, t)

∂s
= −[1−A(s)]Ñ(s, t) (B.1)

A(s) = (
A
K

)κs a(s) = (
A
K

)κs 1
δ

1
(s− s0)

. (B.2)

This partial differential equation is equivalent to the following
set of ordinary differential equations which describes the tra-
jectory of the coordinate point (s, t, Ñ) in the functional space
parameterized to ξ [28]

(
A
B

)β d t
λN

=
d s

[β−A(s)(β+κs)]
=− dÑ

[1−A(s)]Ñ
= dξ.(B.3)

This method of characteristics to solve first order partial dif-
ferential equations was used in superradiant free electron
lasers [29, 30]. Solving for the equality between dt and ds,

(
A
B

)β d t
λN

=
d s

[β−A(s)(β+κs)]
(B.4)

we get a trajectory between the variables t and s through the
parameter ξ, t = t(s,β,κ), which is the characteristics of the
partial differential equation, Eq. (B.1). Considering uniform
elasticity, κ = 0, δ = 1, we have

A(s) = a(s) =
1

s+1
,

(
A
B

)β t
λN

=
1
β

[ln(
s

s(0)
)+(s− s(0))] ,

where s(t) > s(0). Following Landau and Rumer [31] in their
pioneering and landmark paper of electromagnetic cascade, s
in the transform space, in our case here, also bears the mean-
ing of shower age parameter. By recognizing the Mellin trans-
form, with integer s, as also the sth energy moment of the
distribution function N(E, t), Landau and Rumer constructed
a scheme to uncover many physical properties of the electro-
magnetic cascade by using functional analysis on Ñ(s, t) itself
without doing the inverse transform. They noticed that Ñ(s, t)
represented actually real physical parameters when and only
when s was an integer.

To get the transform of the flux, we could solve the equality
of dÑ with dξ, or with ds, or with dt. Since the boundary
condition of Ñ is given in terms of s at t = 0, we choose to
solve with dt

(
A
B

)β d t
λN

= − dÑ
[1−A(s)]Ñ

Ñ(s, t) = Ñ(s,0)e−µ(s)t/λN (B.5)

where µ(s) = (A/B)β[1 − A(s)]. The factor (A/B)β in
Eqs. (B.4 and B.5) represents the relative weight of the mean-
free path to the elasticity effect.
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