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Off-Diagonal Mass Generation for Yang-Mills Theories in the Maximal Abelian Gauge
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We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N)
Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the
Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost operator of mass
dimension two, which lowers the vacuum energy. We construct an effective potential for this operator by a
combined use of the local composite operators technique with algebraic renormalization and we discuss the
gauge parameter independence of the results. We also show that it is possible to connect the vacuum energy,
due to the mass dimension two condensate discussed here, with the non-trivial vacuum energy originating from
the condensate

〈
A2

µ
〉
, which has attracted much attention in the Landau gauge.
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I. INTRODUCTION.

An unresolved problem of SU(N) Yang-Mills theory is
color confinement. A physical picture that might explain con-
finement is based on the mechanism of the dual supercon-
ductivity [1, 2], according to which the low energy regime
of QCD should be described by an effective Abelian theory
in the presence of magnetic monopoles. These monopoles
should condense, giving rise to the formation of flux tubes
which confine the chromoelectric charges.

Let us provide a very short overview of the concept of
Abelian gauges, which are useful in the search for magnetic
monopoles, a crucial ingredient in the dual superconductivity
picture.

Abelian gauges

We recall that SU(N) has a U(1)N−1 subgroup, consisting
of the diagonal generators. In [2], ’t Hooft proposed the idea
of the Abelian gauges. Consider a quantity X(x), transforming
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in the adjoint representation of SU(N).

X(x)→U(x)X(x)U+(x) with U(x) ∈ SU(N) . (1)

The transformation U(x) which diagonalizes X(x) is the one
that defines the gauge. If X(x) is already diagonal, then clearly
X(x) remains diagonal under the action of the U(1)N−1 sub-
group. Hence, the gauge is only partially fixed because there
is a residual Abelian gauge freedom.

In certain space time points xi, the eigenvalues of X(x)
can coincide, so that U(xi) becomes singular. These possible
singularities give rise to the concept of (Abelian) mag-
netic monopoles. They have a topological meaning since
π2

(
SU(N)/U(1)N−1

) 6= 0 and we refer to [3, 4] for all the
necessary details.

The dual superconductor as a mechanism behind con-
finement

Let us give a simplified picture of the dual superconductor
to explain the idea. If the QCD vacuum contains monopoles
and if these monopoles condense, there will be a dual Meiss-
ner effect which squeezes the chromoelectric field into a thin
flux tube. This results in a linearly rising potential, V (r) = σr,
between static charges, as can be guessed from Gauss’ law,∫

EdS = cte or, since the main contribution is coming from the
flux tube, one finds E∆S≈ cte, hence V =−∫

Edr ≈ cte× r
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FIG. 1: A chromoelectric flux tube between a static quark-antiquark
pair.

An example of an Abelian gauge: the maximal Abelian
gauge (MAG)

Let Aµ be the Lie algebra valued connection for the
gauge group SU(N), whose generators T A, satisfying[
T A,T B

]
= f ABCTC, are chosen to be antihermitean and

to obey the orthonormality condition Tr
(
T AT B

)
= −TF δAB,

with A,B,C = 1, . . . ,
(
N2−1

)
. In the case of SU(N), one has

TF = 1
2 . We decompose the gauge field into its off-diagonal

and diagonal parts, namely

Aµ = AA
µ T A = Aa

µT a +Ai
µT i, (2)

where the indices i, j, . . . label the N−1 generators of the Car-
tan subalgebra. The remaining N(N−1) off-diagonal genera-
tors will be labeled by the indices a, b, . . .. The field strength
decomposes as

Fµν = FA
µνT A = Fa

µνT a +F i
µνT i , (3)

with the off-diagonal and diagonal parts given respectively by

Fa
µν = Dab

µ Ab
ν−Dab

ν Ab
µ +g f abcAb

µAc
ν , (4)

F i
µν = ∂µAi

ν−∂νAi
µ +g f abiAa

µAb
ν ,

where the covariant derivative Dab
µ is defined with respect to

the diagonal components Ai
µ

Dab
µ ≡ ∂µδab−g f abiAi

µ . (5)

For the Yang-Mills action one obtains

SYM =−1
4

∫
d4x

(
Fa

µνFµνa +F i
µνFµνi) . (6)

The maximal Abelian gauge (MAG), introduced in [2–4], cor-
responds to minimizing the functional

R [A] =
∫

d4x
[
Aa

µAµa] (7)

One checks that R [A] does exhibit a residual U(1)N−1 invari-
ance.

The MAG can be recast into a differential form

Dab
µ Aµb = 0 (8)

Although we have introduced the MAG here in a functional
way, it is worth mentioning that the MAG does correspond to
the diagonalization of a certain adjoint operator, see e.g. [5].

The renormalizability in the continuum of the MAG was
proven in [6, 7], at the cost of introducing a quartic ghost in-
teraction. The corresponding gauge fixing term turns out to be
[6, 7]

SMAG = s
∫

d4x
(

ca
(

Dab
µ Abµ +

α
2

ba
)
− α

2
g f abicacbci− α

4
g f abccacbcc

)
, (9)

where α is the MAG gauge parameter and s denotes the nilpotent BRST operator, acting as

sAa
µ = −

(
Dab

µ cb +g f abcAb
µcc +g f abiAb

µci
)

, sAi
µ =−

(
∂µci +g f iabAa

µcb
)

,

sca = g f abicbci +
g
2

f abccbcc, sci =
g
2

f iabcacb,

sca = ba , sci = bi ,

sba = 0 , sbi = 0 . (10)

Here ca,ci are the off-diagonal and the diagonal components of the Faddeev-Popov ghost field, while ca,ba are the off-diagonal
antighost and Lagrange multiplier. We also observe that the BRST transformations (10) have been obtained by their standard
form upon projection on the off-diagonal and diagonal components of the fields. We remark that the MAG (9) can be written in
the form

SMAG = ss
∫

d4x
(

1
2

Aa
µAµa− α

2
caca

)
, (11)
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with s being the nilpotent anti-BRST transformation, acting as

sAa
µ = −

(
Dab

µ cb +g f abcAb
µcc +g f abiAb

µci
)

, sAi
µ =−

(
∂µci +g f iabAa

µcb
)

,

sca = g f abicbci +
g
2

f abccbcc, sci =
g
2

f iabcacb,

sca = −ba +g f abccbcc +g f abicbci +g f abicbci , sci =−bi +g f ibccbcc ,

sba = −g f abcbbcc−g f abibbci +g f abicbbi sbi =−g f ibcbbcc . (12)

It can be checked that s and s anticommute.
Expression (9) is easily worked out and yields

SMAG =
∫

d4x
(

ba
(

Dab
µ Aµb +

α
2

ba
)

+ caDab
µ Dµbccc +gca f abi

(
Dbc

µ Aµc
)

ci +gcaDab
µ

(
f bcdAµccd

)

− αg f abibacbci− g2 f abi f cdicacdAb
µAµc− α

2
g f abcbacbcc− α

4
g2 f abi f cdicacbcccd

− α
4

g2 f abc f adicbcccdci− α
8

g2 f abc f adecbcccdce
)

. (13)

We note that α = 0 does in fact correspond to the “real”
MAG condition, given by eq.(8). However, one cannot set
α = 0 from the beginning since this would lead to a nonrenor-
malizable gauge. Some of the terms proportional to α would
reappear due to radiative corrections, even if α = 0. See, for
example, [30]. For our purposes, this means that we have to
keep α general throughout and leave to the end the analysis of

the limit α→ 0, to recover condition (8).
In order to have a complete quantization of the theory, one

has to fix the residual Abelian gauge freedom by means of a
suitable further gauge condition on the diagonal components
Ai

µ of the gauge field. A common choice for the Abelian gauge
fixing, also adopted in the lattice papers [5, 8], is the Landau
gauge, given by

Sdiag = s
∫

d4x ci∂µAµi =
∫

d4x
(

bi∂µAµi + ci∂µ
(

∂µci +g f iabAa
µcb

))
, (14)

where ci,bi are the diagonal antighost and Lagrange multi-
plier.

Abelian dominance

According to the concept of Abelian dominance, the low
energy regime of QCD can be expressed solely in terms of
Abelian degrees of freedom [9]. Lattice confirmations of the
Abelian dominance can be found in [10, 11]. To our knowl-
edge, there is no analytic proof of the Abelian dominance.
Nevertheless, an argument that can be interpreted as evidence
of it, is the fact that the off-diagonal gluons would attain a dy-
namical mass. At energies below the scale set by this mass,
the off-diagonal gluons should decouple, and in this way one
should end up with an Abelian theory at low energies.

A lattice study of such an off-diagonal gluon mass reported
a value of approximately 1.2GeV [5]. More recently, the
off-diagonal gluon propagator was investigated numerically
in [8], reporting a similar result.

There have been several efforts to give an analytic descrip-
tion of the mechanism responsible for the dynamical gen-
eration of the off-diagonal gluon mass. In [12, 13], a cer-
tain ghost condensate was used to construct an effective, off-

diagonal mass. However, in [14] it was shown that the ob-
tained mass was a tachyonic one, a fact confirmed later in [15].
Another condensation, namely that of the mixed gluon-ghost
operator ( 1

2 Aa
µAµa +αcaca) [39], that could be responsible for

the off-diagonal mass, was proposed in [16]. That this oper-
ator should condense can be expected on the basis of a close
analogy existing between the MAG and the renormalizable
nonlinear Curci-Ferrari gauge [17, 18]. In fact, it turns out
that the mixed gluon-ghost operator can be introduced also in
the Curci-Ferrari gauge. A detailed analysis of its conden-
sation and of the ensuing dynamical mass generation can be
found in [19, 20].

Here, we shall report on the results of [21]. It was investi-
gated explicitly if the mass dimension two operator ( 1

2 Aa
µAµa +

αcaca) condenses, so that a dynamical off-diagonal mass is
generated in the MAG. The pathway we intend to follow is
based on previous research in this direction in other gauges.
In [22], the local composite operator (LCO) technique was
used to construct a renormalizable effective potential for the
operator AA

µ AµA in the Landau gauge. As a consequence of〈
AA

µ AµA
〉 6= 0, a dynamical mass parameter is generated [22].

The condensate
〈
AA

µ AµA
〉

has attracted attention from theoret-
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ical [23, 24] as well as from the lattice side [25]. It was shown
by means of the algebraic renormalization technique [26] that
the LCO formalism for the condensate

〈
AA

µ AµA
〉

is renormal-
izable to all orders of perturbation theory [27]. The same for-
malism was successfully employed to study the condensation
of ( 1

2 AA
µ AµA +αcAcA) in the Curci-Ferrari gauge [19, 20]. We

would like to note that the Landau gauge corresponds to α = 0.
Later on, the condensation of AA

µ AµA was confirmed in the lin-
ear covariant gauges [28, 29], which also possess the Landau
gauge as a special case. It was proven formally that the va-
cuum energy does not depend on the gauge parameter in these
gauges. As such, the linear, Curci-Ferrari and Landau gauges
are all connected to each other. We managed to connect also
the MAG with the Landau gauge, and as such with the linear
and Curci-Ferrari gauges [21].

II. RENORMALIZABILITY OF SU(N) YANG-MILLS
THEORIES IN THE MAG IN THE PRESENCE OF THE

LOCAL COMPOSITE OPERATOR ( 1
2 Aa

µAµa +αcaca)

To prove the renormalizability to all orders of perturbation
theory, we shall rely on the algebraic renormalization formal-
ism [26]. In order to write down a suitable set of Ward identi-
ties, we first introduce external fields Ωµi, Ωµa, Li, La coupled
to the BRST nonlinear variations of the fields, namely

Sext =
∫

d4x
(
−Ωµa

(
Dab

µ cb +g f abcAb
µcc +g f abiAb

µci
)

−Ωµi
(

∂µci +g f iabAa
µcb

)

+ La
(

g f abicbci +
g
2

f abccbcc
)

+Li g
2

f iabcacb
)

, (15)

with

sΩµa = sΩµi = 0 , (16)
sLa = sLi = 0 .

Moreover, in order to discuss the renormalizability of the
gluon-ghost operator

OMAG =
1
2

Aa
µAµa +αcaca , (17)

we introduce it in the starting action by means of a BRST
doublet of external sources (J,λ)

sλ = J , sJ = 0 , (18)

so that

SLCO = s
∫

d4x
(

λ
(

1
2

Aa
µAµa +αcaca

)
+ζ

λJ
2

)
(19)

=
∫

d4x
(

J
(

1
2

Aa
µAµa +αcaca

)
+ζ

J2

2
−αλbaca

+ λAµa
(

Dab
µ cb +g f abiAb

µci
)

+αλca
(

g f abicbci +
g
2

f abccbcc
))

,

where ζ is the LCO parameter accounting for the divergences
present in the vacuum correlator 〈OMAG(x)OMAG(y)〉, which
are proportional to J2. Therefore, the complete action

Σ = SYM +SMAG +Sdiag +Sext +SLCO , (20)

is BRST invariant

sΣ = 0 . (21)

It is worth mentioning that the mixed gluon-ghost mass opera-
tor, defined in eq.(17), is built using off-diagonal components
only. As noticed in [16, 31], the operator (17) is also BRST
invariant on-shell. We have written down in [21] all the Ward
identities, which are sufficient to prove that the most gen-
eral local counterterm, compatible with the symmetries of the
model, can always be reabsorbed by means of multiplicative
renormalization. As an interesting by-product, we have been

able to establish a relation between the anomalous dimension
of the gluon-ghost operator OMAG and other, more elemen-
tary, renormalization group functions. Explicitly, it holds to
all orders of perturbation theory that

γOMAG(g2) =−2
(

β(g2)
2g2 − γci(g2)

)
, (22)

where β(g2) = µ ∂g2

∂µ and γci(g2) denotes the anomalous dimen-
sion of the diagonal ghost field.

A. The effective potential via the LCO method.

We present here the main steps in the construction of the
effective potential for a local composite operator. A more de-
tailed account of the LCO formalism can be found in [32, 33].
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To obtain the effective potential for the condensate 〈OMAG〉,
we set the sources Ωi

µ, Ωa
µ, La, Li and λ to zero and consider

the renormalized generating functional

exp(−iW (J)) =
∫

[Dϕ]exp iS(J) ,

S(J) = SYM +SMAG +Sdiag +Scount +
∫

d4x
(

ZJJ
(

1
2

Z̃AAa
µAµa +ZαZ̃cαcaca

)
+(ζ+δζ)

J2

2

)
, (23)

where ϕ denotes the relevant fields and Scount is the usual counterterm contribution, i.e. the part without the composite operator
OMAG. The quantity δζ is the counterterm accounting for the divergences proportional to J2. Using dimensional regularization
throughout with the convention that d = 4− ε, one has the following identification

ζ0J2
0 = µ−ε(ζ+δζ)J2 . (24)

where the subscript “0” denotes bare quantities. The functional W (J) obeys the renormalization group equation (RGE)
(

µ
∂

∂µ
+β(g2)

∂
∂g2 +αγα(g2)

∂
∂α
− γOMAG(g2)

∫
d4xJ

δ
δJ

+η(g2,ζ)
∂
∂ζ

)
W (J) = 0 , (25)

where

γα(g2) = µ
∂

∂µ
lnα ,

η(g2,ζ) = µ
∂
∂µ

ζ . (26)

Acting with µ ∂
∂µ on eq.(24) and keeping in mind that bare quantities do not depend on the renormalization scale µ, one finds

η(g2,ζ) = 2γOMAG(g2)ζ+δ(g2,α) , (27)

with

δ(g2,α) =
(

ε+2γOMAG(g2)−β(g2)
∂

∂g2 −αγα(g2)
∂

∂α

)
δζ . (28)

Up to now, the LCO parameter ζ is still an arbitrary coupling. As explained in [32, 33], simply setting ζ = 0 would give rise to
an inhomogeneous RGE for W (J)

(
µ

∂
∂µ

+β(g2)
∂

∂g2 +αγα(g2)
∂

∂α
− γOMAG(g2)

∫
d4xJ

δ
δJ

)
W (J) = δ(g2,α)

∫
d4x

J2

2
, (29)

and a non-linear RGE for the associated effective action Γ
for the composite operator OMAG. Furthermore, multiplica-
tive renormalizability is lost and by varying the value of δζ,
minima of the effective action can change into maxima or can
get lost. However, ζ can be made such a function of g2 and

α so that, if g2 runs according to β(g2) and α according to
γα(g2), ζ(g2,α) will run according to its RGE (27). This is
accomplished by setting ζ equal to the solution of the differ-
ential equation

(
β(g2)

∂
∂g2 +αγα(g2,α)

∂
∂α

)
ζ(g2,α) = 2γOMAG(g2)ζ(g2,α)+δ(g2,α) . (30)

Doing so, W (J) obeys the homogeneous renormalization group equation
(

µ
∂
∂µ

+β(g2)
∂

∂g2 +αγα(g2)
∂

∂α
− γOMAG(g2)

∫
d4xJ

δ
δJ

)
W (J) = 0 . (31)
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To lighten the notation, we will drop the renormalization factors ZJ ,Z̃A, etc. from now on. One will notice that there are terms
quadratic in the source J present in W (J), obscuring the usual energy interpretation. This can be cured by removing the terms
proportional to J2 in the action to get a generating functional that is linear in the source, a goal easily achieved by inserting the
following unity,

1 =
1
N

∫
[Dσ]exp

[
i
∫

d4x

(
− 1

2ζ

(
σ
g
−OMAG−ζJ

)2
)]

, (32)

with N the appropriate normalization factor, in eq.(23) to arrive at the Lagrangian

L(Aµ,σ) =−1
4

Fa
µνFµνa− 1

4
F i

µνFµνi +LMAG +Ldiag− σ2

2g2ζ
+

1
g2ζ

gσOMAG− 1
2ζ

(OMAG)2 , (33)

while

exp(−iW (J)) =
∫

[Dϕ]exp iSσ(J) , (34)

Sσ(J) =
∫

d4x
(

L(Aµ,σ)+ J
σ
g

)
. (35)

From eqs.(23) and (34), one has the following simple relation

δW (J)
δJ

∣∣∣∣
J=0

=−〈OMAG〉=−
〈

σ
g

〉
, (36)

meaning that the condensate 〈OMAG〉 is directly related to the
expectation value of the field σ, evaluated with the action
Sσ =

∫
d4xL(Aµ,σ). As it is obvious from eq.(33), 〈σ〉 6= 0

is sufficient to have a tree level dynamical mass for the off-
diagonal fields. At lowest order (i.e. tree level), one finds

moff−diag.
gluon =

√
gσ
ζ0

, moff−diag.
ghost =

√
α

gσ
ζ0

. (37)

Meanwhile, the diagonal degrees of freedom remain massless.

III. GAUGE PARAMETER INDEPENDENCE OF THE
VACUUM ENERGY.

We begin this section with a few remarks on the determi-
nation of ζ(g2,α). From explicit calculations in perturbation
theory, it will become clear [40] that the RGE functions show-
ing up in the differential equation (30) look like

β(g2) = −εg2−2
(
β0g2 +β1g2 + · · ·) ,

γOMAG(g2) = γ0(α)g2 + γ1(α)g4 + · · · ,

γα(g2) = a0(α)g2 +a1(α)g4 + · · · ,

δ(g2,α) = δ0(α)+δ1(α)g2 + · · · . (38)

As such, eq.(30) can be solved by expanding ζ(g2,α) in a
Laurent series in g2,

ζ(g2,α) =
ζ0(α)

g2 +ζ1(α)+ζ2(α)g2 + · · · . (39)

More precisely, for the first coefficients ζ0, ζ1 of the expres-
sion (39), one obtains

2β0ζ0 +αa0
∂ζ0

∂α
= 2γ0ζ0 +δ0 ,

2β1ζ0 +αa0
∂ζ1

∂α
+αa1

∂ζ0

∂α
= 2γ0ζ1 +2γ1ζ0 +δ1 . (40)

Notice that, in order to construct the n-loop effective potential,
knowledge of the (n+1)-loop RGE functions is needed.

The effective potential calculated with the Lagrangian (33)
will explicitly depend on the gauge parameter α. The question
arises concerning the vacuum energy Evac, (i.e. the effective
potential evaluated at its minimum); will it be independent of
the choice of α? Also, as it can be seen from the equations
(40), each ζi(α) is determined through a first order differen-
tial equation in α. Firstly, one has to solve for ζ0(α). This
will introduce one arbitrary integration constant C0. Using
the obtained value for ζ0(α), one can consequently solve the
first order differential equation for ζ1(α). This will introduce
a second integration constant C1, etc. In principle, it is possi-
ble that these arbitrary constants influence the vacuum energy,
which would represent an unpleasant feature. Notice that the
differential equations in α for the ζi are due to the running of
α in eq.(30), encoded in the renormalization group function
γα(g2). Assume that we would have already shown that Evac
does not depend on the choice of α. If we then set α = α∗,
with α∗ a fixed point of the RGE for α at the considered or-
der of perturbation theory, then equation (30) determining ζ
simplifies to

β(g2)
∂

∂g2 ζ(g2,α∗) = 2γOMAG(g2)ζ(g2,α∗)+δ(g2,α∗) , (41)

since

γα(g2)α
∣∣
α=α∗ = 0 . (42)

This will lead to simple algebraic equations for the ζi(α∗).
Hence, no integration constants will enter the final result for
the vacuum energy for α = α∗, and since Evac does not depend
on α, Evac will never depend on the integration constants, even
when calculated for a general α. Hence, we can put them
equal to zero from the beginning for simplicity.
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Summarizing, two questions remain. Firstly, we should
prove that the value of α will not influence the obtained value
for Evac. Secondly, we should show that there exists a fixed
point α∗. We postpone the discussion concerning the second

question to the next section, giving a positive answer to the
first one. In order to do so, let us reconsider the generating
functional (34). We have the following identification, ignor-
ing the overall normalization factors

exp(−iW (J)) =
∫

[Dϕ]exp iSσ(J) =
1
N

∫
[DϕDσ]exp i

[
S(J)+

∫
d4x

(
− 1

2ζ

(
σ
g
−OMAG−ζJ

)2
)]

, (43)

where S(J) and Sσ(J) are given respectively by eq.(23), and eq.(35). Obviously,

d
dα

1
N

∫
[Dσ]exp

[
i
∫

d4x

(
− 1

2ζ

(
σ
g
−OMAG−ζJ

)2
)]

=
d

dα
1 = 0 , (44)

so that

dW (J)
dα

=−
〈

s
∫

d4xs
(

1
2

caca
)〉∣∣∣∣

J=0
+ terms ∝ J , (45)

which follows directly from

dS(J)
dα

= ss
∫

d4x
(

1
2

caca
)

+ terms ∝ J . (46)

The terms proportional to the source J are originating from
the term 1

2 ζJ2 present in eq.(23).
We see that the first term in the right hand side of (46) is

an exact BRST variation. As such, its vacuum expectation
value vanishes. This is the usual argument to prove the gauge
parameter independence in the BRST framework [26]. Note
that no local operator Ô, with sÔ = OMAG, exists. Further-
more, extending the action of the BRST transformation on the
σ-field by

sσ = gsOMAG =

−AµaDab
µ cb +αbaca−αg f abicacbci− α

2
g f abccacbcc (47)

one can easily check that

s
∫

d4xL(Aµ,σ) = 0 , (48)

so that we have a BRST invariant σ-action. Thus, when we
consider the vacuum, corresponding to J = 0, only the BRST
exact term in eq.(45) survives. The effective action Γ is re-
lated to W (J) through a Legendre transformation Γ

(
σ
g

)
=

−W (J)− ∫
d4yJ(y)σ(y)

g , while the effective potential V (σ) is
defined as

−V (σ)
∫

d4x = Γ
(

σ
g

)
. (49)

If σmin is the solution of dV (σ)
dσ = 0, then it follows from

δ

δ
(

σ
g

)Γ =−J, (50)

that

σ = σmin ⇒ J = 0 , (51)

and hence,

d
dα

V (σ)
∣∣∣∣
σ=σmin

∫
d4x =

d
dα

W (J)
∣∣∣∣
J=0

, (52)

or, due to eq.(45),

d
dα

V (σ)
∣∣∣∣
σ=σmin

= 0 . (53)

We conclude that the vacuum energy Evac should be indepen-
dent from the gauge parameter α.

A completely analogous derivation was performed in the
case of the linear gauge [29]. Nevertheless, in spite of the
previous argument, explicit results in that case showed that
Evac did depend on α. In [29] it was argued that this apparent
disagreement was due to a mixing of different orders of per-
turbation theory. We explain this with a simple example. A
key argument in the previous analysis is that the source J = 0
vanishes at the end of the calculations. In practice, J = 0 is
achieved by solving the gap equation dV

dσ = 0. Perturbation
theory corresponds to a power series expansion in the cou-
pling constant. The derivative of the effective potential with
respect to σ will hence look like

(
v0 + v1g2 +O(g4)

)
σ , (54)

where we assume that we work up to order g2. The correspon-
ding gap equation reads

v0 + v1g2 +O(g4) = 0 . (55)
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Due to eqs.(49) and (50), one also has

J = g
(
v0 + v1g2 +O(g4)

)
σ . (56)

Imposing the gap equation (55) leads to

J = g
(
0+O(g4)

)
σ . (57)

However, as it can be immediately checked from expression
(43), there are several terms proportional to J in the right-hand
side of eq.(45). For instance, one of them is given by ∂ζ

∂α J2.
Since

∂ζ
∂α

=
∂ζ0

∂α
1
g2 +

∂ζ1

∂α
+O(g2) , (58)

we find

∂ζ
∂α

J2 =
(

∂ζ0

∂α
v2

0 +
(

∂ζ0

∂α
2v0v1 +

∂ζ1

∂α
v2

0

)
g2 +O(g4)

)
σ2 .

(59)
Squaring the gap equation (55),

v2
0 +2v1v0g2 +O(g4) = 0 , (60)

leads to

∂ζ
∂α

J2 =
(

∂ζ1

∂α
v2

0g2 +O(g4)
)

σ2 . (61)

We see that, if one consistently works to the first order, terms
such as ∂ζ

∂α J2 do not equal zero, although J = 0 to that order.
Terms like those on the right-hand side of eq.(61) are can-
celed by terms which are formally of higher order, requiring
thus a mixing of different orders of perturbation theory. Of
course, this problem would not have occurred if we were be
able to compute the effective potential up to infinite order. We
proposed a modification of the LCO formalism suitable cir-
cumventing this problem and obtaining a well defined gauge
independent vacuum energy Evac, without the need of working
at infinite order [29]. Instead of the action (23), let us consider
the following action

S̃(J̃) = SYM +SMAG +Sdiag +
∫

d4x
[

J̃F (g2,α)OMAG +
ζ
2

F 2(g2,α)J̃2
]

, (62)

where, for the moment, F (g2,α) is an arbitrary function of α of the form

F (g2,α) = 1+ f0(α)g2 + f1(α)g4 +O(g6) , (63)

and J̃ is now the source. The generating functional becomes

exp(−iW̃ (J̃)) =
∫

[Dφ]exp iS̃(J̃) . (64)

Taking the functional derivative of W̃ (J̃) with respect to J̃, we obtain

δW̃ (J̃)
δJ̃

∣∣∣∣∣
J̃=0

=−F (g2,α)〈OMAG〉 . (65)

Once more, we insert unity via

1 =
1
N

∫
[Dσ̃]exp

[
i
∫

d4x

(
− 1

2ζ

(
σ̃

gF (g2,α)
−OMAG−ζJ̃F (g2,α)

)2
)]

, (66)

to arrive at the following Lagrangian

L̃(Aµ, σ̃) =−1
4

Fa
µνFµνa− 1

4
F i

µνFµνi +LMAG +Ldiag− σ̃2

2g2F 2(g2,α)ζ
+

1
g2F (g2,α)ζ

gσ̃OMAG− 1
2ζ

(OMAG)2 . (67)

From the generating functional

exp(−iW̃ (J̃)) =
∫

[Dφ]exp iSσ̃(J̃) , (68)

Sσ̃(J̃) =
∫

d4x
(

L(Aµ, σ̃)+ J̃
σ̃
g

)
. (69)

it follows that

δW̃ (J̃)
δJ̃

∣∣∣∣∣
J̃=0

=−
〈

σ̃
g

〉
⇒ 〈σ̃〉= gF (g2,α)〈OMAG〉 , (70)



414 Brazilian Journal of Physics, vol. 37, no. 2A, June, 2007

The renormalizability of the action (35) implies that the ac-
tion (69) will be renormalizable too. Notice indeed that both
actions are connected through the transformation

J̃ =
J

F (g2,α)
. (71)

The tree level off-diagonal masses are now provided by

moff−diag.
gluon =

√
gσ̃
ζ0

, moff−diag.
ghost =

√
α

gσ̃
ζ0

, (72)

while the vacuum configuration is determined by solving the
gap equation

dṼ (σ̃)
dσ̃

= 0 , (73)

with Ṽ (σ̃) the effective potential. Minimizing Ṽ (σ̃) will lead
to a vacuum energy Evac(α) which will depend on α and the
hitherto undetermined functions fi(α) [41]. We will deter-
mine those functions fi(α) by requiring that Evac(α) is α-
independent. More precisely, one has

dEvac

dα
= 0⇒ first order differential equations in α for fi(α) .

(74)
Of course, in order to be able to determine the fi(α), we

need an initial value for the vacuum energy Evac. This cor-
responds to initial conditions for the fi(α). In the case of
the linear gauges, to fix the initial condition we employed the
Landau gauge [29], a choice which would also be possible in
case of the Curci-Ferrari gauges, since the Landau gauge be-
longs to these classes of gauges. This choice of the Landau
gauge can be motivated by observing that the integrated oper-
ator

∫
d4xAA

µ AµA has a gauge invariant meaning in the Landau
gauge, due to the transversality condition ∂µAµA = 0, namely

(V T )−1 min
UεSU(N)

∫
d4x

[(
AA

µ
)U (

AµA)U
]

=
∫

d4x(AA
µ AµA) in the Landau gauge , (75)

with the operator on the left hand side of eq.(75) being gauge
invariant. Moreover, the Landau gauge is also an all-order
fixed point of the RGE for the gauge parameter in case of
the linear and Curci-Ferrari gauges. At first glance, it could
seem that it is not possible anymore to make use of the Landau
gauge as initial condition in the case of the MAG, since the
Landau gauge does not belong to the class of gauges we are
currently considering. Fortunately, we shall be able to prove
that we can use the Landau gauge as initial condition for the
MAG too. This will be the content of the next section.

Before turning our attention to this task, it is worth noticing
that, if one would work up to infinite order, the expressions

(62) and (69) can be transformed exactly into those of (23),
respectively (35) by means of eq.(71) and its associated trans-
formation

σ̃ = F (g2,α)σ , (76)

so that the effective potentials Ṽ (σ̃) and V (σ) are exactly the
same at infinite order, and as such will give rise to the same,
gauge parameter independent, vacuum energy.

IV. INTERPOLATING BETWEEN THE MAG AND THE
LANDAU GAUGE

In this section we shall introduce a generalized renormaliz-
able gauge which interpolates between the MAG and the Lan-
dau gauge. This will provide a connection between these two
gauges, allowing us to use the Landau gauge as initial condi-
tion. An example of such a generalized gauge, interpolating
between the Landau and the Coulomb gauge was already pre-
sented in [34]. Moreover, we must realize that in the present
case, we must also interpolate between the composite opera-
tor 1

2 AA
µ AµA of the Landau gauge and the gluon-ghost operator

OMAG of the MAG. Although this seems to be a highly com-
plicated assignment, there is an elegant way to treat it.

Consider again the SU(N) Yang-Mills action with the MAG
gauge fixing (11). For the residual Abelian gauge freedom, we
impose

S′diag =
∫

d4x
(

bi∂µAµi + ci∂2ci + ci∂µ

(
g f iabAµacb

)

+κg f iabAa
µ
(
∂µci)cb +κg2 f iab f icdcacdAb

µAµc

−κg f iabAi
µAµa(bb−g f jbcccc j)+κg f iabAµi(Dac

µ cc)cb

+κg2 f abi f acdAi
µAµccdcb

)
, (77)

where κ is an additional gauge parameter. The gauge fixing
(77) can be rewritten as a BRST exact expression

S′diag =
∫

d4x
[
(1−κ)s

(
ci∂µAµi)+κss

(
1
2

Ai
µAµi

)]
.(78)

Next, we will introduce the following generalized mass di-
mension two operator,

O =
1
2

Aa
µAµa +

κ
2

Ai
µAµi +αcaca , (79)

by means of

S′LCO = s
∫

d4x
(

λO +ζ
λJ
2

)

=
∫

d4x
(

JO +ζ
J2

2
−αλbaca +λAµaDab

µ cb
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+αλca
(

g f abicbci +
g
2

f abccbcc
)

− κλci∂µAµi +κg f iabλAa
µAµicb

)
, (80)

with (J,λ) a BRST doublet of external sources,

sλ = J , sJ = 0 . (81)

As in the case of the gluon-ghost operator (17), the general-
ized operator of eq.(79) turns out to be BRST invariant on-
shell.

Let us take a closer look at the action

Σ′ = SYM +SMAG +S′diag +S′LCO +Sext . (82)

The external source part of the action, Sext, is the same as
given in eq.(15).

Also, it can be noticed that, for κ → 0, the generalized lo-
cal composite operator O of eq.(79) reduces to the composite
operator OMAG of the MAG, while the diagonal gauge fixing
(78) reduces to the Abelian Landau gauge (14). Said other-
wise, for κ→ 0, the action Σ′ of eq.(82) reduces to the one we
are actually interested in and which we have discussed in the
previous sections.

Another special case is κ → 1, α → 0. Then the gauge
fixing terms of Σ′ are

SMAG +S′diag =
∫

d4xs
(−AA

µ ∂µcA)
=

∫
d4x

(
cA∂µDAB

µ cB +bA∂µAA
µ
)

, (83)

which is nothing else than the Landau gauge. At the same
time, we also have

lim
(α,κ)→(0,1)

O =
1
2

AA
µ AµA , (84)

which is the pure gluon mass operator of the Landau gauge
[22, 27].

From [27], we already know that the Landau gauge with the
inclusion of the operator AA

µ AµA is renormalizable to all orders
of perturbation theory. On the other hand, we have already
proven the renormalizability for κ = 0. The complete action
Σ′, as given in eq.(82), is BRST invariant

sΣ′ = 0 . (85)

In [21], we have written down the Ward identities of this
model for κ 6= 0 and general α, and we have proven the renor-
malizability to all orders of perturbation theory. It was found
that the additional gauge parameter κ does not renormalize in
an independent way, while also a generalized version of the
relation (22) emerges

γO(g2) =−2
(

β(g2)
2g2 − γci(g2)

)
. (86)

Summarizing, we have constructed a renormalizable gauge
that is labeled by a couple of parameters (α,κ). It allows
us to introduce a generalized composite operator O, given
by eq.(79), which embodies the local operator AA

µ AµA of the
Landau gauge as well as the operator OMAG of the MAG. To
construct the effective potential, one sets all sources equal to
zero, except J, and introduces unity to remove the J2 terms. A
completely analogous argument as the one given in section III
allows to conclude that the minimum value of V (σ), thus Evac,
will be independent of α and κ, essentially because the deriv-
ative with respect to α as well as with respect to κ is BRST
exact, up to terms in the source J. This independence of α and
κ is again only assured at infinite order in perturbation theory,
so we can generalize the construction, proposed in section III,
by making the function F of eq.(63) also dependent on κ. The
foregoing analysis is sufficient to make sure that we can use
the Landau gauge result for Evac as the initial condition for
the vacuum energy of the MAG. Moreover, we are now even
in the position to answer the question about the existence of
a fixed point of the RGE for the gauge parameter α, which
was necessary to certify that no arbitrary constants would en-
ter the results for Evac. We already mentioned that the Landau
gauge, i.e. the case (α,κ) = (0,1), is a renormalizable model
[27], i.e. the Landau gauge is stable against radiative correc-
tions. This can be reexpressed by saying that (α,κ) = (0,1) is
a fixed point of the RGE for the gauge parameters, and this to
all orders of perturbation theory.

V. NUMERICAL RESULTS FOR SU(2)

After a quite lengthy formal construction of the LCO for-
malism in the case of the MAG, we are now ready to present
explicit results. In this paper, we will restrict ourselves to the
evaluation of the one-loop effective potential in the case of
SU(2). As renormalization scheme, we adopt the modified
minimal substraction scheme (MS). Let us give here, for fur-
ther use, the values of the one-loop anomalous dimensions of
the relevant fields and couplings in the case of SU(2). In our
conventions, one has [35–37]

γci(g2) = (−3−α)
g2

16π2 +O(g4) , (87)

γα(g2) =
(
−2α+

8
3
− 6

α

)
g2

16π2 +O(g4) , (88)

while

β(g2) =−εg2−2
(

22
3

g4

16π2

)
+O(g6) , (89)

and exploiting the relation (22)

γOMAG(g2) =
(

26
3
−2α

)
g2

16π2 +O(g4) , (90)

a result consistent with that of [36].
The reader will notice that we have given only the 1-loop

values of the anomalous dimensions, despite the fact that we
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have announced that one needs (n+1)-loop knowledge of the
RGE functions to determine the n-loop potential. As we shall
see soon, the introduction of the function F (g2,α) and the use
of the Landau gauge as initial condition allow us to determine

the 1-loop results we are interested in, from the 1-loop RGE
functions only.

Let us first determine the counterterm δζ. For the generat-
ing functional W (J), we find at 1-loop [42]

W (J) =
∫

ddx
(
−(ζ+δζ)

J2

2

)
+ i lndet

[
δab (

∂2 +αJ
)]− i

2
lndet

[
δab

((
∂2 + J

)
gµν−

(
1− 1

α

)
∂µ∂ν

)]
,

(91)

and employing

lndet
[

δab
((

∂2 + J
)

gµν−
(

1− 1
α

)
∂µ∂ν

)]
= δaa [

(d−1)tr ln
(
∂2 + J

)
+ tr ln

(
∂2 +αJ

)]
, (92)

with

δaa = N(N−1) = 2 for N = 2 , (93)

one can calculate the divergent part of eq.(91),

W (J) =
∫

d4x
[
−δζ

J2

2
− 3

16π2 J2 1
ε
− 1

16π2 α2J2 1
ε

+
1

8π2 α2J2 1
ε

]
. (94)

Consequently,

δζ =
1

8π2

(
α2−3

) 1
ε

+O(g2) . (95)

Next, we can compute the RGE function δ(g2,α) from
eq.(28), obtaining

δ(g2,α) =
α2−3

8π2 +O(g2) . (96)

Having determined this, we are ready to calculate ζ0. The
differential equation (40) is solved by

ζ0(α) = α+
(
9−4α+3α2)C0 , (97)

with C0 an integration constant. As already explained in the
previous sections, we can consistently put C0 = 0. Here, we
have written it explicitly to illustrate that, if α would coincide
with the 1-loop fixed point of the RGE for the gauge parame-
ter, the part proportional to C0 in eq.(97) would drop. Indeed,
the equations 9−4α + 3α2 = 0 and −2α + 8

3 − 6
α = 0, stem-

ming from eq.(88), are the same. Moreover, we also notice
that this equation has only complex valued solutions. There-
fore, it is even more important to have made the connection
between the MAG and the Landau gauge by embedding them
in a bigger class of gauges, since then we have the fixed point,
even at all orders. In what follows, it is understood that ζ0 = α.

We now have all the ingredients to construct the 1-loop ef-
fective potential Ṽ1(σ̃). One obtains

Ṽ1(σ̃) =
σ̃2

2ζ0

(
1−

(
2 f0 +

ζ1

ζ0

)
g2

)
+

3
32π2

g2σ̃2

ζ2
0

(
ln

gσ̃
ζ0µ2 −

5
6

)
− 1

32π2
g2α2σ̃2

ζ2
0

(
ln

gασ̃
ζ0µ2 −

3
2

)
. (98)

It can be checked explicitly that Ṽ1(σ̃) obeys the renormaliza-
tion group

µ
d
dµ

Ṽ1(σ̃) = 0+ terms of higher order , (99)

by using the RGE functions (87)-(90) and the fact that the

anomalous dimension of σ̃ is given by

γσ̃(g2) =
β(g2)
2g2 + γOMAG(g2)+µ

∂ lnF (g2,α)
∂µ

, (100)

which is immediately verifiable from eq.(70).
We now search for the vacuum configuration by minimiz-

ing Ṽ1(σ̃) with respect to σ̃. We will put µ2 = gσ̃
ζ0

to exclude
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possibly large logarithms, and find two solutions of the gap
equation dṼ1

dσ

∣∣∣
µ2= gσ̃

ζ0

= 0, namely

σ̃ = 0 , (101)

y ≡ g2N
16π2

∣∣∣∣
N=2

=
2ζ0

16π2 (2 f0ζ0 +ζ1)+α2 lnα−α2 +1
.

(102)

The quantity y is the relevant expansion parameter, and should
be sufficiently small to have a sensible expansion.The value
for 〈σ̃〉 corresponding to eq.(102) can be extracted from the
1-loop coupling constant

g2(µ) =
1

β0 ln µ2

Λ2
MS

. (103)

The first solution (101) corresponds to the usual, perturbative
vacuum (Evac = 0), while eq.(102) gives rise to a dynamically
favoured vacuum with energy

Evac = − 1
64π2

(
3−α2)(

moff−diag
gluon

)4
, (104)

moff−diag
gluon = e

3
22y ΛMS . (105)

From eq.(104), we notice that at the 1-loop approximation,
α2 ≤ 3 must be fulfilled in order to have Evac ≤ 0. In principle,
the unknown function f0(α) can be determined by solving the
differential equation

dEvac

dα
= 0 ⇔ 2α

(
moff−diag

gluon

)4
+4

(
α2−3

)(
moff−diag

gluon

)3 dmoff−diag
gluon

dα
= 0

⇔ α+
3−α2

y2

(
∂y
∂α

+
∂y
∂ζ0

∂ζ0

∂α
+

∂y
∂ζ1

∂ζ1

∂α
+

∂y
∂ f0

∂ f0

∂α

)
= 0 (106)

with initial condition Evac(α) = ELandau
vac . However, to solve eq.(106) knowledge of ζ1 is needed. Since we are not interested in

f0(α) itself, but rather in the value of the vacuum energy Evac, the off-diagonal mass moff−diag
gluon and the expansion parameter y,

there is a more direct way to proceed, without having to solve the eq.(106). Let us first give the Landau gauge value for Evac in
the case N = 2, which can be easily obtained from [22, 38],

ELandau
vac =− 9

128π2 e
17
6 Λ4

MS . (107)

Since the construction is such that Evac(α) = ELandau
vac , we can equally well solve

− 9
128π2 e

17
6 Λ4

MS =− 1
64π2

(
3−α2)(

moff−diag
gluon

)4
, (108)

which gives the lowest order masses

moff−diag
gluon =

(
9
2

e
17
6

3−α2

) 1
4

ΛMS , moff−diag
ghost =

√
α

(
9
2

e
17
6

3−α2

) 1
4

ΛMS , (109)

The result (109) can be used to determine y. From eq.(105)
one easily finds

y =
36

187+66ln 9
2(3−α2)

. (110)

We see thus that, for the information we are currently inter-
ested in, we do not need explicit knowledge of ζ1 and f0. We
want to remark that, if ζ1 were known, the value for y obtained
in eq.(110) can be used to determine f0 from eq.(102). This
is a nice feature, since the possibly difficult differential equa-
tion (106) never needs to be solved in this fashion. Before
we come to the conclusions, let us consider the limit α → 0,

corresponding to the “real” MAG Dab
µ Aµb = 0. One finds

moff−diag
gluon =

(
3
2

e
17
6

) 1
4

ΛMS ≈ 2.25ΛMS ,

y =
36

187+66ln 3
2

≈ 0.168 . (111)

The relative smallness of y means that our perturbative analy-
sis should give qualitatively meaningful results.
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VI. DISCUSSION AND CONCLUSION

The aim of this paper was to give analytic evidence, as ex-
pressed by eq.(111), of the dynamical mass generation for off-
diagonal gluons in Yang-Mills theory quantized in the max-
imal Abelian gauge. This mass can be seen as support for
the Abelian dominance [9–11] in that gauge. This result is
in qualitative agreement with the lattice version of the MAG,
were such a mass was also reported [5, 8]. The off-diagonal
lattice gluon propagator could be fitted by 1

p2+m2 , which is in
correspondence with the tree level propagator we find. We
have been able to prove the existence of the off-diagonal mass
by investigating the condensation of a mass dimension two op-
erator, namel ( 1

2 Aa
µAµa + αcaca). It was shown how a mean-

ingful, renormalizable effective potential for this local com-
posite operator can be constructed. By evaluating this poten-
tial explicitly at 1-loop order in the case of SU(2), the for-
mation of the condensate is favoured since it lowers the va-
cuum energy. The latter does not depend on the choice of the
gauge parameter α, at least if one would work to infinite or-
der in perturbation theory. We have explained in short how to

overcome the problem at finite order and gave a way to over-
come it. Moreover, we have been able to interpolate between
the Landau gauge and the MAG by unifying them in a larger
class of renormalizable gauges. This observation was used
to prove that the vacuum energy of Yang-Mills theory in the
MAG due to its mass dimension two condensate should be the
same as the vacuum energy of Yang-Mills theory in the Lan-
dau gauge with the much explored condensate

〈
AA

µ AµA
〉
. It

is worth noticing that all the gauges, where a dimension two
condensate provides a dynamical gluon mass parameter, such
as the Landau gauge [22], the Curci-Ferrari gauges [20], the
linear gauges [29] and the MAG, can be connected to each
other, either directly (e.g. Landau-MAG) or via the Landau
gauge (e.g. MAG and linear gauges). This also implies that, if〈
AA

µ AµA
〉 6= 0 in the Landau gauge, the analogous condensates

in the other gauges cannot vanish either.
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