
Brazilian Journal of Physics, vol. 37, no. 1, March, 2007 33

Linear Sigma Model at Finite Baryonic Density and Symmetry Breakings
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The linear sigma model at finite baryonic density with a massive vector field is investigated considering that
all the bosonic fields develop non zero expected classical values, eventually associated with condensates and
corresponding to dynamical symmetry breakings which might occur in the QCD phase diagram. A modified
equation for the classical vector field is proposed with its respective solution. Some in medium properties
of the model (mainly masses) are investigated within reasonable prescriptions. In particular the behavior of
the in medium pion and sigma masses and a particular way of calculating in medium coupling to baryons is
investigated. A symmetry radius for finite baryonic densities is proposed and calculated in different ways in
terms of the other variables of the model and these different ways of calculating it agree quite well. However,
assuming that the pion and sigma masses go to zero close to the restoration of chiral symmetry a too high value
for the critical density is obtained ρc ' 4.3ρ0.
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I. INTRODUCTION

Matter at high energy densities has been continuously in-
vestigated to provide a deepeer understanding of strong in-
teractions. Experimental (relativistic and high energy) heavy
ion collisions (r.h.i.c. and h.e.h.i.c.) provide very important
collection of data to construct this knowledge. Asymptotic
freedom is a key property in this program. With different
approaches, hadronic models based on quantum chromody-
namics (QCD) at finite energy density have been extensively
investigated and different condensates are usually expected to
appear at different energy densities. In the vacuum, the light-
est strong interacting particles are known to respect, approx-
imatedly at least, chiral symmetry SUL(2)× SUR(2) which is
expected to be spontaneously broken down to SU(2). This is
expected to give rise to a scalar (quark-antiquark) condensate,
which might have relevant effects in experimental conditions
and in realistic calculations, it rearranges the theory [1–3]. As
a consequence, the hadronic properties which depend on this
condensate (which can be the order parameter or proportion-
ally to it [4]) are expected to vary with energy density. In
particular the behavior of the rho vector meson has been con-
sidered as a possible signature of the chiral symmetry restora-
tion via dilepton emission [5] although recent experimental
analysis of the rho vector meson spectral function shows to be
incompatible with energy shift [7].

In this work the Linear Sigma Model (LSM) [8] at finite
baryonic density, ρB, is investigated with a massive classi-
cal vector field. It is based in [9, 10]. All the mesons in the
model are considered to develop classical counterparts. There
is a renewed interest in the pseudoscalar condensation indeed
[9, 11, 12]. It provides a way of enhancing CP violation at
finite density [13]. The exact field equations and the stabil-
ity equation are truncated such as analytical solutions are ob-
tained by considering particular prescriptions for the stability
condition. The numerical solutions have a self consistency al-
though the so-called ”full self consistency” is only achieved in
a level of approximation and for the interactions considered in
a model, not in the complete self consistency of the exact re-

alistic quantum theoretical many body problem which still is
too difficult to obtain. The truncations in the effective action,
done in the next section, are based in the following consid-
erations: (1) the effective potential of spin zero bosons keeps
the same form of that at the tree level calculation (i.e., quan-
tum fluctuations basically rearrange the tree level model), (2)
each component of the system, i.e. baryons/ spin zero bosons/
spin one fields, have nearly independent stability conditions.
Hopefully this assumption might go along with the observa-
tion of different slope parameters and temperature freeze-out
[14] for each of the hadrons emerging from relativistic heavy
ion collisions - and eventually different contributions for the
corresponding Hydrodynamics. The corresponding (dynami-
cal) equation for each of the fields is satisfied. The complete
numerical investigation of the results will be presented else-
where [9, 15]. Several properties of in medium hadrons are
investigated, namely scalar and pseudoscalar meson masses
and couplings, and their relation to the behavior of the (chi-
ral) symmetry is worked out within a particular prescription
which provides results in agreement with the usually expected
behavior. A symmetry radius is defined for the investigation
of the symmetry behavior and its estimation (and dependence
with the baryonic density) is done in several ways which yield
very close result. In spite of being a quite simple model, with-
out several degrees of freedom which should be relevant at
high energy densities, results show to be consistent. Assum-
ing that pion and sigma masses go to zero close to the density
in which chiral symmetry would be restored a too high critical
density is obtained. This can either signal that the model is too
simple for describing Physics at too high densities or that their
masses should not be expected to be zero close to the phase
transition.

II. THE LINEAR SIGMA MODEL AT FINITE ρB

The Lagrangian density of linear sigma sodel (LSM) with
baryons, Ni(x), sigma and pions, (σ,π), covariantly coupled
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to a vector field, Vµ, is given by [8]:

L = N̄i(x)
(
iγµD̃µ−gS(σ+ iγ5τ.π)

)
Ni(x)

+
1
2

(Dµσ.Dµσ+Dµπ.Dµπ)+ cσ+
1
2

m2
VVµV µ+

−1
4

FµνFµν− λ
4

(
σ2 +π2− v2)2

,

(1)

where the covariant derivatives are given in [8] and they will
not be completely considered in this communication. The
other terms and parameters are standard [8, 9]. The in-
troduction of a chemical potential, with an extra termδL =
−N̄γ0µchemN, is nearly equivalent to a shift of the classical
temporal component of the vector field V0 coupled to the nu-
cleons. This field however is a dynamical degree of freedom
(d.o.f.) and will be treated as such. Since the condensates
(such as σ̄≡< σ >) depend on the density, so do most of the
hadronic masses. Part of the baryon masses are considered to
come from the the coupling to the scalar mesonic field and part
from an explicit mass term for the baryons in the Lagrangian:
M∗ = M±gSσ̄.

The spin zero fields will be treated in the framework of the
variational Gaussian approach with a truncation [3, 9]. With
the truncation of the effective potential of sigma and pion it
can be written keeping the same form of the tree level effective
potential. The equations for expected values of the sigma and
pion are found accordingly, and shifts in these classical parts
are considered due to the rearrangement brought by quantum
fluctuations, such as σ̄→ σ̃.

The total energy density is written in terms of the four vari-
ational parameters for the fields σ, π̄, plus baryonic densities
and vector field variables [9]. To investigate the behavior the
temporal component of (classical) vector field, the total en-
ergy density is varied with respect to V0, which is not quan-
tized, instead of using its Euler-Lagrange equation. In this
approach, V0 is found either by writing a reasonable (or ex-
act) expression for ρB as a function of V0, as it is given be-
low, or V0 is treated like a variational parameter such that one
can determine a parametric function ρB = ρB[V0] which satisfy
the equations of mouvement and stability. For this derivation,
m̃V was kept constant. This second procedure yields a sort of
variational equation for the corresponding parametric depen-
dence. The corresponding (variational) equation for a constant
background field component V0 can be given by:

∂H
∂V0

= 0 → gV

(
ρB +V0

∂ρB

∂V0

)
− m̃2

VV0 = 0. (2)

where the Euler-Lagrange equation for V0 can be recovered by
neglecting the derivative term above.

The stability condition for the ground state, with bind-
ing energy E0/A = H /ρB < 0, can be written as ∂H

∂ρB
=

H
ρB

∣∣∣
ρB=ρ0

< 0, and
∂2 H

ρB
∂ρ2

∣∣∣∣
ρB=ρ0

> 0, where ρ0 is the stability

density. The expressions for the energy density and its deriv-
ative with respect to ρB is separated into three parts such that
each component of the hadronic matter satisfies the stability
equation above separatedly. With this prescription the solu-
tions for the variational equations of each of the components

satisfy the respective stability equation. The reliability of this
factorization is not mathematically proven although some ar-
guments for being reasonable are given in the Introduction and
in [9]. The resulting equations (prescriptions) are the follow-
ing:

(i)
∂E f

∂ρB
=

E f

ρB
; (ii)

∂HV

∂ρB
=

HV

ρB
;

(iii)
∂(σ̃2 + π̃2− v2)

∂ρB
=

(σ̃2 + π̃2− v2)
2ρB

,

(3)

Where HV = gVV0ρB− 1
2 m̃2

VV 2
0 . The complete set of solutions

for the equations will be investigated elsewhere and compared
to the exact numerical solutions. The variation of the sigma
and pion masses arise from the corresponding classical fields.
In the vacuum µ2

π can go to zero as long as π̃2 → 0 satisfying
the Goldstone theorem when c→ 0 in the Lagrangian.

A. Densities, coupling constants and masses

The baryon fields, which depend on the bosonic fields
through the Dirac equation coupled to the mesons, are quan-
tized in terms of creation and annihilation operators. The
baryonic degrees of freedom sum up into the densities: bary-
onic (ρB), scalar (ρS) and pseudo-scalar (ρps) densities. These
quantitites will not be explicitely evaluated here although they
are partially used below [9, 10]. The energy density due to the
fermions (antifermions) (E f , f̄ ) and the density of baryons (an-
tibaryons) (ρB,B̄) can be written, in the leading order, in terms
of (1) their momenta for each kind of baryons (i), up to the
last occupied level with momentum kF , and of (2) the classi-
cal vector field as [10, 16]:

E i
( f , f̄ ) '

γ
(2π)3

∫ ki
F d3k

(
2E i

(+,−)(M
∗
i +E i

(+,−))+V0(V0−2E i
(+,−))

2(M∗
i +E i

(+,−))

)

ρi
B,B̄ '

γ
(2π)3

∫ ki
F d3k

(
(M∗

i +E i
(+,−))

2−k2

2M∗
i (M∗

i +E i
(+,−))

)

(4)
In these expressions E± = gV0±

√
k2 +(M∗)2 are the eigen-

values of the corresponding Dirac equation [10, 16]. These
expressions still correspond to an approximation and show de-
viations from the Fermi liquid picture.

The scalar and pseudoscalar densities, which appear in the
equations of σ, π̄, can be expanded in terms of the scalar and
pseudoscalar condensates, for example, as:

ρS = ρ(0)
S +

σ̃
σ̃vac

ρ(1)
S +

σ̃2

σ̃2
vac

ρ(2)
S +

σ̃3

σ̃3
vac

ρ(3)
S +o(|π̃|),

ρPS = |π̃|ρ(1)
PS + |π̃2|ρ(2)

PS + |π̃3|ρ(3)
PS +o(σ̃),

(5)

where the coefficients ρ( j)
S,PS are obtained from the expressions

calculated with the solution of the corresponding Dirac equa-
tion. They are such that ρS = ρps = 0 when σ̃ = σ̃vac and
π̃ = 0, with higher order terms are indicated by o(|π̃|) and
o(σ̃). By substituting these expressions into the variational
equations for the respective condensates [9] it is found that the
terms proportional to σ̃ and π̃ can yield contributions to the in
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medium masses of sigma and pions. The terms proportional
to σ̃3 and π̃3 can produce (effective) contributions for the cou-

pling constant, i.e., λ → λ∗ = λ± ρ(3)
S

σ̃3
vac
' λ±ρ(3)

PS . These two
corrections for the in medium effective coupling constant may
also be different from each other, eventually leading to differ-
ent interactions of the pion and sigma in the baryonic medium.

The second equation of prescriptions (3) can produce the
same solution of the equation (2). The third of prescriptions
(3) can define a symmetry radius in the medium:

(σ̃2 + π̃2− v2) = C̃
√

ρB. (6)

In this expression C̃ is a constant to be determined from the
parameters of the model. In the vacuum: σ̃2 = v2 = f 2

π
as discussed above. Modifications in the equation (3-(iii))
will produce different dependences on the baryonic density.
A more general symmetry radius, corresponding to particu-
lar modifications of the corresponding differential equation
due to diverse couplings for example, might be written as:
(σ̃2 + π̃2−v2) = (D̃+C̃ρB

c)γ where D̃,C̃,c,γ are constants to
be related to the parameters of the model.

One way of calculating C̃ is found by assuming that this
symmetry radius is valid over a range of baryonic densities.
This is a crude approximation because, heavier hadrons as
well as quark and gluon d.o.f. are expected to be relevant for
high energy densities. In the high density when chiral sym-
metry should be restored: σ̃ = π̃→ 0. This critical density is
written as ρc = uρ0,. Thus in this point: C̃ = ∓ṽ2

√
1

u.ρ0
. At

the saturation density (ρB) the expression for C̃ can be written
as:

σ̃2 + π̃2 ' ṽ2

(
1±

√
1
u

)
= ( f 0

π )2
(

1±
√

ρB

ρc

)
. (7)

Four values are considered: (i) u = 2, (ii) u = 3, (iii) u = 3.5
and (iv) u = 4. Considering the branch of solutions for which
σ̃2 + π̃2 < ṽ2, at ρB = ρ0, it follows respectively:
√

σ̃2 + π̃2
∣∣∣
ρ0
' 0.54ṽ (i),

√
σ̃2 + π̃2

∣∣∣
ρ0
' 0.65ṽ (ii),

√
σ̃2 + π̃2

∣∣∣
ρ0
' 0.68ṽ (iii),

√
σ̃2 + π̃2

∣∣∣
ρ0
' 0.71ṽ (iv).

(8)
Other solutions are not presented. Since the squared value
π̄2 is a scalar which appear very often in the expressions, it
may be that f ∗π '

√
σ̃2 + π̃2, i.e., a pion classical field could

be responsible for modifications in the pion decay constant
and consequently measurable, even if competing with other
effects. The topological Skyrme model can provide some ar-
gument in favor of such interpretation for a classical pion field
inside hadrons [17]. These expressions may be therefore use-
ful for relating descriptions of different ranges of the matter
phase diagram.

The values obtained for C̃ from estimates (8) are respec-
tively given by:

C̃ '±0.41fm− 1
2 (i), C̃ '±0.33fm− 1

2 (ii),
C̃ '±0.30fm− 1

2 (iii), C̃ '±0.28fm− 1
2 (iv).

(9)

Another way of estimating C̃ is shown by considering the
meson masses in the medium. With the expressions for meson
masses in terms of the classical fields and v [8, 9], the sym-
metry radius can be written as: C̃

√ρB = 1
4λ ((µ∗T )2− (µvac

T )2),

where (µ(∗)
T )2 = (µ(∗)

S )2 + (µ(∗)
P )2 at a given density ρB. In

these expressions the coupling λ was also kept constant (and
positive) and c = 0, in the Lagrangian term. Two possible be-
haviors are obtained in this picture for the restoration of chiral
symmetry: the sum of these masses may decrease or increase
depending on the sign of C̃

√ρB. For ρ0 = 0.15fm−3 and
C̃ ' −0.15fm− 1

2 the above expression yields approximated
values (µ∗T )2(ρ0) ' (1± 0.53) µ2

T (ρB = 0). If one considers
that the pion and sigma masses disappear close to the chi-
ral symmetry restoration point (i.e., if (µ∗)2 → 0), with the
values above we obtain that ρc ' 4.3ρ0. Seemingly it is a
too high baryonic density and the reasons are quite apparent.
Firstly, as emphasized above, the present work only takes into
account the light sector of hadrons and it does not consider
quark and gluon degrees of freedom. Furthermore, it is a con-
troversial subject whether pion and sigma masses (two point
Green’s functions) should be expected to be so close to zero
(as it was assumed to obtain such high value for the critical
density) close to (and at the) deconfinement critical point.

These ways of calculating C̃ provide crude (but interest-
ing and curious) estimations. The corresponding in medium
hadron properties are qualitatively in agreement with other
estimations [5]. The inclusion of other relevant d.o.f. will
be presented elsewhere as well as a corresponding calculation
at finite temperature.

B. Summary and Conclusions

In this work some aspects of the Linear Sigma Model at
finite baryonic density were investigated with a massive clas-
sical vector field, based in [9, 10]. All the mesons in the model
were considered to develop classical counterparts. In part
this is due to independent new investigations on pseudoscalar
condensates which have shown a renewed interest in the
pseudoscalar condensation indeed [9, 11, 12]. The exact field
equations and the stability equation were truncated for obtain-
ing analytical solutions which capture the expected behavior
of the system. These solutions have a self consistency al-
though the so-called ”full self consistency” is only achieved in
a level of approximation and for the interactions considered in
a model, not in the complete self consistency of the exact re-
alistic quantum theoretical many body problem which still is
too difficult to obtain. The truncations in the effective action,
done in the next section, are based in the following consid-
erations: (1) the effective potential of spin zero bosons keeps
the same form of that at the tree level calculation (i.e., quan-
tum fluctuations basically rearrange the tree level model), (2)
each component of the system, i.e. baryons/ spin zero bosons/
spin one fields, have nearly independent stability conditions.
Hopefully this assumption might go along with the observa-
tion of different slope parameters and temperature freeze-out
for each of the hadrons emerging from relativistic heavy ion
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collisions - and eventually different contributions for the cor-
responding hydrodynamic. The corresponding (dynamical)
equation for each of the fields are satisfied. The complete
numerical investigation of the results will be presented else-
where [9, 15]. Several properties of in medium hadrons were
investigated, namely scalar and pseudoscalar meson masses
and couplings, and their relation to the behavior of the (chi-
ral) symmetry is worked out within a particular prescription
which provides results in agreement with the expected behav-
ior. A symmetry radius was defined for the investigation of the
symmetry properties and its estimation (and dependence with
the baryonic density) is done in several ways with fair agree-

ment, in spite of being a quite simple model, without several
degrees of freedom which should be relevant at high energy
densities. Related aspects to matter-antimatter asymmetry in
relativistic heavy ion collisions and in the Early Universe will
be discussed and investigated elsewhere [16].
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