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In this paper we present an inversion procedure for electromagnetic scattering, based on the coupled-dipole
method (CDM) combined with an inversion algorithm making use of the singular value decomposition pro-
cedure associated with a regularization factor. This method permits to obtain images of non-homogeneous
dielectric objects whose dimensions are comparable to the incident wavelength. The feasibility of this method
is showed in two synthetic examples using the CDM with 257 and 515 dipoles, for spherical objects with a
spherical inclusion. The method also works if the scattered electric field, which is the input data, is corrupted
with Gaussian noise.
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I. INTRODUCTION

Electromagnetic scattering phenomena have been shown to
be of great importance because of their various applications
in many areas [1–4]. The ability of electromagnetic waves
to penetrate into objects without making alterations of their
structure is an important property and permits to obtain infor-
mation about the studied scattering object, i.e., it is possible
to make a non-destructive imaging analysis.

Several methods were developed to solve inverse electro-
magnetic problems. Most of the methods dealing with mi-
crowave imaging are based on the discretization of an integral
equation for the electric field or the current density. This leads
to a linear system of equations which is ill-posed and conse-
quently the solution is not unique.

Recently, a new numerical technique [5] was introduced in
order to obtain the complex refractive index of a homogeneous
scattering object in the scope of active microwave imaging.
The modeling of the scattering phenomenon is based on the
well-known coupled-dipole method (CDM) [6, 7] and sim-
ulations showed the feasibility of this technique even with
corrupted data. In this paper are presented new results for
non-homogeneous scattering objects with artificial data (noise
free and also corrupted by noise), using the truncated singular
value decomposition (SVD) method to make the data inver-
sion. The method applied to non-homogeneous spheres shows
a reasonable resolution to detect the inclusion.

This non invasive and non destructive technique is very use-
ful to determine the dielectric properties of an object [4]. The
input physical quantity of interest is the electric field and the
searched characteristics of the object are the permittivity (gen-
erally a function of space coordinates) and geometry. Our ap-

proach is based on the inversion of the CDM which permits to
describe the scattered electric field. This inversion technique
[5] using the CDM is shown to be efficient when applied to
a homogeneous and isotropic scatterer of size parameter less
than 10.0.

This inversion scheme is tested with synthetic data for sim-
ple geometries of the scatterer, and noisy data are used to illus-
trate its stability. The a priori information used in this model
is the external shape of the studied object. This paper is orga-
nized as follows. In Section II we briefly describe the CDM.
In Section III, the inversion procedure is introduced and nu-
merical results are given in Section IV. Section V is the con-
clusion.

II. COUPLED-DIPOLE METHOD

The theoretical description of the scattering phenomenon is
done with the well known CDM. The polarizability of each in-
duced dipole located at the sites of a cubic lattice is given by
the Clausius-Mossotti (or Lorentz-Lorenz) prescription [1].
We remind that the basic equation to be inverted is the re-
lation between the measured scattered electric field Escat(ri)
at ri, and the N electric dipolar moments p j,( j = 1, ...,N) of
the dipolar units, located at r j,

Escat (ri) = ∑
j=1,...,N

Π(ri− r j)p j, (1)
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where the 3× 3 complex matrix Π(r) is given by [8] (for a
time factor exp(−iωt)),

Π(r) =
eikr

r

{
k2 (I−n⊗n)+

1− ikr
r2 (3n⊗n− I)

}
, (2)

“⊗” is the Kronecker product, and I is the unit 3×3 matrix.
The data to be inverted are the scattered electric fields, and the
inversion output is the dipolar moment of each dipolar unit.
This last quantity is used to obtain the polarizability of each
dipolar unit and, consequently, the refractive index of each
site of the cubic lattice. However, the Freedholm equation of
first kind (1) is ill-conditioned making the inversion process
not trivial.

III. DATA INVERSION

The inversion procedure is a 3-step algorithm. The first one
leads to the inversion of a system of linear equations (1) ob-
tained by writing the scattered field at each point where it is
measured. The second step leads to the estimation of the po-
larizability at each site of the lattice by use of the equation
[5],

αi =‖ pi ‖2 /{(E0(ri)+ ∑
j=1,...,N

j 6=i

Escat, j (ri)).p∗i }, (3)

where E0 is the incident field. The last step leads to the de-
termination of the complex refractive index at each site from
the Clausius-Mossotti formula. Let us notice that the main
computational time is spent at the first step of the algorithm
because of the large size of the matrix to be inverted.

As mentioned above, we will perform the inverse procedure
by the SVD technique. Our basic equation here is

Escat = Πp, (4)

which is a linear transformation on p. If the vector Escat de-
scribes the observed actual output of the system, the problem
is to “choose” the vector of model parameters p in order to
minimize, in some sense, the difference between the observed
Escat and the prescribed output of the system Πp. In order
to solve the system of linear equations, we have first to invert
the matrix Π, obtaining the pseudo-inverse Π+, then multiply
the pseudo-inverse by the scattered field, obtaining finally the
recovered vector of moments pest which permits the computa-
tion of the refractive index.

The generalized inverse matrix is frequently used in inverse
problems, and its solution has the minimum Euclidean norm.
In this case the objective function to be minimized is

Φ(p) = pT ·p+ tT · (Escat −Πp), (5)

where t is the vector of Lagrange multipliers. The minimiza-
tion yields

p = ΠT (ΠΠT )−1Escat . (6)

The above equation is equivalent to the so-called “pseudo-
inverse” for underdetermined systems developed by [9] and
later by [10]. One versatile way to calculate the pseudo-
inverse is through SVD [11] where the square kernel matrix
is expressed as

Π = UΣV T , (7)

where U is the matrix which contains the orthonormalized
eigenvectors of ΠΠT , V the orthonormalized eigenvectors of
ΠT Π and the matrix Σ is formed by the singular values of Π.
The pseudo-inverse Π+ will be given by

Π+ = VΣ−1UT , (8)

where Σ−1 = (1/σii), i = 1, ...,k, and 1/σll = 0, for l > k.

IV. NUMERICAL SIMULATIONS

In order to show the feasibility of this method, we present
two synthetic examples where a non-homogeneous sphere
with a spherical inclusion is described by 257 and by 515
dipoles. In both examples the refractive index of the homo-
geneous background is 1.1 and the index of the inclusion is
1.4. The choice of this simple shape is not a limitation and the
extension to other scatterer geometry is straightforward. In
order to obtain the synthetic data to be inverted, which is the
scattered electric field, we calculate the dipolar moments us-
ing the CDM approach. Each dipole is associated with a vec-
tor of six components: three components of the real dipolar
moment, and three components of the imaginary one. Thus,
in the inversion procedure, we have 6 × 257 = 1542 model
parameters for the first example and 6 × 515 = 3090 for the
second one.

The acquisition geometry is performed in two planes
around the scatterer. Using standard notation for spherical
coordinates, for one plane we have φ = 0 and for the other
φ = π/2. The angle θ varies from 0 to π. For the first example
one plane has 128 observation points and the other has 129,
while for the second example one plane has 257 observation
points and the other has 258. This means that for the first situ-
ation there are 257 observation points and for the second one
there are 515 observation points.

Since the scattered electric field used as the input for the
inverse procedure is also a complex vector, we have 6 × 257
= 1542 data parameters for the first example and 6 × 515 =
3090 for the second one. The number of data parameters is
then equal to the number of model parameters, making the
system determined although ill-posed. The matrix Π is then
square, but this is not a limitation, that is, we could have more
data parameters than model parameters, making the problem
overdetermined, or the opposite situation, with more model
parameters than data parameters, making the problem in this
case underdetermined.

As explained before for the data inversion we used the SVD
technique. The sphere has a size parameter equal to 2.0, with
a spherical inclusion of size parameter equal to 1.2, centered
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FIG. 1: Singular values of the 257 dipoles simulation (ka = 2.0).

TABLE I: Simulation results for 257 dipoles.

β εrms (%) λbest εm
rms (%) ε f ield

rms (%) εindex
rms (%)

0.0 0.00 10−3 46.56 0.00 8.62
0.2 2.67 10+2 49.42 2.67 9.27
0.4 5.38 10+2 49.90 5.29 9.28
0.6 8.07 10+2 50.75 7.92 9.40
0.8 10.76 10+2 51.94 10.56 9.56
1.0 13.44 10+2 52.07 13.44 9.86

at (x1,y1,z1) with (kx1 = 0.4,ky1 = 0.4,kz1 = 0.4). The sin-
gular values can be seen in Fig. 1 for 257 dipoles example.
The behavior of singular value decay was quite similar for the
simulations with 515 dipoles.

The ill-posedness of the problem suggests us the need of
some kind of regularization. We have employed the damped
least squares approach, as proposed by [12] and [13]. Here
the matrix ΠT Π is damped with a positive constant, in order
to stabilize the inversion. Other kinds of regularization can be
applied like filtering the matrix ΠT Π with a second or fourth
order derivative matrix as proposed by [14–18]. Let us notice
that the choice of the regularization factor λ is a problem by it-
self. Several techniques have been suggested in the literature.
Since the purpose of this work is not to explore this search for
the optimum regularization factor, we have adopted the fol-
lowing procedure: for each example, we used several noise
levels, and for each noise level we performed 35 inversions,
each one with a different λ, computing the root mean square
(rms) error for the data parameters and for the model parame-
ters. The range for λ was rather wide, from λmin = 1×10−15

to λmax = 1×10+19.
The results of the simulations are summarized in Tables I

and II. Table I is for 257 dipoles and Table II for 515 dipoles.
In each table the first column gives the value of noise factor β
which is added to the scattered electric field (E f ree

scat ), so that

Escat = E f ree
scat +β ∑

j=1,...,N
(ran j E f ree

scat, j)e j, (9)

where ran j is a sequence of random numbers within the range
[0, 1].

The second column gives the noise estimate εrms, which is

TABLE II: Simulation results for 515 dipoles.

β εrms (%) λbest εm
rms (%) ε f ield

rms (%) εindex
rms (%)

0.0 0.00 10−3 48.69 0.00 9.28
0.2 2.80 10+2 50.43 2.78 9.76
0.4 5.61 10+2 50.96 5.56 9.90
0.6 8.42 10+2 51.85 8.34 10.08
0.8 11.22 10+2 53.08 11.12 10.36
1.0 14.03 10+2 54.64 13.88 10.75

the relative rms error between Escat and E f ree
scat :

εrms =

√
∑N

i=1[Escat(ri)−E f ree
scat (ri)]2√

∑N
i=1[E

f ree
scat (ri)]2

×100 %.

As mentioned above for each noise level we run 35 inver-
sions, where each simulation had a different regularization
factor λ, used to compute the estimated moment vector:

pest
i = (ΠT Π+λIT I)+ΠT Escat . (10)

The best λ, that is, the λ which provides the minimum rms
error between the vector of true moment and the vector of
estimated moment, is given in the third column. This relative
rms error is denoted by εm

rms (see the fourth column in Tables
I and II) and expressed by

εm
rms =

√
∑N

i=1(ptrue
i −pest

i )2

√
∑N

i=1(ptrue
i )2

×100 %.

Note that the value for the best λ is kept constant with different
noise levels, not showing fluctuation.

We can compute once more the scattered field associated
with the estimated moment vectors by applying the forward
modeling procedure,

Ecalc
scat = Πpest . (11)

In the tables, the fifth column gives the relative rms error be-
tween the (observed) scattered electric field and the calculated
scattered electric field, denoted by ε f ield

rms :

ε f ield
rms =

√
∑N

i=1[Ecalc
scat (ri)−Escat(ri)]2√

∑N
i=1[Escat(ri)]2

×100 %.

The inversion output, pest , is used to calculate the polar-
izability αest , which is then used to calculate the estimated
refraction index nest , with the Clausius-Mossotti formula. Fi-
nally the last column in the tables shows the relative rms error
between the true refraction index and the estimated one,

εindex
rms =

√
∑N

i=1(n
true
i −nest

i )2

√
∑N

i=1(n
true
i )2

×100 %.
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FIG. 2: True model with 257 dipoles, kz = 0.0.
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FIG. 3: Simulation with 257 dipoles, forward modeling with ka =
2.0, kz = 0.00, inversion by SVD.

Due to space limitations we show only some results from
the two examples. In each figure we show, for a given slice
or projection, the 2–D image with gray scale as well as the
contour map. Just the noise free results are showed in the fig-
ures. A compilation of the results with all noise levels tested
can be seen in the above tables. Also, only two projections
are showed: kz = 0.0, which is at the equator, and kz = 0.75,
which is located at 3/4 from the equator.

In the first example the sphere is formed by 257 dipoles.
This means that at the equator the model has a diameter
formed by 9 dipoles. The inclusion, with refraction index
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FIG. 4: True model with 257 dipoles, kz = 0.75.
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FIG. 5: Simulation with 257 dipoles, forward modeling with ka =
2.0, kz = 0.75, inversion by SVD.

equal to 1.4, has a radius equal to 60 % of the “homogeneous”
sphere in such a way that its maximum diameter at the equator
is formed by 5 dipoles. The features above explained can be
seen in Fig. 2, which we call the true model. Note the maxi-
mum diameter, at the equator, is a. This value is not specified,
but is related to the wavenumber k by the relation ka = ξ. In
our examples ξ = 2.0. The acquisition is done at circles of
radius equal to kR = 4.0. The noise free inversion for kz = 0.0
is shown in Fig. 3. The next two figures repeat the set, now
for kz = 0.75. Fig. 4 shows the true model, Fig. 5 presents
the reconstruction. In both cases we can see a good agree-
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FIG. 6: True model with 515 dipoles, kz = 0.00.
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FIG. 7: Simulation with 515 dipoles, forward modeling with ka =
2.0, kz = 0.00, inversion by SVD.

ment in relation to the location and intensity but a poor shape
definition.

In the second example the sphere is formed by 515 dipoles,
which implies that at the equator the model has a diameter
formed by 11 dipoles. Again, the inclusion with refraction
index equal to 1.4 is larger than the radius, with its maximum
diameter at the equator formed by 7 dipoles. The true model
for kz = 0.0 is presented in Fig. 6, and the noise free inversion
in Fig. 7. For the kz = 0.75 projection, Fig. 8 shows the true
model and Fig. 9 the noise free inversion. Again, in both cases
we can see a good agreement in relation to the location and
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FIG. 8: True model with 515 dipoles, kz = 0.75.
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FIG. 9: Simulation with 515 dipoles, forward modeling with ka =
2.0, kz = 0.75, inversion by SVD.

intensity but a poor shape definition.
In a previous work [5] each inversion with 171 dipoles de-

manded around 80 min of CPU time in a RISC workstation.
Now using a Pentium IV with a 2.4 GHz clock and 2 Gb of
RAM memory each inversion demanded around 5 min for 257
dipoles and around 100 min for 515 dipoles.

The reconstruction is indeed three-dimensional. In both ex-
amples there are only two acquisition planes, in such a way
that the data acquisition could essentially be considered two-
dimensional. The reconstruction could be better, that is, with
smaller εm

rms, with the inclusion of more acquisition planes. In
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this case the data acquisition would be properly considered
three-dimensional. Although the matrix Π is square there is a
shortage of data. This can be clearly seen in Fig. 1, where the
singular values are rapidly attenuated. In all the images dis-
playing the reconstructed model the location of the scatterer
and the value of the refraction index are well given, but the
shape of the scatterer is not well defined.

V. CONCLUSIONS

In this paper, we show the feasibility of the inversion
method for non-homogeneous scattering objects. The inver-

sion can be done in practice for objects having a real part of
the complex refractive index close to 1 and with weak absorp-
tion. From the simulations with synthetic examples with ill-
conditioned kernel matrices and data corrupted by noise, we
showed that the proposed algorithm is feasible for the inver-
sion of electromagnetic data. In general the estimated models
indicate the presence of a inclusion inside the scatterer and
give a reasonable estimate of its refractive index, although the
shape is not well defined.
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