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A Strategy to Study Confinement in QCD
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The order and the universality class of the deconfining phase transition can provide insight into the mechanism
of color confinement, in particular for N f = 2. The mechanism of confinement by monopole condensation is
reviewed.
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I. BASIC FACTS

No free quarks are observed in Nature. The upper limit to
the ratio of the abundance nq of quarks in ordinary matter to
the abundance of nucleons np is nq

np
≤ 10−27 [1] to be com-

pared to the expectation in the Standard Cosmological Model
nq
np
≈ 10−12 [2] .
The cross section for inclusive production of quarks in p-p

collisions, σq is ≤ 10−40cm2 [1] and should be of the order of
the the total cross section i.e.≈ 10−25cm2 if quarks existed as
free particles.

An inhibition factor ≈ 10−15 implies that the only natural
explanation of what is observed is that nq and σq are exactly
zero, protected by some symmetry.

A possible deconfining transition is then a change of sym-
metry, or an order-disorder transition, and can not be a cross-
over.

No experimental data exist on gluons . It is anyhow as-
sumed that also gluons do not exist as free particles.

Confinement is defined as absence of colored particles in
asymptotic states.

If QCD is the theory of strong interactions it should be able
to account for confinement.

In ref[3] the idea was first proposed that there could be a
deconfining phase transition, at about the Hagedorn tempera-
ture TH from the hadron phase to a plasma of quarks and glu-
ons. The transition is being searched in heavy ion collisions at
CERN SPS, at Brookhaven RHIC and will be studied at higher
energies at LHC. No smoking-gun signal for the formation of
quark gluon plasma is known. One of the main difficulties is
to define operationally confined and deconfined.

A deconfining transition has been observed in numerical
simulations of QCD on the lattice, in the absence of dynamical
quarks (quenched theory).

In general the thermodynamics of a system is described by
the partition function

Z = Tr[exp(−H
T

)] (1)

with H the hamiltonian . For a field system it can be proved
that the partition function is equal to the euclidean Feynman
integral with the time axis compactified from 0 to 1

T , and pe-
riodic boundary conditions for boson fields, antiperiodic for
fermions.

Z =
∫

dφexp[−
∫ 1

T

0
dτ

∫
d3xL(φ(~x,τ))] (2)

In lattice simulations this amounts to simulate the theory on a
lattice NtN3

s with the space extension Ns ÀNt ,the time exten-
sion. The temperature is then given by

T =
1

aNt
(3)

with a the lattice spacing in physical units. Renormalization
group at one loop gives the lattice spacing a in terms of the
physical scale ΛL of the lattice regularization scheme

a =
1

ΛL
exp(

β
b0

) (4)

with β = 2N
g2 the natural variable of lattice and b0 =

− 1
(4π)2 [ 11

3 N − 2
3 N f ] the celebrated coefficient of the lowest

order term of the β function, which is negative (asymptotic
freedom).

From eqs(3) and (4) we get

T =
Λ
Nt

exp(− β
b0

) =
Λ
Nt

exp(
2N
|b0|g2 ) (5)

As a consequence of asymptotic freedom large T corresponds
to small g ,or to order, small T to large values of g or to disor-
der. In usual thermodynamic systems there is disorder at high
T , order at small T . This unusual behavior naturally leads to
the idea of duality [4][5].

Duality is a deep concept in statistical mechanics, string
theory, field theory. It applies to systems in (d+1) dimensions
with topologically non trivial spatial (d dimensional) configu-
rations . The (1+1) dimensional Ising model is a prototype[5].
These systems have two equivalent complementary descrip-
tions:

1) A direct description in terms of local fields Φ(x) , in
which 〈Φ〉 are the order parameters . We shall generically
denote by µ the topologically non trivial spatial non local ex-
citations. This description is convenient in the weak coupling
regime g¿ 1.

2) A dual description in which µ are local fields, 〈µ〉 the
(dis)order parameters and the fields Φ(x) appear as non local
excitations. The typical coupling of the dual gD is≈ 1

g and this
description is convenient when gD ¿ 1 or g À 1 , the strong
coupling regime of the direct theory.

The Ising model in (1+1) dimensions is defined on a square
lattice in terms of a local field Φ(x) which assumes the val-
ues ±1 , with a ferromagnetic interaction between the nearest
neighbors, H = −Σ~n,~n′Φ(~n).Φ(~n′) and Z[β,Φ] = exp(−βH).
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The model is exactly solvable. It has a phase transition at
some known βc : for β < βc the system is magnetized , i.e.
〈Φ〉 6= 0 ; for β≥ βc 〈Φ〉= 0 and the system is disordered. If
one of the two dimensions n0 of the system is interpreted as
time and the other one n1as space, the configurations with non
trivial spatial topology are the kinks (antikinks) , which have
spin Φ =−1 for n1 < x1 ( n1 ≥ x1) and +1 elsewhere at fixed
n0. It can be shown that the operator µ which creates a kink
also has values ±1 [5][6], and that[5]

Z[β,Φ] = Z[β∗,µ] (6)

with

sinh(2β) =
1

sinh(2β∗)
(7)

The disordered phase in the direct description is ordered in
the dual description. Duality maps the strong coupling disor-
dered regime of the direct description into the ordered weak
coupling regime of the dual description and viceversa. This
suggests to look for the dual description of QCD in which the
low temperature phase should be ordered , and to identify the
topologically non trivial spatial configurations µ and the sym-
metry of the dual description, i.e. the disorder parameters 〈µ〉.

There are a number of candidate dual excitations , namely
monopoles [7] , vortices[8], AdS5 strings [9].

It is fair to say that the dual excitations are not yet known
, but something can be said about the dual symmetry which
should be responsible for confinement.

II. THE STRATEGY

The facts described above suggest a strategy for investigat-
ing confinement in QCD :

I) Check on the lattice if the deconfining transition is indeed
order-disorder, i.e. check if there is a natural explanation in
terms of symmetry of the huge inhibition to the existence of
free quarks. Notice that the order of the deconfining phase
transition can be studied without knowing the order parameter
, by looking at scaling behavior of the specific heat , as we
shall see below.

II) Identify the symmetry responsible for confinement , and
possibly the dual excitations.

Of course one has first to detect a deconfining transition on
the lattice. This task proves to be equally complicated as in
nature.

In the so called quenched approximation , or in pure gauge
theory without dynamical quarks one can use the Polyakov
line , which is the parallel transport in the time direction across
the lattice.

L(~x) = TrPexp(i
∫ 1

T

0
A0(~x, t)dt) (8)

Due to periodic boundary conditions at finite T the path is
closed and due to the trace L is gauge invariant.

Consider now the large distance behavior of the space cor-
relator of L

D(~x)≡ 〈L†(~x)L(0)〉 (9)

On the one hand D(~x) is related to the static potential between
a quark and an antiquark as

V (~x) =−T lnD(~x) (10)

On the other hand, by cluster property it behaves at large dis-
tances as

D(~x)≈x→∞ |〈L(~0)〉|2 +Cexp(−σx
T

) (11)

It follows that if 〈L〉= 0

V (~x)≈x→∞ σx (12)

which means confinement of quarks . If instead 〈L〉 6= 0 then

V (~x)≈x→∞ constant (13)

which means no confinement. On the lattice a transition is
observed at Tc ≈ 270Mev from a phase in which 〈L〉 = 0 to a
phase in which 〈L〉 6= 0. The transition is first order for SU(3)
gauge theory, 〈L〉 is the order parameter, Z3 , the center of the
group, is the symmetry.

In the presence of dynamical quarks Z3 is not a symme-
try, and therefore it can not be the symmetry responsible for
confinement in nature. Nor can the string tension be an order
parameter: even in the presence of confinement there is string
breaking. When pulling apart a static q− q̄ pair at some dis-
tance the system prefers to convert the potential energy into
quark pair creation.

The situation for two flavor QCD is shown in Fig[1] , where
the phase diagram is displayed. The two quarks are assumed
for simplicity to have the same mass m [10].
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FIG. 1: The phase diagram of N f = 2QCD. The transition line is
defined by the maxima of the specific heat and of the susceptibility
of the chiral order parameter. m is the quark mass, µ the baryon
chemical potential.

At m ≈ 0 chiral symmetry, which is broken at low temper-
ature, is restored at Tc ≈ 170Mev . AboveTc the chiral order
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parameter 〈ψ̄ψ〉 vanishes. However at m 6= 0 chiral symme-
try is not a symmetry any more. The transition line in Fig[1]
is defined by the maxima of various susceptibilities, the spe-
cific heat, the susceptibility of the chiral order parameter, the
susceptibility of the Polyakov line, which all coincide within
errors. This coincidence means that when the line is crossed a
rapid change occurs in the energy content, in the chiral order
parameter, in the Polyakov line. Conventionally the region
above the line is called deconfined phase, the region below
it confined, but there is no way to test this statement oper-
ationally. This is analogous to what happens for heavy ion
experiments. The problem would be solved if there were an
order parameter for confinement.

An analysis can be made of the chiral transition (m = 0 )
[11], assuming that the relevant degrees of freedom at the tran-
sition are scalars and pseudoscalars. The order parameters are
then the elements of the matrix:

Φ̄≡Φi j = 〈ψ̄i(1+ γ5)ψ j〉 (14)

By one loop renormalization group analysis of the most gen-
eral lagrangean compatible with chiral symmetry, neglecting
irrelevant terms , one looks for infrared stable fixed points,
which are a necessary condition for a second order phase tran-
sition. If no such fixed points exist the transition must be first
order. If one of such points exists, the transition can be second
order. For N f ≤ 3 no fixed point exists, so that the transition
is first order, and this fits with lattice data[12].

For N f = 2 instead there are two possibilities: 1) The tran-
sition is first order if the η′ mass mη′ → 0 as T → Tc. Then
the transition is first order also at m,µ 6= 0 and there is no tri-
critical point at µ 6= 0. µ here is the chemical potential. (See
Fig[1]) This possibility is consistent with the order disorder
nature of the transition.

2) The transition is second order. Then mη′ 6= 0 at Tc , there
is no transition at m 6= 0 but only a crossover , and a tricritical
point at µ 6= 0. The crossover is incompatible with an order
disorder type of deconfining transition. It requires an unatural
fine tuning in the theory as discussed in Section 1.

It is therefore of fundamental importance to determine the
order of the transition by lattice simulations.

The tool to do that is a renormalization group based tech-
nique known as finite size scaling analysis. It consists in ana-
lyzing the volume dependence of susceptibilities as the spatial
size of the system Ls is sent large, which is governed by the
critical indexes. Explicitly for the specific heat CV and for the
susceptibility χ of the order parameter one has [13][10]

CV −C0 = L
α
ν
s ΦC(τL

1
ν
s ,mLyh

s ) (15)

and

χ〈ψ̄ψ〉−χ0 = L
γ
ν
s Φ〈ψ̄ψ〉(τL

1
ν
s ,mLyh

s ) (16)

Here τ ≡ (1− T
Tc

) and α, γ , ν and yh are the relevant critical
indexes in the standard notation. Their values for weak first
order, second order O(4) and O(2) are listed in table I. O(2)
is included since the staggered formulation for the fermions

yh ν α γ δ
O(4) 2.487(3) 0.748(14) -0.24(6) 1.479(94) 4.852(24)
O(2) 2.485(3) 0.668(9) -0.005(7) 1.317(38) 4.826(12)
MF 9/4 2/3 0 1 3

1stOrder 3 1/3 1 1 ∞

TABLE I: Critical exponents.

which is used in the numerical simulations could break O(4)
to O(2) at finite lattice spacing.

The volume dependence of the susceptibilities measured on
the lattice simulations is then compared to Eqs. (15) and (16)
to determine the critical indexes, or the order and the univer-
sality class of the transition.

There are two scaling variables in the problem, τL
1
ν
s and

mLyh
s which makes the analysis difficult. Our strategy has been

to keep one of the variables fixed in turn and to observe the
dependence on the other one[10].

First we have varied m and Ls by keeping mLyh
s fixed . To do

that one has to assume a value for yh , which we have first put
equal to that of O(4) and O(2) which happen to be equal [See
table I] [10] and then equal to that of first order. The expected
scaling is then

(CV −C0)/L
α
ν
s = FC(τL

1
ν
s ) (17)

and

(χ〈ψ̄ψ〉−χ0)/L
γ
ν
s = F〈ψ̄ψ〉(τL

1
ν
s ) (18)

The quantities on the left hand side of Eqs(17) , (18) should

only depend on τL
1
ν
s . The scaling for O(4) is shown in fig[2]

. If there were scaling all the curves in the same figure should
coincide within errors. The transition is not compatible with
O(4). Similar results are obtained for O(2). Preliminary data
for the case in which mLyh

s is kept fixed assuming for yh the
value for first order [14] seem instead compatible with the cor-
responding scaling equations Eqs(17),(18)

Another possibility is to go large with Ls keeping the vari-

able τL
1
ν
s fixed. Here large Ls means that the extension of the

lattice is much bigger than the inverse mass of the pion, say at
least 10 times. The following scaling laws are then expected

(CV −C0) = m
α

yhν GC(τL
1
ν
s ) (19)

and

χ〈ψ̄ψ〉−χ0 = m
γ

yhν G〈ψ̄ψ〉(τL
1
ν
s ) (20)

These scaling laws can be checked both with O(4)[O(2)] and
with first order. The result is shown in Fig[3] and again fa-
vors first order. Simulations in which approximations of the
algorithm are eliminated and data are obtained with an exact
algorithm [14] confirm these results.

The problem is numerically very demanding, with CPU
times of the order of Teraflops . year. We plan however to re-
peat the analysis on larger lattices and with improved actions
, since the issue ”order-disorder” or crossover is fundamental.
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FIG. 2: Check of Eqs.(17), (18) assuming O(4) second order. No scaling observed.

-1 -0.5 0 0.5 1

τL
s

1/ν

0

0.2

0.4

0.6

0.8

(C
V

-C
0)/

am
q-α

/(ν
y h)

(1) L
s
=32  am

q
=0.01335

(2) L
s
=32  am

q
=0.0267

(3) L
s
=24  am

q
=0.04444

(4) L
s
=20  am

q
=0.04303

(5) L
s
=16  am

q
=0.075

(1)

(2)

(4)

(3)

(5)

O(4)

-100 -50 0 50 100

τL
s

1/ν

0

0.002

0.004

0.006

0.008

(C
V

-C
0)/

am
q-α

/(ν
y h)

L
s
=32  am

q
=0.01335

L
s
=32  am

q
=0.0267

L
s
=24  am

q
=0.04444

L
s
=20  am

q
=0.04303

L
s
=16  am

q
=0.075

1
st
 Order

-1 -0.5 0 0.5 1

τL
s

1/ν

0.75

1

1.25

1.5

1.75

2

2.25

2.5

(χ
m

-χ
0)/

am
q-γ

/(ν
y h)

(1) L
s
=32  am

q
=0.01335

(2) L
s
=32  am

q
=0.0267

(3) L
s
=24  am

q
=0.04444

(4) L
s
=20  am

q
=0.04303

(5) L
s
=16  am

q
=0.075

(1)

(2)(3)

(4)

(5)

O(4)

-150 -100 -50 0 50 100

τL
s

1/ν

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(χ
m

-χ
0)/

am
q-γ

/(ν
y h)

L
s
=32  am

q
=0.01335

L
s
=32  am

q
=0.0267

L
s
=24  am

q
=0.04444

L
s
=20  am

q
=0.04303

L
s
=16  am

q
=0.075

1
st
 Order

FIG. 3: Scaling Eqs. (19),(20) for second order O(4) (left) and first order (right)

III. THE DUAL EXCITATIONS. THE DUAL SYMMETRY

A popular candidate for dual excitations are vortices[8].
The number of vortices is a conserved quantity in (2+1)
space time dimensions, not in (3+1) dimensions. More-
over in the presence of quarks the symmetry Z3 is explic-
itly broken. Gauge models with the same center have very

different behavior at the deconfining transitions, and center-
less systems like the gauge theory with gauge group G2 ex-
hibit confinement[18]. We shall then concentrate on mag-
netically charged dual excitations (monopoles). A gauge in-
variant field-strength tensor Fa

µν can be defined , the so called
’tHooft tensor[15], which is nothing but the field strength of
the residual gauge symmetry after abelian projection. The in-
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dex a,(a = 1, ..,N−1) refers to the (N-1) different species of
monopoles which exist in SU(N) gauge theory[7] [16]. The
dual tensor is defined as usual

F̃a
µ,ν =

1
2

εµνρσFa
ρσ (21)

and the magnetic current as

ja
ν = ∂µF̃a

µν (22)

The magnetic current is identically zero if Bianchi identities
are satisfied . It can be different from zero in a compact for-
mulation of the theory , in terms of parallel transports like the
lattice formulation. Monopoles do indeed exist on the lattice.
The magnetic current is in any case conserved due to the anti-
symmetry of the ’tHooft tensor .

∂µ ja
µ = 0 (23)

A topological symmetry not related by Noether’s theorem to
the form of the Lagrangean. This symmetry can either be ex-
act (Wigner) , and then the magnetic charge is defined and su-
perselected, or be Higgs broken. In that case the ground state
has no definite magnetic charge and the system is a dual su-
perconductor : magnetic charges condense like Cooper pairs
(electric charges) do in an ordinary superconductor. This sym-
metry is a good candidate symmetry for confinement . In the
confined phase (T ≤ Tc) the vacuum behaves as a dual super-
conductor. The Chromoeletric field acting between a q− q̄
pair is channeled by dual Meissner effect into Abrikosov flux
tubes . Since their energy is proportional to the length of
the tube, i.e. to the distance between the pair , this explains
confinement. Above Tc the Higgs phenomenon disappears
, magnetic charge is superselected, and confinement disap-
pears. Such a mechanism for confinement was proposed long
ago in refs[20][21]. The idea has been directly checked on
the lattice. An operator µa(x) can be defined[17][19] [23],
which creates a monopole of species a,(a = 1, ..,N−1) at x.
In the deconfined phase one expects 〈µa〉 = 0 if there is su-
perselection of magnetic charge. 〈µa〉 6= 0 in the deconfined
phase indicates Higgs breaking and dual superconductivity of
the vacuum.

The operators µA(x) are the lattice transcription of the con-
tinuum operators

µa(~x, t) = exp[i
∫

d4y~Ea
⊥(~y, t)b⊥(~y−~x)] (24)

where b⊥(~y−~x) is the vector potential produced in ~y by a
monopole sitting at~x, ~Ea

⊥ is the color component of the chro-
moelectric field along the direction of the residual gauge sym-
metry which identifies the monopole [23][16]. Since ~Ea

⊥ is the
conjugate momentum to ~Aa

⊥ the operator µa(~x, t) simply adds
to ~Aa

⊥ the field of the monopole.It is easy to show that [23]

〈µa〉=
∫

dAexp[−β(S +∆S)]∫
dAexp[−βS]

(25)

It is then convenient to use, instead of 〈µa〉 the quantity

ρa ≡ ∂ln(µa)
∂β

= 〈S〉S−〈(S +∆S)〉(S+∆S) (26)

Since Eq(25) implies that 〈µa〉= 1 at β = 0 it follows by inte-
gration of Eq(26) that

〈µa〉= exp[
∫ β

0
ρ(β′)dβ′] (27)

Lattice simulations show the following:
1) For T < Tc or β < βc , ρ tends to a finite limit as the spa-

tial size of the lattice Ls → ∞. In practice it becomes volume
independent when the lattice size is larger than 1 f m. This im-
plies by use of Eq(27) that 〈µa〉 6= 0 below the deconfining
transition and hence that there is dual superconductivity

2) For T > Tc or β > βc , i.e. above the deconfining transi-
tion as Łs → ∞

ρa ≈−cLs + c′ (28)

with c > 0 implying by use of Eq(27) that 〈µa〉= 0 in the ther-
modynamic limit, or superselection of the magnetic charge.
3) For T ≈ Tc or β≈ βc the scaling law holds

〈µa〉 ≈ Lκ
s Φµ(τL

1
ν
s ,mLyh

s ) (29)

If Lsmπ À 1 the above formula becomes

〈µa〉 ≈ m
κ
yh fµ(τL

1
ν
s ) (30)

which implies the scaling law

ρa

L
1
ν
s

≈ F(τL
1
ν
s ) (31)

The scaling law Eq(31) can be used to determine the critical
index ν, and has the remarkable property of being m inde-
pendent. It has been successfully checked for U(1) , SU(2),
SU(3) pure gauge theories[17][23] [25] giving the correct crit-
ical index. For N f = 2QCD it gives a very good scaling with
the critical index corresponding to first order[27]. This is con-
sistent with the results for the susceptibilities described in Sect
2.

IV. CONCLUSIONS

We have argued that the only natural explanation of experi-
mental data on confinement is that confinement is related to a
symmetry, and therefore that the deconfining phase transition
is an order disorder transition, and not a crossover.

The primary goal is then to check this statement, which
amounts to determine the order of the deconfining transi-
tion.For that the study of specific heat is specially convenient.
Preliminary results on N f = 2 QCD around the chiral transi-
tion are consistent with it.

Only the existence of an order parameter allows to define
operationally confined and deconfined.
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No definite statement can be made about the dual excita-
tions of QCD.

Something can be said on their symmetries: they carry
magnetic charge. Vacuum is a dual superconductor in the
confined phase, and makes a transition to normal at decon-
finement.

At higher temperatures magnetic charge is superselected.

We are working to refine and to assess the results reported
by simulations on larger lattices and with improved action.
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