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In a functional approach to QCD the infrared behaviour of Landau gauge Green functions is investigated. It
can be proven that the ghost Dyson-Schwinger equation implies the Gribov-Zwanziger horizon condition. Its
relation to the Kugo-Ojima confinement scenario is elucidated. Positivity violation for gluons is demonstrated,
and the analytic structure of the gluon propagator is studied. Quark confinement is related to an infrared diver-
gence of the quark-gluon vertex. It is shown that in the latter various components are non-vanishing due to the
dynamical breaking of chiral symmetry. As a result an infrared finite running coupling in the Yang-Mills sector
is derived whereas the running coupling related to the quark-gluon vertex is infrared divergent. In Coulomb
gauge QCD already the one-gluon-exchange (over-)confines. This leads to a vanishing quark propagator, and
thus quarks are confined. Nevertheless colour singlet quantities derived from the quark propagator are well-
defined. Especially the expression for the quark condensate proves that chiral symmetry is dynamically broken.
As expected the properties of mesons can be directly calculated whereas the mass of coloured diquarks diverges,
and thus diquarks are confined. The latter nevertheless possess a well-defined size. In the third part the results
obtained so far will be used to formulate a covariant Faddeev approach to nucleons. The resulting amplitudes
describe the quark core of the nucleon. Besides the mass of this state also the electromagnetic form factors are
calculated. The results for charge radii and magnetic moments as a function of the quark current mass provide
some indication what the missing pion cloud may contribute to the nucleons’ properties.
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I. ON CONFINEMENT IN THE COVARIANT GAUGE:
ANALYTIC PROPERTIES OF THE LANDAU GAUGE

GLUON AND QUARK PROPAGATORS

A. Motivation

Hadrons are believed to consist of quarks and gluons. How-
ever, every attempt to break a hadron into its constituents has
failed so far. Thus the situation is very much different as e.g.
in atomic physics. There studies of seperated atomic nuclei
and electrons directly verify the nature of atoms being bound
states. In hadronic physics, however, the evidence of physical
states being bound states is indirect. Especially the plethora
of hadrons finds a natural explanation in the assumption of
hadrons being composite but their constituents do not exist as
free particles. This phenomenon is called confinement.

The focus of these lectures is the infrared behaviour of
QCD Green functions (for recent reviews see e.g. refs. [1, 2])
and what they tell us about confinement. It will be seen that
from this perspective the confinement mechanisms for glu-
ons, quarks, and colored composites show some distinctive
features. Another virtue of the presented approach is the fact
that QCD Green functions can be employed directly in hadron
phenomenology. This opens up a road to the ambitious aim of
verifying or falsifying confinement pictures experimentally.

A property of QCD which can also be infered from the
hadron spectrum is the dynamical breaking of chiral sym-
metry. A correct description of this non-perturbative phe-
nomenon within functional approaches requires that the chi-
ral Ward identities between Green functions are respected, see
e.g. refs. [1, 3]. Schemes fulfilling this condition exist, and the
resulting description of meson physics is impressingly suc-
cessful (although many properties of mesons still have to be
understood). Recently the possibility of an ab initio descrip-
tion of the nucleon in functional approaches to continuum

quantum field theory has opened up, and my third lecture will
describe the first few steps in such a direction.

The confinement problem has proven to be notoriously dif-
ficult, see e.g. ref. [4] and references therein for a brief re-
view of (some of) the currently investigated theories of con-
finement. To mention two reasons out of many why the con-
finement problem is especially hard to solve let me first re-
mark that the length scale of confinement is a physical scale.
Based on renormalization group (RG) considerations one can
then conclude that there has to exist an RG invariant confine-
ment scale which is related to the renormalization scale µ via
the β-function [5]:

Λconf = µexp

(
−

∫ g dg′

β(g′)

)
g→0→ µexp

(
− 1

2β0g2

)
. (1)

This relation clearly shows that the confinement scale pos-
sesses an essential singularity in the coupling constant g.
Therefore it is not accessible in perturbation theory, and con-
finement cannot be described perturbatively.

In addition, as anticipated and also verified in the course
of these lectures, confinement is related to infrared singular-
ities. Numerical lattice Monte-Carlo calculations are always
restricted to finite volumes, and infrared properties can only
be investigated by carefully studying the infinite volume limit.
From this remark it is obvious that, to complement the lattice
approach, a non-perturbative continuum approach is highly
desirable if one aims at an understanding of confinement.

B. Basic Concepts

1. Covariant Gauge Theory

To obtain confinement the least requirement on the funda-
mental fields of QCD is that they do not represent particles,
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or phrased otherwise, that they do not appear as asymptotic
states in the S-matrix.

As a matter of fact, some relations between different con-
finement scenarios become most transparent in a covariant
formulation which includes the choice of a covariant gauge, of
course. First we note that covariant quantum theories of gauge
fields require indefinite metric spaces. Abandoning the posi-
tivity of the representation space already implies to give up
one of the axioms of standard quantum field theory. Maintain-
ing the much stronger principle of locality, gluon confinement
then naturally relates to the violation of positivity in the gauge
field sector, see e.g. ref. [1]. A comparison to QED, where the
Gupta-Bleuler prescription [6] is to enforce the Lorentz con-
dition on physical states, is instructive. There a semi-definite
physical subspace can be defined as the kernel of the (onto
its positive frequency part projected) field operator ∂ µAµ. The
physical states |Ψ〉 fulfilling

∂µAµ|Ψ〉 = 0 (2)

then correspond to (equivalence classes of) states in this sub-
space. Covariance implies, besides transverse photons, the
existence of longitudinal and timelike (“scalar”) photons in
QED. The latter two form metric partners in the indefinite
space: They cancel against each other in every S-matrix el-
ement and therefore do not contribute to observables. To be
more precise: The unphysical states have to be kept when
inserting a complete unity (in the language of Feynman di-
agrams, in loops). They destructively interfere in between
amplitudes (i.e. Feynman diagrams) containing these states
as asymptotic states (i.e. external lines). A simple example of
such Feynman diagrams is given in fig. 1.

+ = 0

AA AT T L0

/

AT AT

= 0

A0 or AL

FIG. 1: An example of Feynman diagrams containing longitudinal
and timelike photons as external lines (where they cancel) and in
loops (where they contribute).

In QCD cancelations of unphysical degrees of freedom in
the S-matrix also occur but are more complicated due to the
self-interaction of the gluons, transverse gluons scatter into
longitudinal ones and vice versa. In perturbation theory one
obtains e.g. amplitudes for the scattering of two transverse
into one transverse and one longitudinal gluons to order α 2

S.
A consistent quantum formulation in a functional integral ap-
proach leads to the introduction of ghost fields ca and c̄b [7].
To order α2

S a ghost loop then cancels all gluon loops which
describe scattering of transverse to longitudinal gluons. The

proof of this cancelation to all orders in perturbation theory
has been possible by employing the BRST symmetry of the
covariantly gauge fixed theory [8]. At this point one has
achieved a consistent quantization. Also one should note that
renormalizibility rests on BRST symmetry.

It is useful to picture the BRST transformation δB as a
“gauge transformation” with a constant ghost field as para-
meter

δBAa
µ = Dab

µ cb λ , δBq = −igta ca qλ ,

δBca = − g
2 f abc cbcc λ , δBc̄a = 1

ξ ∂µAa
µ λ ,

(3)

where Dab
µ is the covariant derivative and ξ is the gauge-fixing

parameter of linear covariant gauges. The parameter λ lives
in the Grassmann algebra of the ghost fields, it carries ghost
number NFP = −1. Via the Noether theorem one may define
a BRST charge operator QB which in turn generates a ghost
number graded algebra on the fields, δBΦ = {iQB,Φ}. Defin-
ing the ghost number operator Qc one obtains

Q2
B = 0 , [iQc,QB] = QB . (4)

This algebra is complete in the indefinite metric state space
V .

As the gauge fixing Lagrangian is BRST exact,

LGF = δB

(
c̄

(
∂µAµ +

ξ
2

B

))
, (5)

the proof of BRST invariance of the gauge fixed action is
straightforward.

The semi-definite physical subspace Vphys = KerQB is de-
fined on the basis of this algebra by those states which are an-
nihilated by the BRST charge QB, QB|ψ〉 = 0. Since Q2

B = 0,
this subspace contains the space ImQB of so-called daughter
states QB|φ〉 which are images of their parent states in V . A
physical Hilbert space is then obtained as the space of equiv-
alence classes, the BRST cohomology of states in the kernel
modulo those in the image of QB,

H (QB,V ) = KerQB/ImQB � Vs . (6)

This Hilbert space is isomorphic to the space of BRST sin-
glets. All states are either BRST singlets or belong to quar-
tets, this exhausts all possibilities. This generalization of the
Gupta-Bleuler condition on physical states, i.e. QB|ψ〉 = 0,
eliminates half of these metric partners from all S-matrix el-
ements (leaving unpaired states of zero norm which do not
contribute to any observable).

Are the transverse gluons also part of a BRST quartet? Are
gluons confined this way as conjectured in refs. [9, 10]? Be-
fore we return to this question it is illustrative to have a closer
look into the issue of gauge fixing.

2. Gribov horizon & Zwanziger condition

A detailed illustration of the issue of the non-uniqueness
of gauge fixing [11] has been given in the lectures by Dan
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FIG. 2: A schematic representation of the configuration space of gauge fields, the “hyperplane” of transverse gauge fields, the first Gribov
region and the fundamental modular region.

Zwanziger [12]. Therefore the presentation given here focuses
on the implications of the infrared behaviour of QCD Green
functions. Within the state of all gauge field configurations
the ones fulfilling the naı̈ve Landau gauge, i.e. the transverse
gauge fields, form a “hyperplane” Γ = {A : ∂ ·A = 0}. As
schematically illustrated in fig. 2 a gauge orbit intersects Γ
several times and therefore gauge fixing is not unique. The so-
called minimal Landau gauge obtained by minimizing ||A|| 2

along the gauge orbit is usually employed in corresponding
lattice calculations, it restricts the gauge fields to the Gribov
region

Ω = {A : ||A||2 minimal}= {A : ∂ ·A = 0,−∂ ·D(A)≥ 0} (7)

where the Faddeev operator −∂ ·D(A) is strictly positive def-
inite. Phrased otherwise: On the boundary of the Gribov re-
gion, the Gribov horizon, the Faddeev operator possesses at
least one zero mode.

Unfortunately this is not the whole story. There are still
Gribov copies contained in Ω [13, 14], therefore one needs to
restrict the gauge field configuration space even further to the
region of global minima of ||A||2 which is called the funda-
mental modular region. A lot of effort has been devoted to an
estimate of the corresponding effects in lattice studies, see e.g.
[15–21]. These provided evidence that for Green functions of
lattice gauge theory the effects due to Gribov copies are not
too large. The situation may be even better for the continuum
field theory: From an approach using stochastic quantisation
Zwanziger argued that Gribov copies inside the Gribov region
have no effect on the Green functions of the theory [22].

What remains to be implemented within a functional ap-
proach in continuum field theory is to cut off the functional
integral over gauge fields at the boundary ∂Ω as already sug-
gested by Gribov. The solution has been found by Zwanziger
[23]: One has to require that the ghost propagator is more sin-
gular in the infrared than a simple pole,

lim
k2→0

(
k2DGhost(k2)

)−1
= 0. (8)

3. Kugo–Ojima confinement criterion

In the covariant gauge confinement depends on the realiza-
tion of the unfixed global gauge symmetries. The identifica-

tion of the BRST singlets with color singlets is possible only
if the charge of global gauge transformations is BRST exact
and unbroken, i.e., well-defined in the whole of the indefinite
metric space V . Then BRST singlets are the physical states
and are thus constituting the physical Hilbert space H . The
sufficient conditions for this are provided by the Kugo-Ojima
criterion [9, 10]: The current

Ja
µ = ∂νFa

µν +{QB,Dab
µ c̄b} , (9)

is globally conserved, ∂µJa
µ = 0, and its two terms are of the

form of a total derivative. The first term corresponds to a
coboundary with respect to the space-time exterior derivative
while the second term is a BRST coboundary. The corre-
sponding charges are denoted by Ga and Na, respectively,

Qa =
∫

d3x∂iF
a
0i +

∫
d3x{QB,Dab

0 c̄b} = Ga + Na . (10)

For the first term herein there are only two possibilities, it is
either ill-defined due to massless states in the spectrum of the
field operator ∂νFa

µν, or else it vanishes.
In QED massless photon states contribute to the analogues

of both currents in (9), and both charges on the r.h.s. in (10)
are separately ill-defined. One can employ an arbitrariness in
the definition of the generator of the global gauge transforma-
tions (10) to multiply the first term by a suitable constant such
that these massless contributions cancel. This way one obtains
a well-defined and unbroken global gauge charge which re-
places the naı̈ve definition in (10). There are two independent
structures in the globally conserved gauge currents in QED
which both contain massless photon contributions. These can
be combined to yield one well-defined charge as the generator
of global gauge transformations leaving any other combina-
tion spontaneously broken, such as the displacement symme-
try which leads to the identification of the photon with mass-
less Goldstone bosons [10].

In case the term ∂νFa
µν contains no massless discrete spec-

trum, i.e., if there is no massless particle pole in the Fourier
transform of transverse gluon correlations, one obtains G a ≡
0. In particular, this is the case for channels containing mas-
sive vector fields, i.e. in theories with Higgs mechanism. It
is expected to be also the case in any color channel of QCD
with confinement for which it actually represents one of the
two conditions formulated by Kugo and Ojima. In both these
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situations the BRST exact charge is

Qa = Na =
{

QB ,

∫
d3xDab

0 c̄b
}

. (11)

The second of the two conditions for confinement is that this
charge be well-defined in the whole of the indefinite metric
space V . Together these conditions are sufficient to establish
that all BRST singlet physical states in H are also colour sin-
glets, and that all coloured states are thus subject to the quartet
mechanism. The second condition thereby provides the essen-
tial difference between Higgs mechanism and confinement.
The operator Dab

µ c̄b determining the charge N a will in general
contain a massless contribution from the elementary quartet

due to the asymptotic field γ̄a(x) in the antighost field which

is defined in the (weak) asymptotic limit: c̄a x0→±∞−→ γ̄a + · · · .
In the resulting relation

Dab
µ c̄b x0→±∞−→ (δab + uab)∂µγ̄b(x)+ · · · (12)

the dynamical parameters uab determine the contribution of
the massless asymptotic state to the composite field operator

g f abcAc
µc̄b x0→±∞−→ uab∂µγ̄b + · · · . These parameters can be ob-

tained in the limit p2 → 0 from the Euclidean correlation func-
tions of this composite field, e.g.,

∫
d4x eip(x−y) 〈 Dae

µ ce(x) g f bcdAd
ν(y)c̄

c(y) 〉 =:
(

δµν − pµ pν

p2

)
uab(p2) . (13)

The theorem by Kugo and Ojima asserts that all Qa = Na are
well-defined in the whole of V (and do not suffer from spon-
taneous breakdown), if and only if

uab ≡ uab(0) != −δab . (14)

Then the massless states from the elementary quartet do not
contribute to the spectrum of the current in N a, and the equiva-
lence between physical BRST singlet states and color singlets
is established.

Within the described mechanism the physical state space
of Yang-Mills theory contains only colourless states. The
coloured states are not BRST singlets and therefore do not
appear in S-matrix elements, they are unobservable. In the
following I will provide evidence that the transverse gluons
are BRST quartet states with gluon-ghost, gluon-antighost
and gluon-ghost-antighost states in the same multiplet. Gluon
confinement then occurs as kind of destructive interference
between amplitudes (i.e. Feynman diagrams) containing these
states as asymptotic states (i.e. external lines). The members
of quartets are frequently said to be “confined kinematically”.
This BRST quartet mechanism can be summarized as follows:

• Perturbatively, just as in QED, one such quartet, the el-
ementary quartet, is formed by the massless asymptotic
states of longitudinal and timelike gluons together with
ghosts and antighosts which are thus all unobservable.

• Non-perturbatively, and in contrast to QED, however,
the quartet mechanism also applies to transverse gauge
field, i.e. gluon, states. A violation of positivity (see the
next subsection) for such states then entails that they are
also unobservable.

In Landau gauge a sufficient criterion for relation (14) and
thus for this type of confinement to occur is given by the in-
frared behaviour of the ghost propagator: If it is more singular

than a simple pole the Kugo-Ojima confinement criterion is
fulfilled [26].

Note that e.g. in maximally Abelian gauge the Kugo–Ojima
scenario is not applicable [24] and thus one does not expect
the ghost propagator to be IR enhanced. This has been re-
cently confirmed in lattice calculations [25].

4. QCD Green functions: Violation of Positivity

Given these considerations it is obvious that if states with
transverse gluons violate positivity these states do not belong
to KerQB and are thus not physical states. One had to conclude
that the transverse gluons belong to a BRST quartet (together
with a gluon-ghost, a gluon-antighost, and a 2-gluon state).
Therefore it is sufficient to show positivity violation in the
gluon propagator to prove this kind of gluon confinement.

At this stage it is interesting to point out that more than 25
years ago the contradiction between antiscreening of gluons
(and thus asymptotic freedom) on the one hand and positivity
of the gluon propagator on the other hand has been noted [27].
In QCD in linear covariant gauges one obtains the following
relation for the spectral sum rule of gluon correlation function

Z−1
3 = Z +

∫ ∞

m2
dκ2ρ(κ2) with Z3 =

(
g2

g2
0

)γ

(15)

where Z is the one-particle contribution, Z3 is the gluon renor-
malization constant and γ its corresponding anomalous dimen-
sion. Due to antiscreening Z−1

3 → 0, i.e. Z−1
3 ≤ Z, and there-

fore one has to conclude that ρ(κ2) ≤ 0 for some values of κ.
This means nothing else than positivity violation in the gluon
propagator. However, what is needed to compellingly demon-
strate such a positivity violation is to verify these arguments
beyond perturbation theory.

There is another important issue which is also related to the
question of positivity: How is the cluster decomposition theo-
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rem circumvented in Yang-Mills theory? Including the indef-
inite metric spaces of covariant gauge theories this theorem
can roughly be summarized as follows [28]: For the vacuum
expectation values of the local product of two field operators A
and B, being at a large spacelike separaration R of each other,
one obtains the following bounds depending on the existence
of a finite gap M in the spectrum of the mass operator [10]∣∣∣〈Ω|A(x)B(0)|Ω〉− 〈Ω|A(x)|Ω〉〈Ω|B(0)|Ω〉

∣∣∣≤
≤

{
Const. × R−3/2+2N e−MR, mass gap M ,
Const. × R−2+2N , no mass gap ,

(16)

for R2 = −x2 → ∞. Herein, positivity entails that N = 0, but
a positive integer N is possible for the indefinite state space
of gauge theories. Therefore, in order to avoid the decompo-
sition property for products of unobservable operators A and
B which together with the Kugo-Ojima criterion is equivalent
to avoiding the decomposition property for colored clusters,
there should be no mass gap in the indefinite space V . Of
course, this implies nothing on the physical spectrum of the
mass operator in H which certainly should have a mass gap.
In fact, if the cluster decomposition property holds for a prod-
uct A(x)B(0) forming an observable, it can be shown that both
A and B are observables themselves. This then eliminates
the possibility of scattering a physical state into color sin-
glet states consisting of widely separated colored clusters (the
“behind-the-moon” problem) [10]. It has to be noted that the
Kugo-Ojima criterion implies the absence of a massless par-
ticle pole in the color charge operator, and therefore in ∂ νFa

µν.
This shows that the unphysical massless “excitations” which
are necessary to avoid the cluster decomposition property are
not the transverse gluons.

In the following compelling evidence for the above de-
scribed aspects of QCD in the covariant gauge, and thus for
this kind of gluon confinement, will be presented. It has to be
emphasized, however, that this description is purely ‘kinemat-
ical’, i.e. nothing is stated about the dynamics of confinement.

C. Infrared Exponents for Gluons and Ghosts

The tool which will be employed to study the above raised
questions is the set of Dyson–Schwinger equations (DSEs).
The ones for the propagators of Landau gauge QCD are dis-
played in fig. 3. One sees that the propagators couple to higher
n-point functions which are in general unknown. Thus the
questions arises: What can be infered from these equations?
Is it possible to derive exact results? Surprisingly the answer
is: Yes, if one is willing to accept some reasonable assump-
tions about the mathematical properties of Green functions.

1. An exact inequality

It will be shown that the general properties of the ghost
Dyson-Schwinger equation and one additional assumption,
namely that QCD Green’s functions can be expanded in

-1
=

-1
- 1/2 - 1/2

- 1/6 - 1/2

+ +

-1
=

-1 −

-1
=

-1 −

FIG. 3: Diagrammatic representation of the propagator Dyson–
Schwinger equations. The wiggly, dashed and solid lines represent
the propagation of gluons, ghosts and quarks, respectively. A filled
blob represents a full propagator and a circle indicates a one-particle
irreducible vertex.

k=p-q

q p

µ

FIG. 4: Diagrammatic representation of the ghost-gluon vertex.

asymptotics series in the infrared, allow to prove the Kugo-
Ojima confinement criterion and the Gribov-Zwanziger con-
dition [29–31].

The starting point is the non-renormalization of the ghost-
gluon vertex in Landau gauge to all orders in perturbation the-
ory [32]. It does not acquire an independent ultraviolet renor-
malization, and even more, it stays bare for vanishing out-
going ghost momentum pµ → 0, c.f. fig. 4. These properties
have been verified non-perturbatively [33–35]. Due to this the
ghost-gluon vertex cannot be singular for vanishing momenta
which has important consequences.

To fix the notation we note that in Landau gauge the gluon
and ghost propagators are parametrized by the two invariant
functions Z(k2) and G(k2), respectively. In Euclidean mo-
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mentum space one has

Dµν(k) =
Z(k2)

k2

(
δµν − kµkν

k2

)
, DG(k) = −G(k2)

k2 .

(17)

After renormalization these propagators depend also on the
renormalization scale µ. Furthermore assuming that the QCD
Green functions can be expanded in asymptotic series , e.g. ,

G(p2;µ2) = ∑
n

dn

(
p2

µ2

)δn

, (18)

the integral in the ghost Dyson–Schwinger equation can be
split in up in three pieces. The infrared integral is too compli-
cated to be treated analytically. The ultraviolet integral, on the
other hand, does not contribute to the infrared behaviour. As
a matter of fact, it is the resulting equation for the ghost wave
function renormalization which allows one to extract definite
information [29] without using any truncation or ansatz.

The results are that the infrared behaviour of the gluon and
ghost propagators is given by power laws, and that the expo-
nents are uniquely related such that the gluon exponent is -2
times the ghost exponent. As we will see later on this im-
plies an infrared fixed point for the corresponding running
coupling. The signs of the exponents are such that the gluon
propagator is infrared suppressed as compared to the one for
a free particle, the ghost propagator is infrared enhanced: The
infrared exponent of the ghost propagator is negative, κ < 0.
This exact inequality implies that the Kugo-Ojima confine-
ment criterion and the Gribov-Zwanziger condition are both
fulfilled.

It is worth emphasizing that no truncation or specialized
ansatz has been used to obtain this result. The one employed
assumption, namely that one is allowed to expand Green func-
tions in asymptotic series, is not considered to be problematic.
Besides this only the general structure of ghost DSE and mul-
tiplicative renormalizibility have been used. The fact that the
ghost-gluon vertex is only subject to a finite renormalization
turns out to be the property which makes the tower of DSEs
tractable.

2. Infrared Expansion Scheme

Given that the Yang-Mills propagators obey infrared power
laws, can one determine the infrared exponents of higher n-
point functions? To this end the corresponding n-point DSEs
have been studied in skeleton expansion, i.e. a loop expan-
sion using dressed propagators and vertices, and an asymp-
totic expansion has ben applied to all primitively divergent
Green functions [36]. It turns out that in this expansion the
Green functions can only be infrared singular in the kinemat-
ical limit where all external momenta go to zero. Thus to
determine the degree of possible singularities it is sufficient
to investigate the DSEs in the presence of only one external
p2 � Λ2

QCD. As an example consider the DSE for the three-
gluon vertex. In fig. 5 we see the full equation, in fig. 6 an

approximation in the lowest order of a skeleton expansion.
In the presence of one (small) external scale the approximated
DSE has a selfconsistent power law solution given by (p2)−3κ.
Thus the vertex is strongly singular in the infrared. One can
show by induction that this solution is also present if terms to
arbitrary high order in the skeleton expansion are taken into
account. Therefore the skeleton expansion provides the cor-
rect infrared solution of the DSEs.

FIG. 5: Diagrammatic representation of the DSE for the 3-gluon ver-
tex.

FIG. 6: Diagrammatic representation of the skeleton expansion for
the 3-gluon vertex.

The following general infrared (IR) behaviour for one-
particle irreducible Green functions with 2n external ghost
legs and m external gluon legs can be derived:

Γn,m(p2) ∼ (p2)(n−m)κ. (19)

Very recently it has been shown [37] by exploiting DSEs and
Exact Renormalization Group Equations that this IR solution
is unique. It especially includes that

• the ghost propagator is IR divergent.

• the gluon propagator is IR suppressed.

• the ghost-gluon vertex is IR finite.

• the 3- and 4-gluon vertex are IR divergent if and only if
all external momenta vanish.

• every coupling from an Yang-Mills vertex possesses an
IR fixed point.
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3. Numerical results from truncated equations

The infrared solution described above verifies the infrared
dominance of the gauge fixing part of the covariantly gauge
fixed QCD action conjectured in ref. [22]. The related in-
frared dominance of ghost loops and ultraviolet dominance
of one-loop terms provides a reasoning for earlier used trun-
cation schemes of DSEs being self-consistent at the level of
two-point functions [38]. These schemes have been refined
and generalized [39] and allowed then to solve the coupled
set of DSEs for the ghost, gluon and quark propagators [40].
Quarks will be discussed in the next subsection, we discuss
first the solution of the truncated set of DSEs depicted in fig. 7.

-1
=

-1
- 1/2 +

-1
=

-1 −

FIG. 7: Diagrammatic representation of the numerically solved trun-
cated DSEs.

As already noted the ghost DSE (taken in this trunca-
tion fully into account) implies the IR behaviour G(k 2) →
g(κ)(k2)−κ and Z(k2) → f1(κ)(k2)2κ whereas from the gluon
DSE one obtains Z(k2) → f2(κ)(k2)2κ. As expected the ghost
loop provides the infrared leading term. Consistency then re-
quires

f1(κ) != f2(κ) ⇒ κ =
93−√

1201
98

� 0.595353. (20)

This result, first obtained from DSEs [30, 31], has been veri-
fied using Exact Renormalization Group Equations [41, 42].

As can be seen from refs. [39, 40] the numerical results for
the ghost and gluon propagators compare very well to corre-
sponding recent lattice data. However, the values of the in-
frared exponents extracted from lattice calculations do nei-
ther agree with the analytical obtained DSE results nor do
they agree when compared against each other, see e.g. refs.
[43, 44]. A comparison to lattice calculations in three space-
time dimensions suggest that current lattice volumes are much
too small for reliable extraction of infrared exponents [45].

At this point it is interesting to note that the DSEs can be
solved on a compact manifold with finite volume [39, 46]. A
first study of the volume dependence [46] suggested that the
continuum limit would not be reached even at very large vol-
umes. A recent investigation [47], however, has shown that
ultraviolet renormalization of the DSEs is quite subtle when
performed on a compact manifold. The correctly renormal-
ized DSEs lead to numerical results which show the expected
approach to the continuum limit for increasing volumes [47].
This recent development will very likely facilitate the com-
parison of DSE and lattice results for QCD propagators in the
future.

D. Quark Propagator and
Dynamical Chiral Symmetry Breaking

The Landau gauge quark propagator, S(p), in Euclidean
momentum space can be generically written as

S(p) =
1

−ip/A(p2)+ B(p2)
=

ZQ(p2)
−ip/ + M(p2)

. (21)

A non-vanishing mass function, M(p2), for vanishing current
quark mass signals dynamical chiral symmetry breaking.
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FIG. 8: The dynamically generated quark mass function M(p2) and
the quark renormalization function ZQ(p2) (both quenched and un-
quenched) as obtained from DSEs in comparison to the chiral extra-
polation of quenched lattice data [48, 49], for details see text.

Following the arguments for the generation of a confine-
ment scale given in the introduction one easily also verifies
that the dynamical generation of quark masses is also a gen-
uinely non-perturbative phenomenon. It furthermore requires
a careful treatment of the quark-gluon interaction. In ref. [40]
it is demonstrated that sizeable nontrivial Dirac structures in
the quark-gluon vertex are necessary to generate dynamical
quark masses of the order of 300-400 MeV. Our results for
the quenched quark mass function M(p2) and the wave func-
tion ZQ(p2) are compared to the chiral extrapolations of the
quenched lattice results of refs. [48, 49] in fig. 8. Quite obvi-
ousy the overall qualitative and quantitative agreement bet-
ween both approaches is very good. The DSE results are
within the bounds given by the two different formulations of
fermions on the lattice.

Including the backreaction of the quark-propagator on the
ghost-gluon system leads to a coupled set of three Dyson-
Schwinger equations for the propagators of QCD. These equa-
tions have been solved in [40] and allowed a prediction of
possible effects of unquenching QCD on the propagators. In-
cluding Nf = 3 chiral quarks in the gluon DSE hardly changes
the results for the quark propagator, see fig. 8.

Unquenched lattice results for the gluon propagator includ-
ing the effects of two light (up-) and one heavy (strange-)
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quark have been published recently [20]. In the gluon prop-
agator the screening effect from dynamical quarks is clearly
visible in the lattice results for momenta p larger than p = 0.5
GeV. This effect is also clearly present in the DSE results, see
e.g. ref. [50].

E. Running Coupling

The definition of a non-perturbative running coupling rests
on a specifically chosen Green function. As the ghost-gluon
vertex in Landau gauge acquires no independent renormalisa-
tion, this relates the charge renormalisation constant Zg to the
ones for the gluon and ghost wave functions,

Z̃1 = ZgZ1/2
3 Z̃3 = 1 , (22)

where the gluon leg provides a factor
√

Z3, the two ghost
legs Z̃3. As we will demonstrate in the following this allows
for a definition of a non-perturbative running coupling resting
solely on the properties of the gluon and ghost propagators.

From the above relations between renormalization con-
stants one concludes that g2Z(k2)G2(k2) is renormalization
group (RG) invariant. In absence of any dimensionful para-
meter this dimensionless product is therefore a function of the
running coupling ḡ,

g2Z(k2)G2(k2) = f (ḡ2(tk,g)) , tk =
1
2

lnk2/µ2 . (23)

Here, the running coupling ḡ(t,g) is the solution of dḡ/dt =
β(ḡ) with ḡ(0,g) = g and the Callan–Symanzik β-function
β(g) = −β0g3 +O(g5). The perturbative momentum subtrac-
tion scheme is asymptotically defined by f (x) → x for x → 0.
This is realized by independently setting

Z(µ2) = 1 and G(µ2) = 1 (24)

for some asymptotically large subtraction point k 2 = µ2.
(Note, however, that requiring both conditions is only con-
sistent at asymptotically large µ2, see below.) If the quantity
g2Z(k2)G2(k2) is to have a physical meaning, e.g., in terms
of a potential between static colour sources, it should be inde-
pendent under changes (g,µ) → (g ′,µ′) according to the RG
for arbitrary scales µ′. Therefore,

g2Z(µ′2)G2(µ′2) != g′2 = ḡ2(ln(µ′/µ),g) , (25)

and, f (x) ≡ x, ∀x. This can thus be adopted as a physically
sensible definition of a non-perturbative running coupling in
the Landau gauge. In the present scheme it is not possible
to realize f (x) ≡ x by simply extending the perturbative sub-
traction scheme (24) to arbitrary values of the scale µ, as this
would imply a relation between the functions Z and G which
is inconsistent with the leading infrared behaviour of the so-
lutions. For the two propagator functions the condition (24)
is in general too restrictive to be used for arbitrary subtraction
points. Extending the perturbative subtraction scheme, one is
only allowed to introduce functions of the coupling such that

Z(µ2) = fA(g) and G(µ2) = fG(g) with f 2
G fA = 1 ,

(26)

and the limits fA,G → 1 , g → 0. Using this it is straightfor-
ward to see that for k2 �= µ2 one has (tk = 1

2(lnk2/µ2)),

Z(k2) = exp

{
−2

∫ ḡ(tk ,g)

g
dl

γA(l)
β(l)

}
fA(ḡ(tk,g)) , (27)

G(k2) = exp

{
−2

∫ ḡ(tk ,g)

g
dl

γG(l)
β(l)

}
fG(ḡ(tk,g)) .

Here γA(g) and γG(g) are the anomalous dimensions of gluons
and ghosts, respectively. Eq. (22) corresponds to the following
identity for these scaling functions in Landau gauge:

2γG(g) + γA(g) = −1
g

β(g) . (28)

One thus verifies that the product g2ZG2 indeed gives the run-
ning coupling. Therefore the non-perturbative definition of
this running coupling can be summarized as follows:

αS(k2) = αS(µ2)Z(k2;µ2)G2(k2;µ2). (29)

The infrared behaviour of the ghost and gluon propagators im-
plies that the product Z(k2)G2(k2) goes to a constant in the in-
frared, correspondingly we find an infrared fixed point of the
running coupling:

αS(0) =
2π
3Nc

Γ(3−2κ)Γ(3+ κ)Γ(1+ κ)
Γ2(2−κ)Γ(2κ)

. (30)

For the gauge group SU(3) the corresponding numerical value
is αS(0) ≈ 2.972. Of course, this result depends on the em-
ployed truncation scheme. In ref. [30], assuming the infrared
dominance of ghosts it has been shown that the tree-level ver-
tex result αS(0) ≈ 2.972, among the general class of dressed
ghost-gluon vertices considered in the infrared, provides the
maximal value for αS(0). If the exponent κ is chosen in an
interval between 0.5 and 0.7, as strongly suggested by lattice
results, one obtains αS(0) > 2.5 [30].

F. Analytic properties of propagators

1. Positivity violation for the gluon propagator

The positivity violation of the (space-time) propagator of
transverse gluons as predicted by the Oehme–Zimmermann
superconvergence relation and corresponding to the Kugo–
Ojima and Gribov–Zwanziger scenarios has been a long-
standing conjecture for which there is now compelling evi-
dence, see e.g. ref. [51] and references therein. The basic
features underlying these gluon properties, are the infrared
suppression of correlations of transverse gluons and the in-
frared enhancement of ghost correlations as discussed above.
A simple argument given by Zwanziger makes this obvious:
An IR vanishing gluon propagator implies for the space-time
gluon propagator being the Fourier transform of the momen-
tum space gluon propagator:

0 = Dgluon(k2 = 0) =
∫

d4x Dgluon(x) . (31)
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FIG. 9: The Fourier transform of the DSE result for the gluon prop-
agator.

This implies that Dgluon(x) has to be negative for some values
of x. And, as a matter of fact this behaviour is seen from fig. 9
in which the Fourier transform of the DSE result for the gluon
propagator is displayed.

In order to investigate the analytic structure of the gluon
propagator we first parameterize the running coupling such
that the numerical results for Euclidean scales are pointwise
reproduced [40]:

αfit(p2) =
αS(0)

1+ p2/Λ2
QCD

(32)

+
4π
β0

p2

Λ2
QCD + p2

(
1

ln(p2/Λ2
QCD)

− 1

p2/Λ2
QCD−1

)

with β0 = (11Nc−2Nf )/3. In this expression the Landau pole
has been subtracted (c.f. ref. [52]), it is analytic in the com-
plex p2 plane except the real timelike axis where the logarithm
produces a cut for real p2 < 0, and it obeys Cutkosky’s rule.

The infrared exponent κ is an irrational number, and thus
the gluon propagator possesses a cut on the negative real p 2

axis. It is possible to fit the solution for the gluon propaga-
tor quite accurately without introducing further singularities
in the complex p2 plane. The fit to the gluon renormalization
function [51]

Zfit(p2) = w

(
p2

Λ2
QCD + p2

)2κ (
αfit(p2)

)−γ
(33)

is shown in Fig. 10. Hereby w is a normalization parameter,
and γ = (−13Nc + 4Nf )/(22Nc − 4Nf ) is the one-loop value
for the anomalous dimension of the gluon propagator. The
discontinuity of (33) along the cut vanishes for p 2 → 0−, di-
verges to +∞ at p2 = −Λ2

QCD and goes to zero for p2 → ∞.
The function (33) contains only four parameters: the over-

all magnitude which due to renormalization properties is ar-
bitrary (it is determined via the choice of the renormalization
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FIG. 10: The gluon propagator compared to the fit, Eq.(33), and
lattice data [16].

scale), the scale ΛQCD, the infrared exponent κ and the anom-
alous dimension of the gluon γ. The latter two are not free
parameters: κ is determined from the infrared properties of
the DSEs and for γ its one-loop value is used. Thus we have
found a parameterization of the gluon propagator which has
effectively only one parameter, the scale ΛQCD. It is important
to note that the gluon propagator possesses a form such that
Wick rotation is possible!

Furthermore it is worth mentioning that the positivity vi-
olations for gluons is also found at very high temperatures,
even in the infinite temperature limit [53, 54]. For the gluons
being transverse to the medium the Gribov-Zwanziger and/or
Kugo-Ojima scenario applies in the confined and “decon-
fined” phases! This should not come as a real surprise: The
infinite temperature limit corresponds to three-dimensional
Yang-Mills theory plus an additional Higgs-type field, the left-
over of the A4 field. The latter decouples in the IR, the three-
dimensional Yang-Mills theory is as expected confining and
thus the corresponding gluon modes are positivity violating.

2. Analytic structure of the quark propagator

From the discussion above it is obvious that a dressed
quark-gluon vertex is mandatory. Especially those parts of
the quark-gluon vertex reflecting dynamical chiral symme-
try breaking are important. Their existence provides a sig-
nificant amount of self-consistent enhancement of dynamical
mass generation. In ref. [51] it has been found that fairly in-
dependently of the form of the gluon propagator the resulting
quark propagator respects positivity if such scalar terms are
of sufficient strength in the quark-gluon vertex. The leading
singularity of the quark propagator is then on the real axis,
and the location of this singularity may play the role of a con-
stituent quark mass. The results of ref. [51], however, strongly
suggest that this singularity is not an isolated pole.
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G. Quark Confinement

At this point of investigations gluon confinement is inher-
ent but quark confinement stays a mystery. Also, the pre-
cise structure of the quark propagator depends crucially on
the quark-gluon vertex, and therefore a detailed study of this
three-point function, and especially its IR behaviour, is re-
quired to proceed.

To extend the above described IR analysis of Yang-Mills
theory to full QCD [55] one concentrates first on the quark
sector of quenched QCD and chooses the masses of the va-
lence quarks to be large, i.e. m > ΛQCD. The remaining scales
below ΛQCD are those of the external momenta of the Green
functions. Without loss of generality these can be chosen to
be equal, since infrared singularities in the corresponding loop
integrals appear only when all external scales go to zero. One
can then employ DSEs to determine the selfconsistent solu-
tions in terms of powers of the small external momentum scale
p2 �ΛQCD. The DSEs which have to be considered in addition
to the DSEs of Yang-Mills theory are the one for the quark
propagator and the quark-gluon vertex. The dressed quark-
gluon vertex Γµ consists in general of twelve linearly indepen-
dent Dirac tensors. Especially those Dirac-scalar structures
are, in the chiral limit, generated non-perturbatively together
with the dynamical quark mass function in a self-consistent
fashion: Dynamical chiral symmetry breaking reflects itself,
as anticipated by previous quark propagator DSE results, thus
not only in the propagator but also in a three-point function.

An IR analysis of the full set of DSEs reveals a non-trivial
solution for the quark-gluon vertex: vector and scalar com-
ponents of this vertex are infrared divergent with exponent
−κ− 1

2 [55]. A numerical solution of a truncated set of DSEs
confirms this infrared behavior. Similar to the Yang-Mills sec-
tor the diagrams containing ghost loops dominate. Thus all IR
effects from the Yang-Mills sector are generated by the IR
asymptotic theory described above. More importantly, in the
quark sector the driving pieces of this solution are the scalar
Dirac amplitude of the quark-gluon vertex and the scalar part
of the quark propagator. Both pieces are only present when
chiral symmetry is broken, either explicitely or dynamically.

= + + (..)

FIG. 11: The four-quark 1PI Green’s function and the first terms of
its skeleton expansion.

The static quark potential is obtained from the four-quark
1PI Green’s function H(p), whose skeleton expansion is dis-
played in Fig. 11. From its IR analysis one infers that H(p)∼
(p2)−2for p2 → 0. From the well-known relation

V (r) =
∫

d3 p
(2π)3 H(p0 = 0,p)eipr ∼ |r| (34)

between the static four-quark function H(p0 = 0,p) and the
quark potential V (r) one therefore obtains a linear rising
potential. Correspondingly, the running coupling from the
quark-gluon vertex turns out to be proportional to 1/p 2 in the
infrared, i.e. contrary to the couplings from the Yang-Mills
vertices this coupling is singular in the infrared.

The first term in the skeleton expansion, i.e. the effective,
nonperturbative one-gluon exchange displayed in Fig. 11, al-
ready generates this result. Since most of the terms in the ex-
pansion are equally enhanced in the IR, the string tension can
only be calculated by summing over an infinite number of dia-
grams. This property alleviates the usefulness of the approach
but it had to be expected in the first place. Since already an
effective, nonperturbative one-gluon exchange generates the
confining potential one is confronted with the problem of un-
wanted van-der-Waals forces. The suppressed gluon propaga-
tor looks at first sight helpful because it implies that there are
no long-range correlations between the gauge fields, and thus
no long-range correlations for chromoelctric and chromomag-
netic fields at large distances. However, the problem of avoid-
ing long-range multipole fields has only be shifted from the
two-point correlation to the quark-gluon vertex.

H. Summary of Part I

The following points are the most important results de-
scribed so far:

� Gluons are confined by ghosts, positivity of transverse
gluons is violated.
Gluons are therefore removed from the S-matrix.
(c.f. the Kugo-Ojima confinement scenario, the Oehme-
Zimmermann superconvergence relation, the Gribov-
Zwanziger horizon condition, etc.)

� Chiral symmetry is dynamically broken
(in two- and three-point functions).

� In the Yang-Mills sector the strong running coupling is
IR finite.

� The analytic structure of gluon and quark propagators
is (very likely) such that Wick rotation is possible.
• Effectively one parameter for the gluon propagator.
• Evidence for constituent quark mass.

� There is compelling evidence that quark confinement
in the Landau gauge is due to the IR divergence of the
quark-gluon vertex.

In the IR this vertex is dominated by its scalar compo-
nents thereby inducing a relation between confinement
and broken chiral symmetry.
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II. ASPECTS OF THE CONFINEMENT MECHANISM IN
COULOMB-GAUGE QCD

A. Starting point

As compared to the previous part of these lectures the gauge
will be changed from covariant to Coulomb gauge. The aim
is to relate the confinement of quarks to the confinement of
coloured composites [56].

To this end we start from the commonly accepted Wilson
criterion [57] and an inequality between the gauge-invariant
quark-antiquark potential VW (R) and the color-Coulomb po-
tential VC(�x) [58]. The latter quantity is the instantaneous
part of the time-time component of the gluon propagator
in Coulomb gauge: D00(�x,t) ∝ VC(�x)δ(t)+ non-inst. terms.
In ref. [58] it was shown that if VW (R) is confining, i.e. if
limR→∞ VW (R) → ∞, then also |VC(�x)| is confining. This was
confirmed in SU(2) and SU(3) lattice calculations [59, 60]
where it was found that −VC(�x) rises linearly with R = |�x|.
However, the corresponding string tension, σ c, was extracted
to be several times the asymptotic one,

√
σc ≈ 700MeV.

Furthermore, some of the basic features of Coulomb gauge
QCD will be employed. The presented investigation builds on
properties of the gluon propagator in this gauge (see e.g. refs.
[61–65]), investigations of the dynamical breaking of chiral
symmetry in corresponding Green function approaches (see
e.g. refs. [66–70]) and related results of lattice calculations
(see e.g. refs. [59, 71–74]). Especially the cancellations of IR
divergent expressions [69] will be exploited.

Here an instantaneous approximation is used, and the ef-
fects of transverse gluons are negelected. These approxima-
tions drastically simplify the technicalities involved in the cal-
culations. However, some of the physics contained in the sys-
tem is lost. The results are qualitatively, but not quantitatively
significant. We therefore refrain from using physical dimen-
sions, but instead present the quantities in all graphs in appro-
priate units of the Coulomb string tension σc. The reason for
the qualitative reliability of the calculations is that the under-
lying symmetries of the theory are incorporated in the model
via Slavnov-Taylor or Ward-Takahashi identities.

B. Quark Dyson-Schwinger equation

One immediate advantage of Coulomb gauge is the fact that
it is possible to perform all calculations in Minkowski space.
In the employed approximations the quark propagator fulfills
the Dyson-Schwinger equation

i S−1(p) = /p−m−Cf 6π
∫

d4q
(2π)4 VC(�k)γ0 S(q)γ0 , (35)

where�k = �p−�q and Cf = (N2
c − 1)/(2Nc) = 4/3 is the sec-

ond Casimir invariant of the fundamental representation of the
gauge group. The q0-integration in Eq. (35) can be performed
easily. One makes the Ansatz

S−1(p) := −i(γ0 p0 −�γ ·�p C(p)−B(p)) (36)

and obtains two coupled integral equations for the functions
B(p) and C(p)

B(p) = m+
∫

d3q
2π2 VC(k)

M(q)
ω̃(q)

(37)

C(p) = 1+
1
p2

∫
d3q
2π2 VC(k) �p ·�q 1

ω̃(q)
, (38)

where m is the current quark mass, ω̃(p) :=
√

M2(p)+�p2,
and M(p) := B(p)/C(p) is the quark “mass function”. Its
infrared behavior is a result of dynamical chiral symmetry
breaking. In this Minkowski space formulation it can be di-
rectly used to define a constituent quark mass.

The Coulomb-gluon part VC(k) of the interaction is chosen
to be highly IR singular,

VC(k) =
σc

(�k2)2
, (39)

where σc is the Coulomb string tension. In practical calcula-
tions VC(k) is regulated by a parameter µIR such that the mo-
mentum dependence is modified to

VC(k) =
σc

(�k2)2
→ σc

(�k2 + µ2
IR)2

. (40)

In this fashion all quantities and observables become µ IR-
dependent and one obtains the final result for some f (µ IR) by
taking the limit f = limµIR→0 f (µIR).

C. Bethe-Salpeter equation

A quark-antiquark bound state is described by the Bethe-
Salpeter equation (BSE), which in its homogeneous form is
written as (for clarity Dirac, flavor, and color indices are ne-
glected)

Γ(P,q) =
∫

d4k K(q,k,P) S(k+) Γ(P,k) S(k−) , (41)

where P and q are the quark-antiquark pair’s total and rela-
tive four-momenta, Γ(P,q) is the bound state’s Bethe-Salpeter
amplitude (BSA), k± = k ± P/2 are the individual quark-
and antiquark-momenta, and K(q,k,P) is the quark-antiquark
scattering kernel. Note that the quark propagator appears as
input into the BSE. The axial-vector Ward-Takahashi iden-
tity is employed to ensure that the kernels of the quark
Dyson-Schwinger equation and Bethe-Salpeter equations for
pseudoscalar states are related in such a way that chiral sym-
metry and its dynamical breaking are respected by the trun-
cation. Here, corresponding to the rainbow approximation in
the quark Dyson-Schwinger equation we employ the ladder
approximation in the qq scattering kernel in the BSE. In par-
ticular this leads to the correct behavior of the pion mass as a
function of the current quark mass. Especially the pion mass
vanishes in the chiral limit.

For pseudoscalar mesons and correspondingly scalar di-
quarks the BSA can be characterized in terms of two scalar



Reinhard Alkofer 155

functions h(p) and g(p), which essentially are the coefficients
of the pseudoscalar and axial-vector structures in the BSA, for
details, see ref. [75] and references therein. E.g. the BSE (41)
leads to the following equation for the amplitude h(p):

h(p) =
1

ω(p)

∫
d3q
2π2 VC(k)

[
h(q)+

m2
π

4ω(q)
g(q)

]
, (42)

where ω(p) = C(p) ω̃(p). Note that the same type of IR di-
vergent integral appears as in the case of the quark DSE.

For vector mesons and axial-vector diquarks the BSA has
four linearly independent amplitudes. The construction of the
four coupled integral equations corresponding to the BSE is
analogous to the pseudoscalar case.

D. Cancelation of infrared divergencies

The way the functions B(p) and C(p) diverge by containing
a part I(p) ∝ 1/µIR makes the mass function well-defined:

M(p) =
I(p)M(p)+ Breg(p)

I(p)+Creg(p)
=

Breg(p)
Creg(p)

. (43)

The fact that M(p) stays finite has interesting consequences:
The quark propagator vanishes, i.e. quarks are confined,
nevertheless the colour singlet quark condensate stays well-
defined [69]. We will see that in other colour singlet quantities
also the IR divergence cancels.

For a bound state two different situations may arise:
(i) The energy of a static qq̄ state may be finite as the IR di-
vergent quark self-energies cancel precisely against the IR di-
vergent binding energy, or
(ii) this cancelation is incomplete, the state’s energy is infinite,
and it is removed from the spectrum, i.e. confined.

E. Numerical results

In fig. 12 the quark mass function M(q2) is plotted for four
different values of the infrared regulator µ IR in the chiral limit
m = 0. One nicely sees the convergence of the mass function.

The BSAs for mesons also behave as expected for µ IR → 0.
The results for the pion amplitudes h(p) and g(p) are pre-
sented in fig. 13 (in an arbitrary normalization such that
h(0) = 1). As can be seen from fig. 14 the pion mass is van-
ishing in the chiral limit. Also the ρ mass shows the expected
dependence on the current quark mass.

The amplitudes for diquarks behave quite differently, the
scalar diquark amplitudes h(p) and g(p) are presented in
fig. 15. IR cancelations appearing in the pion case lead to
a stable h as well as ratio of g/h, which is not the case for
the diquark: there g/h ∼ µIR → 0 and h ∼ 1/

√
µIR. This has

drastic consequences for the masses when plotted vs. the IR
regulating parameter µIR. In fig. 16 the chiral limit masses
are displayed: one sees quite clearly that the ρ mass is stable
(the pion mass is anyhow zero) but the diquark masses are di-
verging for vanishing µ IR. Therefore the diquarks are removed
from the spectrum, the diquarks are confined.
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functions of the infrared regulator µIR.

It is then quite insructive to investigate the charge radii for
both meson and diquark states by calculating the electromag-
netic form factors for small photon virtualities. This gives
finite results in the limit µIR → 0 for mesons and diquarks.
Plots of the pion and scalar diquark charge radii are shown in
fig. 17. We conclude therefore that the confined colour an-
titriplet quark-quark correlations possess a well-defined size!

F. Summary of Part II

In Coulomb gauge QCD

� the one-gluon-exchange of Coulomb-gluons ( i.e. D 00)
overconfines!

� the (four-dimensional) quark propagator vanishes, and
quarks are confined!

� dynamical chiral symmetry breaking occurs;
despite IR divergencies the colour singlet quark con-
densate is well-defined!

� colour singlet meson properties are well-defined!

� coloured diquarks are confined!

� they nevertheless possess a well-defined size!

III. WHAT IS THE NUCLEON?

A. Introduction

The main objective of the studies to be reported here is to
develop a QCD based understanding of the nucleon structure.
Recent experimental results emphasize the complicated na-
ture of baryons, and thus this aim is highly ambitious. On the
other hand, as seen from the previous parts of these lectures,
theoretical issues such as confinement, dynamical breaking of
chiral symmetry and the formation of relativistic bound states
can be understood and related to the properties of the non-
perturbative propagators of QCD. This then can serve as a ba-
sis to approach an ab initio calculation of nucleon properties
from continuum QCD.

A first step has been recently taken [76] by progressing
towards a bottom-up determination of the nucleons’ quark
core. Although some technical limitations could have been
yet only overcome by quite drastic truncations it is worth to
describe the corresponding first and quite instructive results.
Within the employed Poincaré covariant Dyson-Schwinger–
Bethe-Salpeter–Faddeev approach the building blocks are as
realistic as currently available, however, yet not fully consis-
tently determined. As will become obvious the fact that me-
son, especially pion, cloud effects are missing can neverthe-
less be clearly seen.
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1. A note on quark models

It has to be emphasized here that in two important respects
the presented investigation differs from most quark model
studies of the nucleon. First, the resulting nucleon state is a
four-momentum eigenstate. This is simply due to the fact that
Poincaré covariance has been respected in every step. Second,
there are no parameters adjusted to any observable. Starting
with DSE or lattice quark propagators this is simply not nec-
essary. Especially, one inherits the scale generated by dimen-
sional transmutation when non-perturbatively renormalizing
QCD.

Therefore it is not intended to add to the plethora of quark
models like soliton, bag or potential models. Over the last
decades they have been useful in gaining a phenomenologi-
cal understanding on the experimental results of the nucleon
structure.

The questions to be answered by the presented approach
can be considered being simple or being fundamental. Such
questions are e.g.
• How do baryons interact causally?
• What rôle is played by the spin?
• Is the nucleon spherically symmetric?
Given the current situation in our understanding of the nu-
cleon the ability to answer these questions can serve as a mea-
sure of the progress made in the investigation of hadron prop-
erties.

With these remarks in mind let us start by looking at prop-
erties of bound states of the three Dirac fermions.

2. Relativistic angular momentum

Even with relativistic valence quarks only, the nucleon has
quite a rich structure embodied in its wave function. This will
be exemplified in the nucleon’s rest frame by a decomposi-
tion into partial waves w.r.t. the motion of one of the valence
quarks relative to the complementary pair of quarks, see e.g.
ref. [77] and references therein. As has been demonstrated this
analysis also answers, without referring to a specific dynam-
ical model, the question whether the nucleon is spherically
symmetric: It is not – due to the highly relativistic motion of
quarks within the nucleon.

In non-relativistic physics angular momentum is defined
w.r.t. a fixed origin. Therefore the concept of angular mo-
mentum has to be generalized for relativistic states. Mathe-
matically one sees the effect of relativity from the fact that the
the Casimir operator of the non-relativistic rotation group, �J2,
does not commute with boosts.

Describing the angular momentum with the help of a vector
operator orthogonal to the particle momentum will cure the
underlying problem. Thus we will start our considerations
from the Pauli-Lubanski axial-vector:

Wµ = −1
2

εµνρσJµνPσ (44)

where Jµν is the Noether charge of rotations and boosts. We

note that

C2 = WµW µ = m2 j( j + 1) (45)

is one of the two quadratic Casimir invariants of the Poincaré
group, and that in the rest frame it reduces to a quantity pro-
portional to the usual spin:

Wµ = (0, �W ), Wi = −1
2

εi jk0J jkP0 = −mΣi . (46)

Note that the decomposition into spin and angular momentum
is frame-dependent!

Baryons, and as such also three-quark states, are eigenstates
of parity, P2 and W 2. Coupling the three spin– 1

2 quarks to a
composite spin– 1

2 nucleon such that Poincaré covariance is
maintained we will see that [78–80]:

• due to the compositeness, we need more components
than four in total or two for the positive energy states.

• the lower components will not vanish in the rest frame
thus giving rise to the unavoidable presence of at least
a (relativistic) p-wave contribution.

• the difference of one angular momentum unit between
upper and lower components remains, however, there
will be also a d-wave contribution.

• the coupling to the electromagnetic field can be chosen
such to maintain causality, however, at the expense of a
fairly complicated structure of the nucleon–photon ver-
tex containing one– and two-loop contributions.

3. Quark-quark correlations

In a baryon every quark pair is necessarily in a colour an-
titriplet state. In this channel the interaction is attractive,
certainly on a pertubative level and very likely also non-
pertubatively. If we assume that in the corresponding rest
frame the angular momentum vanishes there remain only
two types of states: Scalar (Spin 0) and axialvector (Spin
1) “diquarks”. Note that these are the analogous states to
pseudoscalar and vector mesons because the intrinsic parity
of a fermion-fermion pair is opposite to the one of a fermion-
antifermion pair. For these diquark states the Pauli principle
requires flavour antisymmetry for the scalar and flavour sym-
metry for axialvector quark-quark pair.

B. A Poincaré-covariant Faddeev Approach

1. Dyson-Schwinger equation

The nucleon will appear as a pole in the quark six-point
function. In this subsection a symbolic notation for all equa-
tions will be used, otherwise it would be hard to recognize the
relevant structures under all the integrals and indices. The cor-
responding fully renormalized Green function obeys a DSE

G = G0 + G0 K G ⇐⇒ G−1 = G−1
0 −K (47)
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in terms of the tree-level six-point function G0 and an interac-
tion kernel K, c.f. fig. 18. This equation, in Euclidean space,
provides the starting point for our investigations. In the vicin-
ity of the pole the decomposition G ∝ Ψ̄Ψ/(P2 + m2

N) yields

Ψ = G0 K Ψ (48)

which is diagrammatically displayed in fig. 19.

KG G

FIG. 18: A schematic representation of Dyson’s equation for the
quark 6-point function.

K

FIG. 19: The pole approximation to the DSE for the quark 6-point
function.

QCD does of course also imply that irreducible three-
particle interactions exist between the three valence quarks
of a nucleon. They are certainly subleading in the ultravio-
let which, however, is not the reason why we neglected them
here. In the previous lectures we have seen that there is a long-
range confining interaction between two quarks. We then sim-
ply assume that this force is dominating the long-range corre-
lation of also the three-quark state. When we resort now in
the next step to the Faddeev approximation, namely neglect-
ing all irreducible three-particle interactions (see fig. 20 for
a diagrammatic representation) we have to be aware that this
may have a drastic influence on our results. Currently this is a
necessary step due to technical reasons. Only if we are able to
solve the resulting Poincaré-covariant Faddeev equation, see
fig. 21, we will be able to overcome this, yet uncontroled, ap-
proximation.

Provided the Faddeev approximation is justified the kernel
of the 6-point DSE can be decomposed into three terms,

K = K1 + K2 + K3 . (49)

The Ki, i = 1,2,3, describe the interactions of quark pairs ( jk),
i.e. with quark (i) as a spectator. (i jk) is here a cyclic permu-
tation of (123). The two-quark propagators g i fulfill their own
DSEs with kernels Ki,

gi = G0 + G0 Ki gi . (50)

The objects gi and Ki are defined in three-quark space. The
former contain a factor Si, the propagator of the spectator
quark, and the latter contain a factor of S−1

i (although the spec-
tator quark is not involved in the interactions described by Ki).
The two-quark scattering kernel T̃i is defined by amputating
all incoming and outgoing quark legs from the connected part
of gi,

gi = G0 + G0 T̃i G0 . (51)

Combining the two previous equations yields an integral equa-
tion for T̃i,

T̃i = Ki + Ki G0 T̃i . (52)

The so-called Faddeev components ψ i are introduced by

Ψi = G0 Ki Ψ , (53)

which finally allows us to write down the Faddeev equation

Ψi = S j Sk T̃i (Ψ j + Ψk). (54)

KK 1
~ K2

~

K3
~

-1

-1

-1

FIG. 20: Diagrammatic representation of the Faddeev approxima-
tion.

T i
~ T i

~
Ψi Ψj Ψk

i

j

k            
      

FIG. 21: The Poincaré-covariant Faddeev equation of the nucleon.

2. Quark propagator

In eq. (54) the fully renormalized quark propagator appears
explicitely as well as implicitely (via the two-quark scattering
kernel). In part I of these notes it is described how to obtain
this quark propagator by solving the Landau gauge DSEs for
the quark, gluon and ghost propagators as well as the quark-
gluon vertex. In the calculations discussed below the parame-
terization of ref. [51] with a cut on the real time-like axis has
been used. The quark DSE for complex external momenta, as
needed in the Faddeev equation, is solved within an on-going
investigation [81]. However, these results have yet not been
included into a solution of the Faddeev equation. There is
another advantage of using the parameterization of the DSE
solution: With some very mild adjustment of parameters it
also describes to a high accuracy the available lattice data for
the quark propagators.

As has been discussed the dynamical chiral symmetry
breaking, and thus the dynamical generation of the infrared
quark mass, is quantitatively well described. The ’constituent
quark’ mass scale is described by M(0) ≈ 350 . . .400 MeV.
The analytic structure is, on the other hand, quite sensitive to
the details on the spacelike axis. In the chiral limit the location
of the singularity closest to the origin is M(p2

sing) ≈ 500 MeV
when using the DSE solution and 390 MeV when adjusting
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to lattice data. This then implies finally a ‘range‘ of quark
propagator parameterizations to be used.

As the parameterization of ref. [51] is based on DSE so-
lutions and/or lattice data with different values of the current
mass the dependence of the quark propagator functions on the
current masses is kept quite precisely. For some values of the
current mass the constituent quark mass function is plotted in
fig. 22.
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FIG. 22: The mass functions of the employed quark propagators for
different values of the current mass calculated from the parameteri-
zation of ref. [51].

3. “Diquarks”

In an on-going investigation [81] the two-quark scattering
kernel T̃i is calculated for the complex momenta needed in the
Faddeev equation. The results presented here are, however,
calculated using a further approximation, namely by repre-
senting the two-quark correlation function in terms of a sum
over separable correlations,

T̃i = ∑
a

χa
i Da

i χ̄a
i , (55)

which is pictorially shown in fig. 23. Hereby Da denotes the

T i
~ χ  iS

a

(a) D i
(a)

χ  i
-(a)

α

β

γ

δ           
      

FIG. 23: Diagrammatic representation of the separable approxima-
tion to the two-quark scattering kernel T̃i.

diquark propagator and χa, χ̄a the diquark amplitudes. The
sum extends over scalar and axial-vector correlations. For
the amplitudes we take into account the corresponding leading
Dirac structures

χ5(p2) = Vsc(p2)γ5 C, (56)

χµ(p2) = Vax(p2)γµ C, (57)

with C being the charge conjugation Dirac matrix. The ampli-
tudes V (p2), reflecting the non-pointlike structure of quark-
quark correlations, are determined from an ‘on-shell‘ Bethe-
Salpeter equation for the quark pair. In this way the confined
nature of “diquarks” is not taken into account, and one ob-
tains masses for the “diquarks”. In the chiral limit, depend-
ing on the quark propagator parameterization, one obtains
msc ≈ 0.6− 0.8 GeV, max ≈ 0.85− 1 GeV. The quark pole
mass and the diquark masses as a function of the current mass
are plotted in fig. 24.
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FIG. 24: Displayed are the quark pole mass and the diquark masses
as a function of the current mass for parameterization of the quark
propagator as resulting from coupled DSEs.
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FIG. 25: Reconstruction of the diquark propagator from a quark loop.

Given the knowledge about the diquark BSAs and the di-
quark masses the diquark propagator can be quite accuratelly
represented by the sum of a constant and a quark loop, see
fig. 25. The constant is hereby chosen such that the correct
“diquark msss” is reproduced.

4. Three-quark amplitudes

Plugging the separable approximation for the two-quark
scattering kernel T̃i into the Faddeev equation leads to a cou-
pled set of quark-diquark Bethe-Salpeter equations which is
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best formulated for the the vertex functions Φab related to the
BSAs via

Ψac(p,P) = S(pq) Dab(pd) Φbc(p,P) . (58)

The quark-diquark Bethe-Salpeter equations then read:

φa(p,P) = ∑
b,c

∫
d4k

(2π)4 χb ST (q) χ̄a T︸ ︷︷ ︸
KBS(p,k,P)

S(kq)Dbc(kd)φc(k,P) .

(59)

χ-a

a

q

q

k

dk

qp

Prk

r
p

dp

p k

χ b

f cf

KBS

P

            
       
FIG. 26: Diagrammatic representation of the quark-diquark Bethe-
Salpeter equations.

The interaction between the spectator quark and the corre-
lated quark-quark pair is quark exchange, which is also the
least interaction required to reinstate the Pauli principle. This
interaction is attractive as antisymmetrisation in colour re-
quires the symmetrisation in all other quantum numbers.

The Bethe-Salpeter vertex function for the nucleon can be
decomposed into

ΦN
αβγ = Φ5

α (χ5)βγ + Φµ
α (χµ)βγ (60)

Φ5 = ∑2
i=1 Si(p;P) Γi(γµ, p,P) u

Φµ = ∑6
i=1 Ai(p;P) Γµ

i (γµ, p,P) u

with constraints on the Dirac matrices Γi such that

the nucleon has spin 1
2 , positive parity and positive energy.

the two independent momenta

P = baryon momentum, and

p = quark-diquark relative momentum,

are basis vectors.

The partial wave decomposition of the nucleon in the rest
frame is given in table 1. Besides three s–waves (two of them
also present in the non-relativistic limit) some of the lower
components provide p–waves (four in total), and there is also
a d–wave component. The existence of the latter means that
the nucleon is, as a quantum state of course only in the internal
frame, not spherically symmetric. The angular momentum
coupling is depicted in fig. 27.

N wave fcts in the rest frame eigenvalue eigenvalue
l(l +1) of L2 s(s+1) of S2

S1u(γ5C) =
(χ

0

)
(γ5C) 0 s 3

4
scalar

S2u(γ5C) =
( 0

1
p (�σ�p)χ

)
(γ5C) 2 p 3

4

Aµ
1 u(γµC) = P̂0

( 1
p (�σ�p)χ

0

)
(γ4C) 2 p 3

4

Aµ
2 u(γµC) = P̂0

(0
χ
)
(γ4C) 0 s 3

4

Bµ
1 u(γµC) =

(iσiχ
0

)
(γiC) 0 s 3

4
axialvector

Bµ
2 u(γµC) =

( 0
i
p σi(�σ�p)χ

)
(γiC) 2 p 3

4

C µ
1 u(γµC) =

(i( p̂i(�σ�̂p)− 1
3 σi)χ

0

)
(γiC) 6 d 15

4

C µ
2 u(γµC) =

( 0
i
p (pi− 1

3 σi(�σ�p))χ
)
(γiC) 2 p 15

4

TABLE I: The partial wave decomposition of the nucleon in its rest
frame.
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FIG. 27: Angular momentum coupling of the nucleon’s three valence
quarks.
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FIG. 28: The mass attributed to the nucleon’s quark core, the di-
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squared.
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5. Nucleon mass

Solving the quark-diquark BSEs (for details of the numer-
ical method see ref. [82]) one obtains a mass which can be
attributed to the nucleon’s quark core. This mass is above
the physical value M = 0.94 GeV. Depending on the parame-
terization of the quark propagator and the calculated diquark
masses the chiral limit value ranges between M ∼ 1.07 GeV
. . .1.25 GeV. In fig. 28 this mass is displayed as a function of
the pion mass squared together with diquark masses and the
quark ‘pole’ mass. From fig. 29 it is evident that this overesti-
mation of the nucleon mass is a result for all values of the cur-
rent quark mass (or pion mass, respectively). The comparison
to the results from Chiral Perturbation Theory and to lattice
data [83] clearly shows that we missed some attractive contri-
bution in the nucleon. A possible explanation which attributes
this to missing pion effects can be found in refs. [84, 85].
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FIG. 29: The mass attributed to the nucleon’s quark core compared
to results from Chiral Perturbation Theory and lattice data [83] as
function of the pion mass squared.

C. Electromagnetic Current

1. Current Contributions

To describe the coupling of the photon to the nucleon’s
quark core one has to construct the electromagnetic current
operator. The corresponding five-point function has to fulfill
a Ward-Takahashi identity which in turn guarantees that cur-
rent conservation holds [79, 86]. This requires to include at
least the following diagrams (see fig. 30):

• photon-quark coupling,

• photon-diquark coupling,

• coupling to exchange quark,

• seagull terms: coupling to diquark amplitudes.

calc. exp.

rp
E 0.73 0.836

rn
E 0.29 0.336

rp
M 0.64 0.843

rn
M 0.60 0.840

TABLE II: The nucleons’ electromagnetic radii (in fm) as calculated
in the covariant Faddeev approach in comparison to experimental
values.

calc. exp. without pions [95]

µp 3.62 2.793 3.5±0.2
µn −2.34 −1.913 −2.6±0.2
κs 0.28 −0.120 −0.11
κv 4.96 3.706 5.1±0.4

TABLE III: The nucleons’ magnetic moments (in n.m.) as calculated
in the covariant Faddeev approach in comparison to experimental
values.

Unknown constants like the anomalous magnetic moment
of the axialvector diquark and the strength of the scalar-
axialvector transitions will be calculated by taking into ac-
count the diquark substructure such that gauge invariance for
the nucleon current is respected [87]. Due to the non-trivial
momentum dependence of the quark propagator the quark-
photon vertex possesses a quite non-trivial structure [88–90].
This then also implies a rich structure of the diquark-photon
vertex, for the construction of the latter and its use within a
covariant Faddeev approach see e.g. refs. [91–94].

2. Results on Electromagnetic Form Factors

Equipped with the explicit form of the current operator the
electromagnetic form factors can be calculated. For the cor-
responding results the reader is refered to [76], here the focus
will be on derived quantities like the electric and magnetic
radii as well as the magnetic moments.

From table II one sees that the nucleons’ radii are underes-
timated, hereby the magnetic radii more than the electric ones.
One can test the hypothesis whether this shortcoming is due to
the missing of the pion cloud. First of all, in the isoscalar com-
bination of the radii pion effects are of the second order and
therefore small. A quantitative description of the nucleon’s
quark core should give values close to the experimental ones,
and this is what we find. Second, at large pion mass the pion
cloud effects should become less important, and our results
should agree with lattice data. As can be seen from fig. 31 the
agreement for the isovector part of the F2 and F1 radius is cer-
tainly not perfect but our results are not too far off the lattice
data.

The absolute value of the magnetic moments is also too
large. In addition to look at the isoscalar and isovector values
one can compare directly to an estimate without pions [95],
see table III, which is quite favourable for the interpretation of
having mostly missed the pion cloud. Plotting the anomalous
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FIG. 30: Feyman diagrams which are taken into account in the construction of the nucleon’s electromagnetic current operator.
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FIG. 31: The results for the F2 isovector radius (left panel) and the F1 isovector radius (right panel) as a function of the pion mass in comparison
to the experimental value and corresponding lattice data [83].
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FIG. 32: The results for the anomalous magnetic moments (dashed
lines) as a function of the pion mass in comparison to the experimen-
tal value and corresponding results from lattice data and their chiral
extrapolations (fully drawn lines) [83].

magnetic moments against the pion mass and comparing to
corresponding results from lattice data and their chiral extrap-
olation [83] provides further evidence for this interpretation.

D. Summary of Part III

The nucleons’ mass, electromagnetic form factors, charge
radii and magnetic moments have been calculated in a Poin-
caré covariant Faddeev approach

� employing dressed quarks and ”diquarks”, obtained
from the quark DSE and diquark BSE (The correspond-
ing propagators agree with lattice data where available.)

� as well as using dressed quark- and diquark-photon ver-
tex functions.

� The results describe the nucleons’ quark core without
pion contributions and are obtained

� without model parameters, the only input scale is
ΛQCD (ΛMOM into DSEs, ΛL or r0 in lattice calculations).

IV. OUTLOOK

In these lectures I have attempted to demonstrate the
progress made within functional approaches to strong con-
tinuum QCD and its application to hadronic physics. Of
course, further improvements are possible and highly desir-
able at every step of these investigations.
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Within Landau gauge a consistent qualitative picture for all
QCD propagators and vertex functions has emerged. First
results within Coulomb gauge, see also the lectures by Dan
Zwanziger, allow for a first more general interpretation of the
results. The importance of the Gribov horizon in both gauges
can possibly give a hint about the nature of confining field
configurations.

Besides the fundamental issues of confinement and dynam-
ical generation of masses QCD Green functions can serve as a
first-principles input into a description of hadronic properties.
The ideal calculations of this kind have the minimal parameter
set of QCD and make real predictions. The results obtained so
far allow for the optimistic view that a coherent description of
hadronic states and processes based on the dynamics of con-
fined quarks and Yang-Mills fields can be realized in the near
future. Hereby different methods based on the QCD Green
functions will yield complementary information. Lattice cal-
culations provide evidence that truncations of the infinite hi-
erarchy of Dyson–Schwinger and/or Renormalization Group
equations have been done reasonably. On the other hand, re-
sults based on the full set of these equations as well as on
truncated equations help to understand the lattice data.

To explain confinement is one of the truly fundamental
challenges to contemporary physics. Understanding confine-
ment will allow us to link the microscopic degrees of freedom
of QCD, the quarks and gluons, to the measurable strong in-
teractions in hadronic and nuclear physics. As long as the con-
finement phenomenon stays mysterious the standard model of
particle physics lacks an important part, something essential

in the fundamental laws of nature is then still unknown to us.
Although Infrared QCD has posed us extremely challenging
problems it is worth pursuing its research.
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