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Tunneling and the Vacuum Zero-Point Radiation
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We make a brief review of the Kramers escape rate theory for the probabilistic motion of a particle in a
potential well U(x), and under the influence of classical fluctuation forces. The Kramers theory is extended in
order to take into account the action of the thermal and zero-point random electromagnetic fields on a charged
particle. The result is physically relevant because we get a non null escape rate over the potential barrier at low
temperatures (T → 0). It is found that, even if the mean energy is much smaller than the barrier height, the
classical particle can escape from the potential well due to the action of the zero-point fluctuating fields. These
stochastic effects can be used to give a classical interpretation to some quantum tunneling phenomena. Relevant
experimental data are used to illustrate the theoretical results.
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I. INTRODUCTION

One of the most useful contributions to our understanding
of the stochastic processes theory is the study of escape rates
over a potential barrier. The theoretical approach, first pro-
posed by Kramers [1], has many applications in chemistry ki-
netics, diffusion in solids, nucleation [2], and other phenom-
ena [3]. The essential structure of the escape process is that the
bounded particle is under the action of three types of forces:
a deterministic nonlinear force with at least one metastable
region, a fluctuating force whose action is capable of push-
ing the particle out of the metastable region, and a dissipative
force which inevitably accompanies the fluctuations.

In this work we describe the escape rates of a particular
model: a classical charged particle moving in the metastable
potential shown in the Fig. 1, and under the influence of the
fluctuating electromagnetic radiation forces commonly used
in Stochastic Electrodynamics (SED)[4, 5].

The fluctuating fields postulated in SED are classical ran-
dom fields, with zero mean but nonzero higher moments. The
spectral distribution of this radiation can be expressed as a
sum of two terms

ρ(ω,T ) =
ω2

π2c3

[
~ω
2

+
~ω

e~ω/kBT −1

]
(1)

The first term is the zero-point radiation contribution to the
spectral distribution. It is independent of the temperature and
is Lorentz invariant. The second term in (1) is the blackbody
radiation spectral distribution, responsible for the temperature
effects on the system.

The zero-point radiation (first term in (1)) has a mean en-
ergy ~ω/2 associated with each mode of the electromagnetic
fields, and is responsible for the most important features of
SED.

With this zero-point radiation postulated, several phenom-
ena associated with the quantum behavior of the microscopic
world can be explained on classical grounds. Many interesting
examples can be found in the reviews [5–8].

FIG. 1: Metastable potential with a barrier height ∆U = U(xb)−
U(xa), a local minimum xa and a local maximum xb (top of the bar-
rier). The second minimum at xc has a potential energy U(xc) =−U0
with U0 À ∆U .

II. HARMONIC OSCILLATOR WITH STOCHASTIC
RADIATION

The potential U(x) will be approximated by a harmonic os-
cillator in the region of the potential well (x≈ xa) so that (see
Fig. 1)

U(x)'U(xa)+
1
2

mω2
a(x− xa)2, (2)

where ωa is the natural frequency of the oscillator.
The dynamical behavior of a harmonically bounded

charged particle has been extensively studied in the context of
classical SED. It is found that the zero-point radiation main-
tains the stability of this system. We shall use the statistical
properties of the harmonic oscillator in order to understand,
classically, the escape rate at very low temperatures. We give
below a brief review of the harmonic motion under the action
of the random electric fields characteristic of SED.
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The nonrelativistic motion of the charged particle (charge e
and mass m) near the bottom of the potential well (see Fig. 1)
is governed by the equation

mξ̈ =−mω2
aξ+

2e2

3c3

...

ξ +eEx(t), (3)

where ξ = x− xa, and Ex(t) is the x component of the ran-
dom electric field. The term proportional to

...

ξ is the radiation
reaction force. The electric field is such that 〈Ex(t)〉= 0 and

〈Ex(t)Ex(0)〉=
4π
3

∫ ∞

0
dω ρ(ω,T ) cos(ωt),

(4)

where the spectral distribution ρ(ω,T ) was introduced in the
equation (1). The radiation reaction force can be approxi-
mated by [9]

2e2

3c3

...

ξ'−mγξ̇, (5)

where γ = 2e2ω2
a/3mc3. Moreover it is verified that γ ¿

ωa. According to these approximations one can show that the
average energy 〈εa〉 of the oscillating charge is such that

〈εa〉=
1
2

m〈ξ̇2〉+ 1
2

mω2
a〈ξ2〉=

~ωa

2
coth

(
~ωa

2kBT

)
≡ D(T ), (6)

where we have introduced the function D(T ) in order to sim-
plify our notation. Notice that the average energy depends on
the temperature and on the oscillatory frequency ωa.

The result (6) is well known [5]. The average energy 〈εa〉
becomes equal to kBT in the high temperature limit (kBT À
~ωa), and is non zero when T = 0. Actually D(T )→ ~ωa/2
as T → 0. Notice that D(T ) depends on ~. We can show that
the Planck constant comes from the intensity of the zero-point
field Ex(t) that appears in (3). We recall that ~ωa/2 is the
value of the ground state energy of the harmonic oscillator in
quantum mechanics. This result, obtained within the realm
of SED, differs from the usual null result of ordinary classi-
cal physics because the zero-point fluctuations are taken into
account.

It is quite natural to use the average energy (6) in the cal-
culation of the Kramers escape rate of a potential well. We
shall see that the consequence of the new form of the average
energy is a non-vanishing escape rate even if T → 0. Most au-
thors do not mention the classical zero-point fluctuations and
use the quantum mechanical formalism to interpret the non
null escape rate as a tunneling through the classical forbidden
region of the barrier. We shall see that the zero-point fluc-
tuations allow the escape over the potential barrier even if the
mean energy of the particle inside the barrier is much less than
∆U = U(xb)−U(xa). In the classical mechanics context the
escape would be impossible without the action of the zero-
point fluctuations. For simplicity we shall take U(xa) = 0 in
what follows.

III. THE ESCAPE RATE OVER THE POTENTIAL
BARRIER ∆U

We shall use the approach of Chandrasekhar [10], based
on the Kramers theory. The physical system considered by
Chandrasekhar is a particle moving under the influence of a
fluctuating force, and a potential U(x) that has a metastable
region (see Fig. 1). The motion of the particle is governed by
a Langevin type equation

mẍ =−mγẋ−U ′(x)+F(t), (7)

where −mγẋ is the dissipative force and F(t) is the fluctu-
ating force which is characterized by the average 〈F(t)〉 = 0.
The average energy of the particle within the potential well,
that is x < xb, is assumed to be given by

〈m
2

ẋ2 +U(x)〉= kBT, (8)

in the high temperature limit.

It is possible to show that the Langevin equation (7) leads
to a phase space Fokker-Planck equation given by [10]

∂W
∂t

+
p
m

∂W
∂x

−U ′(x)
∂W
∂p

=

γW + γp
∂W
∂p

+mγD(T )
∂2W
∂p2 . (9)

where W = W (x, p, t) is the probability distribution in phase
space.

Notice that the left hand side of the above expression is
equivalent to the Liouville equation, and the right hand side
appears as a consequence of the fluctuating and dissipation
forces. This expression is valid for low temperatures, because
we included D(T ) = ~ωa

2 coth
(
~ωa
2kBT

)
(see equation (6)), in-

stead of the factor kBT as is usually done. We shall see that
the equation (9) will allow us to give an accurate description
of the escape rate at low temperatures.

In the Kramers theory, two quantities are essential to cal-
culate the escape rate. One is the probability P(t) of finding
the particle inside the potential well. This probability can be
obtained from the phase space distribution, namely

P(t) =
∫ ∞

−∞
d p

∫ xb

−∞
dxW (x, p, t). (10)

The other important quantity is the diffusion current, j(xb),
across the top of the potential barrier. The diffusion current in
an arbitrary position x is defined by

j(x, t)≡
∫ ∞

−∞
d p

p
m

W (x, p, t). (11)

Using (9), (10) and (11) one can show that
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∂P(t)
∂t

=−∫ ∞
−∞ d p p

mW (xb, p, t)

=− j(xb)e−κT . (12)

The escape rate κ, regarded as the decay factor of the prob-
ability P(t), can be defined by the equation

∂P(t)
∂t

=−κP(t). (13)

The solution of the above equation is

P(t) = P0e−κt , (14)

where P0 is a normalization constant. On the other hand,
consistently with the equations (12) and (13), one can define
the escape rate as

κ≡ j(xb)
P0

. (15)

A long calculation considered in Ref [14], in the low fric-
tion limit,

γ
ωa

=
e2

~c
~ωa

mc2 ¿ 1, (16)

leads to the simple formula

κ(T ) =
ωa

2π
exp


− ∆U

~ωa
2 coth

(
~ωa
2kBT

)

 . (17)

It is very important to remark that, in this equation, the es-
cape rate depends on the potential height ∆U , and on the pa-
rameters characterizing the particle motion inside the barrier
(x ≈ xa). These parameters are the frequency ωa and the av-
erage energy 〈εa〉 = D(T ) = ~ωa

2 coth
(
~ωa
2kBT

)
. We recall that

〈εa〉= kBT when the temperature is high enough.

IV. COMPARISON WITH EXPERIMENTAL DATA AND
CONCLUSION

In order to illustrate, in a quantitative manner, the great
analogy between the quantum tunneling description and our
classical stochastic escape rate calculation, the experimental
results of Alberding et al. [11] will be used.

According to Alberding et al., the carbon monoxide CO is
bounded to the beta-chain of hemoglobin (βHb) from which
it can be separated with a LASER. The rate of recombina-
tion can be obtained experimentally. The fraction N(t) of the
CO molecules that have not been recombined with the βHb is
measured as a function of time. Then, the time τ, necessary to
reduce N(t) to 75% of its original value, is determined. It is

assumed that this recombination is a passage of the CO mole-
cule through the potential barrier ∆U (x≈ xa → x≈ xc) and a
good estimate of the escape rate is κ = 1/τ (see our Fig. 1 and
the Fig. 1a of Alberding et al. [11]). This experimental proce-
dure can be repeated for different temperatures T . The result
for κ(T ) obtained by Alberding et al. is indicated by the ex-
perimental points (black dots) in the Fig. 2. We see that these
experimental data are very well described by the formula (17).

We have adjusted the values of ωa and ∆U so that the ex-
perimental data and the formula (17) are in good agreement.
The values obtained are

~ωa

2
= 2.53 ·10−3eV,

∆U = 6.68 ·10−2eV. (18)

We conclude that the CO particle can escape from the po-
tential well at T → 0, despite the fact that the barrier height
∆U is much bigger than the particle mean energy ~ωa/2 in-
side the well (2∆U/~ωa ≈ 26).

We would like to make some observation concerned with
the role of the vacuum electromagnetic zero-point fluctu-
ations within the Kramers equation and its relation with
the Schrödinger equation for describing tunneling phenom-
ena. According to the extension of the Kramers theory pre-
sented here, the escape rate at low temperature is κ(T '
0) ∝ exp

(
− 2∆U
~ωa

)
. The quantum calculation based on the

Schrödinger equation is more cumbersome if we want to ob-
tain κQM(T ' 0) from the value κQM(T ) obtained at an arbi-
trary temperature T (see [11] for instance).

FIG. 2: Experimental data (black dots) for the escape rate associated
with the CO migration to a separated β chain of hemoglobin. The
solid line is our theoretical result (see formula (17)). The open cir-
cles correspond to the escape rate without the zero-point fluctuations
(Arrhenius formula).

This difficulty arises because the quantum system is in
a heat bath, and because the potential U(x) is complicated
enough (see Fig. 1). However, for a more simple poten-
tial, like the double well harmonic oscillator described by E.
Merzbacher [12], it is possible to show that κQM(T = 0) ∝
exp

(
− 2∆U
~ωa

)
. This result is in semiquantitative agreement
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with our classical stochastic calculation based on the Kramers
theory with zero-point radiation. Finally, we would like to say
that the direct inclusion of zero-point and thermal fluctuations
into the Schrödinger equation [13] is a very delicate problem
that is out of the scope of the present work.
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