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Reflection from a Flat Dielectric Film with Negative Refractive Index
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We analyse the reflection of a TM electromagnetic field first on a flat dielectric film and second on a Veselago
film with negative refractive index, both films being deposited on a metallic substrat acting as a mirror. An
incident harmonic plane wave generates inside a conventional dielectric film a refracted propagating wave and
an evanescent wave that does not contribute to reflection on the metallic substrat so that part of the information
conveyed by the incident field is lost. At the opposite, inside a Veselago film, evanescent waves are changed
into outbursting waves reflecting on the metallic substrat and participating to the total reflected field from the
metallic film without loss if information.
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I. INTRODUCTION

The properties of a dielectric film located between two ho-
mogeneous media is of particular interest in optics, for in-
stance dielectric films are commonly used to reduce or elim-
inate unwanted reflections. These properties depend strongly
on the refractive index profile [1] of the dielectric material but
till now the refractive index was always assumed positive.

But some years ago, Veselago [2] analysed what would
happen to electromagnetic waves immersed in a hypothetical
medium with negative permittivity and permeability. In the
mid 1990’s people began looking into the possibility to en-
gineering materials with these exotic properties in some fre-
quency range and practical realizations were proposed in 1993
[3] while a first experiment was performed in 2001 [4]. Since
then, works on this fascinating subject are flourishing with
more than 200 papers in 2003 and still more expected in years
to come [5].

The refractive index in Veselago materials is negative im-
plying that the phase of a wave decreases rather than ad-
vances along propagation through these media leading to im-
portant implications for nearly all electromagnetic phenomena
as pointed out by Veselago himself. So, a natural question is
what happens when a Veselago film takes the place of a con-
ventional dielectric film deposited on a metallic substrat.

To investigate this situation, we consider a TM electromag-
netic field impinging from the half-space z > 0 on a flat coated
mirror made of a Veselago film with negative permittivity, per-
meability, refractive index and thickness d deposited on a mir-
ror located at z = −d and we look for the TM field reflected
by this coated mirror. For sake of comparison, we first analyse
the same problem with a conventional dielectric film as coat-
ing.

II. TM FIELD IMPINGING ON A DIELECTRIC FILM

For a TM field, Maxwell’s equations with exp(iωt) implicit
reduce in a dielectric of permittivity ε and permeability µ to

∂zHy =−iωε/c Ex ,

∂xHy = iωε/c Ez , ∂zEx−∂xEz =−iωµ/c Hy (1)

and Hy is solution of the 2D-Helmholtz equation

(∂ 2
x +∂ 2

z +ω2n2/c2)Hy = 0 , n2 = εµ . (1a)

Changing ε, µ, n into ε0, µ0, n0 in Eqs.(1), (1a) gives the cor-
responding equations for the components E e

x , E e
z , H e

y of the
TM field in the half space z > 0.

A. Impedance boundary conditions

To get the TM reflected field, we need the boundary condi-
tions on the dielectric film and using the Idemen technique [6]
we introduce the Fourier transform in which n is the refractive
index,

{ex,ez,hy}(ξ,z) =
∫ ∞

−∞
dx exp(inξx){Ex,Ez,Hy}(x,z) (2)

and similarly for ee
x, ee

z , he
y.

The equations (1) and (1a) become

∂zHy =−iωε/c ex ,

nξhy = ωε/c ez , ∂zex− inξez =−iωµ/c hy , (3)

(∂2
z +λ2)hy = 0 , λ2 = n2(ω2/c2−ξ2) . (3a)

The TM field inside the dielectric is the sum of a wave prop-
agating in the z < 0 direction and of the wave reflected in the
z > 0 direction by the z =−d mirror. Then, since these waves
are solutions of Eqs. (3), (3a) we may write hy(ξ,z). For
|ξ| ≤ ω/c,

hy(ξ,z) = A(ξ)[exp(iλz)+ r(ξ)exp(−iλz)] ,
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λ = n(ω2/c2−ξ2)1/2 , (4)

in which A(ξ) is an arbitrary amplitude and r(ξ) the reflection
coefficient at z =−d. For |ξ|> ω/c,

hy(x,z) = A†(ξ)[exp(λ†z)+ r†(ξ)exp(−λ†z)],

λ† = n(ξ2−ω2/c2)1/2 . (4a)

Since z < 0, the first term in (4a) is an evanescent wave unable
to reach the z = −d mirror so that r†(ξ) = 0 implying that
evanescent waves do not contribute to the TM field inside the
dielectric and consequently no more to h e

y (ξ,z) outside the
film.

Substituting (4) into (3) gives ez = cnξ/ωe hy and

ex(x,z) =−λc/ωε A(ξ)[exp(iλz)− r(ξ) exp(−iλz)], (5)

for |ξ| ≤ ω c. The continuity of ex, hy at the z = 0 face on
which impinges the TM field implies the boundary conditions

[ex− e e
x ]z=0 = 0 , [hy−h e

y ]z=0 = 0 . (6)

Substituting (4) and (5) into (6) gives

A(ξ)[1+r(ξ)]= h e
y (ξ,0) , A(ξ)[1−r(ξ)]=−ωε/cλ e e

x (ξ,0),
(7)

from which we get, since ∂zh e
y =−iωε0/c e e

x ,

2A(ξ) = h e
y (ξ,0)−ωε/cλe e

x (x,0) = h e
y (ξ,0)+ iε/λε0[∂zh e

y (ξ,z)]z=0 ,

2A(ξ)r(ξ) = h e
y (ξ,0)+ωε/cλe e

x (ξ,0) = h e
y (ξ,0)− iε/λε0[∂zh e

y (ξ,z)]z=0 . (8)

Now [ex(ξ,z)]z=−d = 0 on the z = −d mirror which implies
according to (5)

exp(−iλd)− r(ξ)exp(iλd) = 0 . (9)

Substituting (8) into (9) gives the impedance boundary con-
dition satisfied by h e

y (ξ,z) on the z = 0 face of the dielectric
film with ∂zh e

y (ξ,0) = δz[h e
y (ξ,0)]z=0,

cos(λd)∂zh e
y (ξ,0)−λε0/ε sin(λd)h e

y (ξ,0) = 0 , (10)

that we write

∂zh e
y (ξ,0)−a(ξ)h e

y (ξ,0) = 0 ,

a(ξ) = ε0/ε λ(ξ) tan[λ(ξ)d] (11)

with

λ(ξ) = n(ω2/c2−ξ2)1/2 . (11a)

B. TM reflected field on the flat dielectric film

The TM field with the component H e
y (x,z) in the half space

z > 0 above the dielectric film is the sum of an incident
and reflected field with respective components H i

y (x,z) and
H r

y (x,z),

H e
y (x,z) = H i

y (x,z)+H r
y (x,z) , (12)

with the Fourier transform

h e
y (ξ,z) = h i

y (ξ,z)+h r
y (ξ,z) . (12a)

Taking into account (12a) we may write (11),

∂zh r
y (ξ,0)−a(ξ)h r

y (ξ,0) =− f (ξ) ,

f (ξ) = ∂zh i
y (ξ,0)−a(ξ)h i

y (ξ,0) . (13)

Assuming specular the reflection of the TM incident field on
the flat impedance film gives

h r
y (ξ,z) = R(ξ)h i

y (ξ,−z) , (14)

in which R(ξ) is the reflection coefficient of the impedance
film and substituting (14) into (13), we get

R(ξ) = f (ξ)/g(ξ) ,

g(ξ) = ∂zh i
y (ξ,0)+a(ξ)h i

y (ξ,0) , |ξ| ≤ ω/c . (15)

Since evanescent waves do not contribute to reflection, the in-
verse Fourier transform of h r

y (ξ,z),

H r
y (x,z) =

( n
2π

)∫ ∞

−∞
dξ exp(−inξx)R(ξ)h i

y (ξ,−z), (16)

reduces to

H r
y (x,z) =

( n
2π

)∫ ω/c

−ω/c
dξ exp(−inξx)

f (ξ)
g(ξ)

h i
y (ξ,−z) .

(17)
and since the Fourier transform e i

x (ξ,z), e i
z (ξ,z), h i

y (ξ,z) of
the incident field is solution of Eq.(3) with ε, µ changed into
ε0, µ0, we get from (3) and (17)
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E r
x (x,z) = (inc/2πε0ω)

∫ ω/c

−ω/c
dξ exp(−inξx) f (ξ)/g(ξ)∂zh i

y (ξ,−z) ,

E r
z (x,z) = (n2c/2πε0ω)

∫ ω/c

−ω/c
dξ exp(−inξx) ξ f (ξ)/g(ξ)h i

y (ξ,−z) , (17a)

which determines the TM field reflected by the flat impedance film.

C. Harmonic plane wave reflection

Because of the importance, to be discussed in Sec.4, of harmonic plane waves as building blocks of electromagnetic beams,
we consider as incident field a TM harmonic plane wave with the Hy-component,

H i
y (x,z) = A exp[iξn0/c(x sinθ+ z cosθ)] , n0 = (e0m0)1/2 , (18)

where A is a constant amplitude. The Fourier transform of (18) is

h i
y (ξ,z) = 2πA exp[−ik0z cotθ)δ(nξ− k0) , k0 =−ωn0/c sinθ , (18a)

in which δ is the Dirac distribution.
Taking into account (18a) and changing z into −z, the Fourier transform (17) becomes

H r
y (x,z) = nA exp(ik0z cotθ)

∫ ω/c

−ω/c
dξ exp(−inξx) f (ξ)/g(ξ) δ(nξ− k0), (19)

null for k0/n outside (−ω/c,ω/c) while for k0/n in this interval

H r
y (x,z) = A f (k0/n)/g(k0/n) exp[iωn0/c(x sinθ− zcosθ)] , (19a)

in which we get from (13), (15) and (18a)

f (k0/n)/g(k0/n) = [ik0 cotθ−a(k0/n)][ik0 cotθ+a(k0/n)]−1 , (20)

while according to (11) and (11a)

a(k0/n) = ε0/ε λ(k0/n) tan[λ(k0/n)d] , λ(k0/n) = ωnc−1(1−n2
0 sin2 θ/n2)1/2 . (20a)

Finally, taking into account (19) and definition (18a) of k0, we
get from (17a)

E r
x (x,z) =−cosθ H r

y (x,z) , E r
z (x,z) = +sinθ H r

y (x,z)
(21)

The relations (19) and (21) represent the specularly reflected
TM field from a flat dielectric film for an incident harmonic
plane wave. But, since evanescent waves do not reach the
z =−d mirror, the information conveyed by the incident field
for ξ > |ω/c| is lost for the reflected field.

III. TM FIELD IMPINGING ON A VESELAGO FILM

Permittivity, permeability, refractive index in Veselago ma-
terials are negative but to investigate the reflection of a TM

field on a Veselago film it is easier to perform on the expres-
sions obtained in Sec. 2 the following transpositions in which
ε1, µ1, n1, λ1, λ †

1 are positive,

ε,µ,n,λ,λ † ⇒−(ε1,µ1,n1,λ1,λ †
1 ) ,

λ1 = n1(ω2/c2−ξ2)1/2 , λ †
1 = n1(ξ2−ω2/c2)1/2 . (22)

Then, the Fourier transform (2) being defined with the ex-
ponential exp(−in1ξx), the equations (3), (3a) become

∂zhy = iωε1/c ex , n1ξhy = ωε1/c ez ,

∂zex + in1ξez = iωµ1/chy (23)
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(∂ 2
z +λ 2

1 )hy = 0 , λ 2
1 = n1(ω2/c2−ξ2) . (23a)

Applying the transpositions (22) to Eqs. (4), (4a) gives

hy(x,z) = A1(ξ)[exp(−iλ1z)+ r1(ξ)exp(iλ1z)] ,

λ1 = n1(ω2/c2−ξ2)1/2 , (24a)

hy(x,z) = A †
1 (ξ)[exp(−λ †

1 z)+ r †
1 (ξ)exp(λ †

1 z)] ,

λ †
1 = n1(ξ2−ω2/c2)1/2 , (24b)

with a label different from (4) and (4a) for amplitudes and re-
flection coefficients. We first note from (24a) that the phase

velocity in Veselago media is antiparallel to the Poynting vec-
tor but the main changes come from (24b). For z < 0, the first
exponential term in (24b) corresponds not to an evanescent
wave but to an outbursting wave whose amplitude increases
with the distance (on a distance limited by the breakdown of
the theory but supposed greater than the film thickness). This
outbursting wave gives birth on the z = −d mirror to a re-
flected field attenuated with the distance according to the sec-
ond exponential term in (24b). We also assume this attenua-
tion not strong enough to make negligible the reflected field
at the output of the Veselago film and in fact, for a reflection
coefficient of modulus unity on the mirror, the reflected field
has the same amplitude as the incident field. Consequently,
we have to take into account reflections for |ξ|> ω/c.

Then using (23), we get from (24) and (24a) for the ex com-
ponent

ex(ξ,z) =−λ1c/ωε1 A1(ξ)[exp(−iλ1z)+ r1(ξ)exp(iλ1z)] , |ξ| ≤ ω/c , (25a)

ex(x,z) =−iλ †
1 c/ωε1 A †

1 (ξ)[exp(−λ †
1 z)+ r †

1 (ξ)exp(iλ †
1 z)] , |ξ|> ω/c , (25b)

and we shall consider separately the contributions to the re-
flected TM field of the harmonic waves (24a), (25a) and of
the outbursting waves (24b), (25b).

A. Harmonic waves: λ1 = n1(ω2/c2−ξ2)1/2

We have just to apply the transpositions (22) to the expres-
sion obtained in Sec. 2. The impedance boundary condition
(11) becomes

∂zh e
y (ξ,0)−a1(ξ)h e

y (ξ,0) = 0 ,

a1(ξ) =−ε0/ε1 λ1(ξ) tan[λ1(ξ)d] , (26)

while we get from (13), (14), (15)

∂zh r
y (ξ,0)−a1(ξ)h r

y (ξ,0) =− f1(ξ) ,

f1(ξ) = ∂zh i
y (ξ,0)−a1(ξ)h i

y (ξ,0) , (27)

R1(ξ) == f1(ξ)/g1(ξ) ,

g1(ξ) = ∂zh i
y (ξ,0)+a1(ξ)h i

y (ξ,0) . (28)

So finally according to (17)

H r
y (x,z) =−(n1/2π)

∫ ω/c

−ω/c
dξ exp(−in1ξx) f1(ξ)/g1(ξ)h i

y (ξ,−z) . (29)

Taking into account (1) with ε0, µ0, permittivity and permeability in the half space z > 0,

E r
x (x,z) =−(in1c/2πωε0)

∫ ω/c

−ω/c
dξ exp(−in1ξx) f1(ξ)/g1(ξ)∂zh i

y (ξ,−z) ,

E r
z (x,z) = (n12c/2πωε0)

∫ ω/c

−ω/c
dξ exp(−in1ξx) x f1(ξ)/g1(ξ)h i

y (ξ,−z) . (29a)

Suppose now n1 = n, then according to (11) and (26) a1(ξ) = −a(ξ) changing f1(ξ)/g1(ξ) into g(ξ)/ f (ξ) which
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is an inversion of the reflection coefficient. This suggests that
a twinned set made of a dielectric and of a Veselago films with
the same thickness and n = n1, deposited on a mirror behaves
as a perfect mirror at the frequencies for which (17) and (29)
are valid.

B. Outsbursting waves: λ †
1 = n1(ξ2−ω2n 2

1 /c2)1/2

Since (24b), (25b) are deduced from (24a), (25a) by chang-
ing λ1 into −i λ †

1 , the results of Sec. 3.1 are at once available
and with this substitution the boundary impedance condition
(26) becomes

∂zh e
y (ξ,0)−a †

1 (ξ)h e
y (ξ,0) = 0

a †
1 (ξ) = ε0/ε1 λ †

1 (ξ) tanh[λ †
1 (ξ)d] (30)

and we get from (27), (28)

∂zh r
y (ξ,0)−a †

1 (ξ)h r
y (ξ,0) =− f †

1 (ξ) ,

f †
1 (ξ) = ∂zh i

y (ξ,0)−a †
1 (ξ)h i

y (ξ,0) , (31)

R †
1 (ξ) = f †

1 (ξ)/g †
1 (ξ),

g †
1 (ξ) = ∂zh i

y (ξ,0)+a †
1 (ξ)h i

y (ξ,0) . (32)

Now, since |ξ| > ω/c, the inverse Fourier transform (16) of
h r

y (ξ,z) = R †
1 (x)h i

y (ξ,−z) is

H r
y (x,z) = (n1/2π)

(∫ α

∞
+

∫ ∞

β

)
dξ exp(in1ξx) f †

1 (ξ)/g †
1 (ξ) h i

y (ξ,−z),

α =−ωn1/c , β = ωn1/c . (33)

Still using (1) with ε0, µ0,

E r
x (x,z) = (in1c/2πε0ω)

(∫ α

∞
+

∫ ∞

β

)
dξ exp(in1ξx) f †

1 (ξ)/g †
1 (ξ) ∂zh i

y (ξ,−z),

E r
z (x,z) = (n12c/2πε0ω)

(∫ α

∞
+

∫ ∞

β

)
dξ exp(in1ξx)ξ f †

1 (ξ)/g †
1 (ξ) h i

y (ξ,−z), (33a)

which is the contribution of outbursting waves to the TM field
reflected from a flat Veselago film. So, at the difference of
what happens with a dielectric film, all the information con-
veyed by the incident field is present with some distortion in
the reflected field.

C. Harmonic plane wave reflection

We now suppose that the harmonic plane wave (18) with
the Fourier transform (18a) impinges on the flat Veselago film.

For |ξ| ≤ω/c, applying the substitutions (22) to (20) and (20a)
gives at once,

H r
y (x,z)= A f1(k0/n1)/g1(k0/n1)exp[iωn0/c(x sinθ−z cosθ)],

(34)

E r
x (x,z) = cosθ H r

y (x,z), E r
z (x,z) = sinθ H r

y (x,z) . (34a)

According to (20) and (20a),

f1(k0/n1)/g1(k0/n1) = [ik0 cotθ−a1(k0/n1)][ik0 cotθ+a1(k0/n1)]−1 , (35)

in which

a1(k0/n1) = (ε0/ε1)λ1(k0/n1) tan[λ1(k0/n1)d] , λ1(k0/n1) = ωn1c−1(1−n 2
0 sin2 θ/n 2

1 )1/2 . (36)
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For ξ > ω/c, since according to (18a)

h i
y (ξ,−z) = 2πA exp(ik0z cotθ)δ(nx− k0) , k0 =−ωn0/c sinθ , (37)

H r
y (x,z) = n1A exp(ik0z cotθ)

∫ ∞

ω/c
dξ exp(in1ξx) f †

1 (ξ)/g †
1 (ξ) δ(n1x− k0) , (38)

giving for k0/n1 < ω/c

H r
y (x,z) = A f †

1 (k0/n1)/g †
1 (k0/n1)exp[iωn0/c(x sinθ− z cosθ)] , (38a)

in which

f †
1 (k0/n1)/g †

1 (k0/n1) = [ik0 cotθ−a †
1 (k0/n1)][ik0 cotθ+a †

1 (k0/n1)]−1 , (39)

with

a †
1 (k0/n1) = ε0/ε1 λ †

1 (k0/n1) tanh[λ †
1 (k0/n1)d] , λ1 †(k0) = ωn1c−1(n 2

0 sin2 θ/n 2
1 −1)1/2 . (39a)

Substituting (38a) into (34a) gives the components E r
x (x,z)

and E r
z (x,z) and a similar result is obtained for ξ >−ω/c.

The comparison of (34) and (38a) shows that H r
y (x,z) has

formally the same expression for |ξ| ≤ ω/c and |ξ| > ω/c,
the difference intervening in the coefficients a1(k0/n1) and
a †

1 (k0/n1) respectively defined according to (38) and (39a)
with a tangent and an hyperbolic tangent

a1 = ε0/ε1 λ1 tan[λ1d] , a †
1 = ε1/ε1 λ †

1 tanh[λ †
1 d] , (40)

with a, λ written for a(k0/n1) and λ(k0/n1). Then, according
to (35) and (39) the reflection coefficients for |ξ| ≤ ω/c and
|ξ|> ω/c are

R = (ik0 cosθ−a1)(ik0 cosθ+a1)−1,

R† = (ik0 cosθ−a †
1 )(ik0 cosθ+a †

1 )−1 . (41)

These reflection coefficients have a modulus unity |R| =
|R†| = 1 which is important as just discussed, for the reflec-
tion of outbursting waves. For a Veselago film with a peri-
odic thickness, the differences between the phases of R and
R† would appear more clearly.

IV. DISCUSSION

The H i
y component of the incident TM field is solution of

the 2D-Helmholtz equation

(∂ 2
x +∂ 2

z +ω2n 2
0 /c2)H i

y (x,z) = 0 (42)

but the general solution of Eq.(42), needed to describe an ar-
bitrary TM electromagnetic beam can be put in the form of an

angular spectrum of plane waves [7,8]

H i
y (x,z) =

∫
C dθ Fy(θ) exp[iωn0/c(x sinθ+z cosθ)] (43)

in which Fy(θ) is a form factor and C a fixed path of inte-
gration in the complex θ-plane so that this spectrum is made
of harmonic and evanescent waves and since, as previously
discussed, these evanescent waves do not propagate the infor-
mation they convey is lost and it was proved how in Veselago
films, this information can be recovered, evanescent waves be-
ing transformed into outbursting waves. Because wave prop-
agation through lenses may be described by an integral of the
type (43), the lost information results in a limit of the image
resolution and lens performances could be improved by a judi-
cious use of Veselago materials [9], even if some doubts have
arisen on the possibility to manufacture such lenses [10].

As mentioned in the introduction, dielectric thin films in
many optical applications [11,12] are used as filters with this
term understood in its widest sense, including antireflection
coatings, mirrors, edge filters, beam splitters and narrow band
filters. Hard works supported by many industrial companies
have been realized concerning in particular the coating quality
[13] to improve their performance and research is booming in
such domains as microelectronics and photonics applications
[13-15]. Since as just explained, Veselago films do not sup-
port information loss, we can dream of “perfect” filters per-
forming exactly their theoretical objective: shorts wave pass,
long wave pass, band pass, notch pass and realized by a ju-
dicious architectural combination of dielectric and Veselago
materials.

We have only considered in this work TM electromagnetic
waves because its objective was to compare the scattering
properties of dielectric and Veselago films. Clearly similar re-
sults, at the expense of more calculations, would be obtained
for TE and arbitrary electromagnetic plane waves.
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