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A detailed investigation on the possible role played by the intrinsic arbitrariness of the perturbative evaluation
of physical amplitudes and their symmetry relations, initiated in a first work, is continued. Previously announced
results are detailed presented. The very general calculational method, concerning the divergences manipulations
and calculations, adopted to discuss the questions of ambiguities and symmetry relations, in purely fermionic
divergent Green functions, is applied to explicit evaluate three-point functions. Two of such functions, the well
known Scalar-Vector-Vector and Axial-Vector-Vector triangle amplitudes are considered in details. Given the
fact that within the adopted strategy, all the arbitrariness intrinsic to the problem are maintained in the final
results, and that it is possible to map them in to the ones of traditional techniques, clean and sound conclusions
can be extracted. In particular, we can map our results in to the Dimensional Regularization ones as well as
in to those corresponding to surface’s terms evaluation. The first above cited amplitude can be treated within
the Dimensional Regularization while the second do not and, consequently, it is usually treated by the surface’s
terms evaluation strategy. Within the adopted strategy both problems can be equally treated. We show that when
we require consistency in the interpretations of the intrinsic indefinitions present in the perturbative amplitudes,
which means to treat all physical amplitudes on the same way, no room is left for the ambiguities. As a natural
consequence, the physical amplitudes are obtained symmetry preserving, where they must be, and anomalous,
where they need to in spite of being non-ambiguous.
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I. INTRODUCTION

It is certainly present in the mind of all physicists the idea
that it would be desirable to describe in an adequate way the
dynamics of the fundamental interacting particles from the
point of view of a simple and well defined theoretical appa-
ratus. The expected status is wondered as better as simpler
and more minimum is the set of ingredients and symmetries
we need to use. When such framework becomes reliable, it
should be possible to give an accurate description of all exper-
imentally established phenomenology, and also to make ad-
ditional predictions about new phenomena not observed yet.
To reach this expected situation the theoretical apparatus con-
structed needs to be completely well defined so that following
an unique prescription the predictions we make throughout
the solution of the theory could be considered as a conse-
quence of the assumed principles, and that such predictions
could be stated free from ambiguities. On the way to be fol-
lowed to achieve this goal some philosophical guides are fre-
quently taken into account. The major one is perhaps the fol-
lowing: If there is a choice, which is an exclusive attribute
of the observer in the theoretical apparatus or physical laws,
then the final results should be independent on such choice.
This means that the final results should not be dependent on
the arbitrariness involved in the application of the physical
laws or equivalents, otherwise we have ambiguities. While
this description has not been achieved it becomes a goal to be

reached by additional investigations, until all the predictions
are completely independent on the arbitrariness involved.

The reasoning line above works like an important motiva-
tion for the investigations we will consider in this manuscript
in the context of the Quantum Field Theory (QFT) perturba-
tive calculations. There are intrinsic arbitrariness on the way
to be walked in order to make predictions and, in the context
of the traditional methods, the results may emerge ambigu-
ous. Once it is unacceptable that the physical consequences of
any theory become dependent on the involved arbitrariness, an
ambiguities free and consistent treatment of the physical am-
plitudes must be searched. Having this in mind, in previous
contributions [1–3] we have made detailed investigations on
the question of arbitrariness and their possible associated am-
biguities in the evaluation of perturbative (divergent) physical
amplitudes and/or in the preservation of symmetry relations.
A very general calculational strategy [4] has been used on the
referred investigations. The adoption of a regularization tech-
nique or equivalent philosophy was avoided in the interme-
diary steps such that one of the main arbitrariness involved
in this type of calculations (the choice of the regularization)
were preserved until the final results. Besides, the (arbitrary)
choices for the internal lines momentum of the divergent am-
plitudes have been taken as the most general ones. Proceed-
ing on this way we have obtained very general expressions
for the physical amplitudes preserving the arbitrariness usu-
ally chosen at the first steps of the perturbative calculations.
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As a consequence it was possible to analyze, in a very trans-
parent way, the role of the regularizations on the ambiguities
elimination and in the symmetry preservation when the calcu-
lated amplitudes are divergent quantities, specially when the
degree of the divergences are higher than the logarithmic one.
It was identified a set of properties required for a regulariza-
tion in order to eliminate the possible ambiguities and to pre-
serve symmetries which are very general and, in certain way,
very simple. Such properties are automatically satisfied by
the Dimensional Regularization (DR) technique [5] and may
be implemented in a superposition of regulating functions like
in the Pauli-Villars technique [6]. However, the most remark-
able aspect of the investigation resides on the anomalous tri-
angle amplitudes. The common association of the symme-
try violations with the intrinsic arbitrariness involved on the
(linearly) divergent amplitudes evaluation [7, 8] were clearly
showed as a non-consistent procedure. This is due to the fact
that in a consistent interpretation of the involved arbitrariness,
which maps the DR results (where the method applies) the
ambiguities are automatically eliminated. The source of the
freedom usually used to justify the choices made in the anom-
alous amplitudes are clearly not allowed just because would
imply violating fundamental symmetries or to treat the am-
plitudes in a case by case way attributing different values for
the same mathematical object in two different physical ampli-
tudes which sometimes are related by an (unambiguous) iden-
tity. The DR and the surfaces terms evaluation are classified
as belonging to different classes of regularizations which are
not compatible [1]. Once we have excluded the arbitrariness
associated to the choice for the internal lines momentum as
an ingredient of the analysis, discarding then the usual proce-
dure, a crucial question has emerged: If all the amplitudes are

looked in the same footing, concerning the divergences, which
are the sources of symmetry violating terms in the anomalous
amplitudes? A brief discussion about this point was made in
the final section of the above mentioned publication with the
promise that detailed results would be presented elsewhere.
In this contribution we will present a detailed investigation of
the referred aspects now performing also the explicit evalua-
tion of the three-point functions. In order to have the ingre-
dients for the present discussion we take two similar physical
amplitudes, concerning the divergent integrals involved. They
are the Scalar-Vector-Vector (SVV ) and Axial-Vector-Vector
(AVV ) triangle amplitudes. For the first cited one we can ap-
ply the DR technique while for the second we do not. We will
show that the crucial questions relative to symmetry proper-
ties of both amplitudes are deeply related. When an unique
interpretation is adopted for the same mathematical structures
appearing, very interesting aspects concerning the regulariza-
tion procedures will emerge. The possible implications for the
interpretation of the perturbative origin of violating terms in
the AVV anomalous triangle is extensively discussed.

II. THE PROBLEM

In the Ref. [2] we have considered the S→VV process in a
simple model where the vector field is coupled to a 1/2 spin
fermionic field. The corresponding amplitude can be written
in the form

T S→VV
µν = T SVV

µν (k1,k2,k3)+T SVV
νµ (l1, l2, l3) , (1)

where

T SVV
µν (k1,k2,k3) =

∫ d4k
(2π)4 Tr

{
1̂

1
6 k + 6 k3−m

γµ
1

6 k + 6 k1−m
γν

1
6 k + 6 k2−m

}
, (2)

is the direct channel and T SVV
νµ (l1, l2, l3) is the crossed channel, required for bose final state symmetrization, and the set of

momentum (ki, li) are the (arbitrary) internal loop momentum.
Identities at the traces level can be used to identify relations among Green’s functions

(k3− k1)µT S→VV
µν (k1,k2,k3) = TV S

ν (k2,k1)−TV S
ν (k2,k3) , (3)

(k1− k2)νT S→VV
µν (k1,k2,k3) = TV S

µ (k2,k3)−TV S
µ (k1,k3) , (4)

which, for the S→VV process, imply in

pµT S→VV
µν = TV S

ν (k2,k1)−TV S
ν (k2,k3)+TV S

ν (l2, l3)−TV S
ν (l1, l3) , (5)

p′νT S→VV
µν = TV S

µ (k2,k3)−TV S
µ (k1,k3)+TV S

µ (l2, l1)−TV S
µ (l2, l3) , (6)

where we have defined the two-point function structure

TV S
µ (k1,k2) =

∫ d4k
(2π)4 Tr

{
γµ

1
6 k + 6 k1−m

1̂
1

6 k + 6 k2−m

}
.

(7)

In the above expressions, the physical (external) momentum
are related to the internal arbitrary ones as: p = (k3− k1) =
(l1− l2) and p′ = (k1− k2) = (l3− l1).
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The Eqs. (5) and (6) means that when the amplitudes T SVV
µν

and TV S
ν are evaluated, in spite of the divergent character in-

volved, within the context of a specific method, and the in-
dicated contractions with the external momentum are taken,
in the result it must be possible to identify the difference be-
tween the scalar-vector (SV ) two-point functions having ar-
bitrary internal momentum routing as indicated in the right
hand side of the Eqs. (5) and (6). The Ward identities, on the
other hand, implied by the vector current conservation of the
adopted model, require the following properties for the calcu-
lated amplitudes

pµT S→VV
µν = p′νT S→VV

µν = 0. (8)

For the A→VV process, on the other hand, we have consid-
ered in Ref.[2] also a simple model where a pseudoscalar and
an axial field, in addition to a vector one, are coupled to a 1/2
spin fermionic field, such that the corresponding amplitude
can be written as

T A→VV
λµν = T AVV

λµν (k1,k2,k3)+T AVV
λνµ (l1, l2, l3) , (9)

where, the direct channel, T AVV
λµν is defined as

T AVV
λµν (k1,k2,k3) =

∫ d4k
(2π)4 Tr

{
iγλγ5

1
6 k + 6 k3−m

γµ
1

6 k + 6 k1−m
γν

1
6 k + 6 k2−m

}
, (10)

and T AVV
λνµ (l1, l2, l3) represents the crossed channel. Here, identities at the trace level can be used to identify the following

relations among Green’s functions

(k3− k2)
λ T AVV

λµν =−2imT PVV
µν +T AV

µν (k1,k2)−T AV
νµ (k3,k1) , (11)

(k3− k1)µT AVV
λµν = T AV

λν (k1,k2)−T AV
λν (k3,k2), (12)

(k1− k2)νT AVV
λµν = T AV

λµ (k3,k2)−T AV
λµ (k3,k1), (13)

and, consequently, for the A→VV process we get

qλT A→VV
λµν = −2imT P→VV

µν

+ T AV
µν (k1,k2)−T AV

νµ (k3,k1)+T AV
νµ (l1, l2)−T AV

µν (l3, l1), (14)

pµT A→VV
λµν = T AV

λν (k1,k2)−T AV
λν (k3,k2)+T AV

λν (l3, l2)−T AV
λν (l3, l1), (15)

p′νT A→VV
λµν = T AV

λµ (k3,k2)−T AV
λµ (k3,k1)+T AV

λµ (l1, l2)−T AV
λµ (l3, l2). (16)

where q = p+ p′. In the above expressions we have introduced also the Pseudoscalar-Vector-Vector (PVV ) three-point function

T PVV
µν (k1,k2,k3) =

∫ d4k
(2π)4 Tr

{
γ5

1
6 k + 6 k3−m

γµ
1

6 k + 6 k1−m
γν

1
6 k + 6 k2−m

}
, (17)

which corresponds to the direct channel for the P→VV process as well as the Axial-Vector (AV ) two-point function defined as

T AV
µν (k1,k2) =

∫ d4k
(2π)4 Tr

{
iγµγ5

1
6 k + 6 k1−m

γν
1

6 k + 6 k2−m

}
. (18)

The conservation of the vector current and the proportional-
ity between the axial-vector and the pseudoscalar one, which
are properties of the adopted model, state the following con-
straints for the calculated amplitude

pµT A→VV
λµν = p′νT A→VV

λµν = 0, (19)

qλT A→VV
λµν =−2imT P→VV

µν . (20)

In order to satisfy, in a simultaneously way, the five Ward
identities for the S→VV and A→VV process, the two-point

structures, SV and AV , play crucial role. These mathemati-
cal structures have their own relations among other Green’s
functions of the perturbative calculation as well as their own
Ward identities which means that, in evaluating them, some
consistency constraints must be automatically maintained. In
this line of reasoning we first note that these amplitudes are
related through an unambiguous relation [1] which is,

T AV
µν (k1,k2) =

1
2m

εµναβ(k1− k2)β (T α)V S . (21)
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The contractions with the external momentum p′ = k1 − k2,
on the other hand, can be put in terms of other Green’s func-
tions as we have done in the case of the considered three-point
functions. The corresponding result for the SV structure is

(k1− k2)µT SV
µ = T S (k2)−T S (k1) . (22)

For the AV amplitude we get

(k1− k2)µT AV
µν =−2imT PV

ν +T A
ν (k2)−T A

ν (k1) , (23)

(k1− k2)νT AV
µν = T A

µ (k2)−T A
µ (k1) . (24)

In the above expressions we have introduced the scalar one-
point function, defined as

T S (k1) =
∫ d4k

(2π)4 Tr
{

1
6 k + 6 k1−m

}
, (25)

and the amplitudes T PV
ν and T A

µ which are defined in com-
pletely similar way like the previous considered ones. The
conservation of the vector current in the model, on the other
hand, implies the properties

(k1− k2)µT SV
µ = 0, (26)

(k1− k2)νT AV
µν = 0. (27)

The proportionality between the axial and the pseudoscalar
currents states

(k1− k2)µT AV
µν =−2imT PV

ν . (28)

At this point it is interesting to add some comments. There
are three types of constraints to be considered for the ampli-
tudes. The first is those what we have called relations among
Green’s functions which are consequence of the use of alge-
braic identities at the interior of the traces operation. The
unique aspect related to the integration is the assumption of
the linearity as a valid procedure. The second type is a rela-
tion between two amplitudes identified by comparing the ex-
pressions after the traces are taken like the relation (21) which
allows us to relate an amplitude having an even number of
γ5 Dirac matrices with amplitudes possessing an odd number
of such matrix. No specific properties involving the integra-
tion operation is involved in the derivation of such type of
relations. The third kind of constraint is the one related to
the symmetry properties (Ward identities) which are derived
also without any mention to the eventual divergent character
of the involved amplitudes. Then it is completely reasonable
to expect that they must be preserved in a simultaneously way
within the context of any consistent procedure adopted to eval-
uate all the involved amplitudes. The referred identities can be
used, in this context, to test the consistency of the procedure
used to regularize the divergences or to manipulate and cal-
culate the divergent amplitudes. Having this in mind the next
step we must perform is the evaluation of the amplitudes. For
these purposes we first take the Dirac traces which allows us
to put the amplitudes as a combination of Feynman integral.
After this we treat the divergent integrals so obtained accord-
ing to the adopted regularization method or equivalent philos-
ophy. In the present contribution we adopt the calculational

method described in Refs. [1–3, 9, 10] whose original refer-
ence is [4]. According to this strategy the Feynman integrals
involved in the one-point function becomes

I1 =
∫ d4k

(2π)4
1

(k + k1)2−m2 = Iquad(m2)+ kα
1 kβ

14αβ. (29)

On the other hand, those involved in two-point functions eval-
uation become

I2 =
∫ d4k

(2π)4
1[

(k + k1)
2−m2

][
(k + k2)

2−m2
]

=
[
Ilog

(
m2)]−

(
i

16π2

)[
Z0

(
(k2− k1)

2 ;m2
)]

, (30)

(I2)µ =
∫ d4k

(2π)4
kµ[

(k + k1)
2−m2

][
(k + k2)

2−m2
]

=−1
2

(k1 + k2)
ξ (

∆ξµ
)− 1

2
(k1 + k2)µ (I2) , (31)

where we have introduced (in shorthand notation) the two-
point function structures [11]

Zk(λ2
1,λ

2
2,q

2;λ2)=
∫ 1

0
dz zkln

(
q2z(1− z)+(λ2

1−λ2
2)z−λ2

1
−λ2

)
,

(32)
and the basic divergent objects

∆µν =
∫

Λ

d4k

(2π)4
4kµkν

(k2−m2)3 −
∫

Λ

d4k

(2π)4
gµν

(k2−m2)2 ,

(33)

Ilog(m2) =
∫

Λ

d4k

(2π)4
1

(k2−m2)2 , (34)

Iquad(m2) =
∫

Λ

d4k

(2π)4
1

(k2−m2)
. (35)

With these ingredients we can write the results for the ampli-
tudes

T S(k1) = 4m
{[

Iquad(m2)
]
+ kβ

1kα
1
(4βα

)}
, (36)

TV S
µ (k1,k2) =−4m(k1 + k2)β (4βµ

)
, (37)

T AV
µν (k1,k2) =−2εµναβ(k1− k2)β(k1 + k2)ξ

(
4 α

ξ

)
. (38)

It is now easy to verify all the considered constraints involving
these amplitudes. The relation (21) is immediate as well as the
relations (22)-(24). The symmetry properties (26) and (27), on
the other hand are not automatically satisfied. They suggest
that there is only one reasonable way to maintain the Ward
identities which is the consistency requirement (for detail see
please Refs. [1–3])

∆reg
µν = 0. (39)
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The consequences of such imposition are

T AV
µν = TV S

µ = 0. (40)

Note that these results are consistent with the calculations
made within the context of DR where T SV

µ is obtained identi-
cally vanishing. Then since the relation (21) is unambiguous,
the unique consistent result is T AV

µν = 0. The important aspect
for the present discussion is that, the Ward identities for the
processes A → VV and S → VV , which involve three-point
functions, become

pµT A→VV
λµν = p′νT A→VV

λµν = 0, (41)

qλT A→VV
λµν = −2imT P→VV

µν , (42)

and

pµT S→VV
µν = p′νT S→VV

µν = 0, (43)

as a consequence of the consistency relation (CR) (39).

The CR (39) is a necessary condition to the preservation of
the vector currents associated to the vector Lorentz indexes in
the S→VV process. However, in adopting this point of view
as universal, which means to apply the same procedure to the
evaluation of all amplitudes in all theories and models we ap-
parently have no violation in the Ward identities associated to
the amplitude corresponding to the A→VV process which, as
it is well known, is anomalous. This situation is completely
different of that which we denominate the traditional proce-
dure where the result (38) is substituted in the Eqs. (11), (12)
and (13) in order to obtain

(k3− k2)
λ T AVV

λµν =−2im[T PVV
µν ]

−2εµναβ

[
(k1− k2)β(k1 + k2)ξ +(k3− k1)

β (k1 + k3)ξ
](
4 α

ξ

)
, (44)

(k3− k1)
µ T AVV

λµν =−2ελναβ

[
(k1− k2)β(k1 + k2)ξ− (k3− k2)β(k2 + k3)ξ

](
4 α

ξ

)
, (45)

(k1− k2)
ν T AVV

λµν = 2ελµαβ

[
(k3− k1)β(k1 + k3)ξ− (k3− k2)β(k2 + k3)ξ

](
4 α

ξ

)
. (46)

Now, the object ∆ is interpreted as a surface’s term assuming
the value

∆µν =− igµν

32π2 , (47)

which allows the surviving of the ambiguous combination of
the loop (arbitrary) internal momenta (for details please see
Refs. [1–3]). The nonphysical pieces are then parametrized in
terms of the external momenta, for example





k1 = ap′+bp
k2 = bp+(a−1)p′
k3 = ap′+(b+1)p,

(48)

and




l1 = cp+d p′
l2 = d p′+(c−1)p
l3 = cp+(d +1)p′.

(49)

The arbitrary parameters a,b,c, and d are then chosen in order
to satisfy the vector Ward identities and the axial is obtained
violated since there is no choice which allows the preserva-
tion of all symmetry relations simultaneously. Clearly this
procedure make use of a non-zero value for the AV (and SV )
structure. If the same value for the object ∆ is adopted the ex-
pressions (5) and (6) for the Ward identities corresponding to

the S→VV process become

pµT S→VV
µν = 4m(k3− k1)

α (4αν)+4m(l1− l2)
α (4αν) ,

= 8mpα (4αν) , (50)

p′νT S→VV
µν = 4m(l3− l1)

α (4αµ)+4m(k1− k2)
α (4αµ) ,

= 8mp′α (4αµ) , (51)

which imply in the violation of both symmetry relations since
no ambiguous combinations involving the internal loop mo-
mentum appear to be chosen in a posterior step.

So, given the above discussion, we have arrived at the point:
apparently if a universal procedure is adopted no reasonable
situation is achieved. If the CR (39) is adopted the desir-
able consistency is obtained for all involved amplitudes but it
seems to forbidden any violation in Ward identities including
the anomalous amplitudes. If the interpretation for the object
∆ is the one usually adopted in the perturbative description of
the AVV triangle anomaly, adopting (47), we get a freedom
to make convenient choices in the anomalous amplitudes but
we will lead to a very large lack of violations in symmetry
relations in non anomalous amplitudes.
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In what follows we show that is possible to adopt an univer-
sal point of view for the perturbative (divergent) amplitudes
obtaining symmetry preservation in all non anomalous physi-
cal amplitudes and a consistent description of anomalies in a
natural way.

III. EXPLICIT EVALUATION OF THE THREE-POINT
FUNCTIONS

In view of the arguments put in the preceding section we
will explicitly calculate the SVV and AVV triangles within our

calculational strategy. All the calculations will be performed
in the most general way, adopting arbitrary choices for the in-
ternal lines momenta and maintaining the external lines off the
mass shell. In a posterior step the Ward identities will be veri-
fied in an exact and completely algebraic way. We start by the
SVV triangle, which was defined in Eq. (2). After performing
the Dirac traces the result can be written as

T SVV
µν = 4m

∫ d4k
(2π)4 {(k + k1)µ (k + k2)ν +(k + k1)ν (k + k2)µ

+(k + k1)µ (k + k3)ν +(k + k1)ν (k + k3)µ

+(k + k2)ν (k + k3)µ− (k + k2)µ (k + k3)ν}

× 1[
(k + k1)

2−m2
][

(k + k2)
2−m2

][
(k + k3)

2−m2
]

+ gµν
[
T SPP]

, (52)

where we have defined the three-point function

T SPP =
∫ d4k

(2π)4 Tr
{

1̂
1

6 k + 6 k3−m
γ5

1
6 k + 6 k1−m

γ5
1

6 k + 6 k2−m

}
. (53)

In the present discussion the above decomposition does not play an important role. It serves, however, to show, one more time,
that the Green’s functions of the perturbative calculations are always related.

The next step is to identify the set of Feynman integrals we need to evaluate in order to complete the calculation, which can
be represented as

(
I3; Iµ

3 ; Iµν
3

)
=

∫ d4k
(2π)4

(1;kµ;kµkν)[
(k + k1)

2−m2
][

(k + k2)
2−m2

][
(k + k3)

2−m2
] . (54)

The most severe degree of divergence is the logarithmic one, as it should be expected. Solving the integrals according to our
prescription, we get

(I3) =
(

i
16π2

)
(ξ00) , (55)

(I3)µ =
(

i
16π2

)
{−(k3− k1)µ (ξ10)− (k2− k1)µ (ξ01)}− k1µ (I3) , (56)

(I3)µν =
(

i
16π2

){
gµν

4
[
Ilog

(
m2)]+

1
4

(∆µν)− gµν

2
(η00)

+(k2− k1)µ (k2− k1)ν (ξ02)+(k3− k1)µ (k3− k1)ν (ξ20)

+(k2− k1)µ (k3− k1)ν (ξ11)+(k2− k1)ν (k3− k1)µ (ξ11)
}

− k1µ (I3)ν− k1ν (I3)µ + k1νk1µ (I3) , (57)
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where we have introduced (in shorthand notation) the three-point function structures

ξnm
(

p, p′
)

=
∫ 1

0
dz

∫ 1−z

0
dy

znym

Q(p,y; p′,z)
, (58)

with Q(p,y; p′,z) = p2y(1− y)+ p′2z(1− z)+2(p · p′)yz−m2, and

η00
(

p, p′;m2) =
1
2

[
Z0(

(
p+ p′

)2 ;m2)
]
−

[
1
2

+m2 (ξ00)
]

+
1
2

p′2 (ξ10)+
1
2

p2 (ξ01) . (59)

Inserting the results for the integrals, Eqs.(30), (31), (55), (56) and (57), we get

T SVV
µν = 4mgµν

[
Ilog

(
m2)]+4m(∆µν)

+
im
4π2

{
gµν (−2η00)+(k2− k1)µ (k2− k1)ν (4ξ02−2ξ01)

+(k3− k1)µ (k3− k1)ν (4ξ20−2ξ10)

+(k3− k1)ν (k2− k1)µ (4ξ11−ξ00)

+(k3− k1)µ (k2− k1)ν (4ξ11 +ξ00−2ξ01−2ξ10)
}

+gµν
[
T SPP]

, (60)

where

T SPP = 4m
{
−[

Ilog(m2)
]
+

i
16π2

[
Z0

(
(k3− k2)

2 ;m2
)]

− i
32π2

[
(k3− k2)

2− (k3− k1)
2− (k2− k1)

2
]
(ξ00)

}
. (61)

To arrive at these results the identity

(k + ki) · (k + k j) =
1
2

[
(k + ki)

2−m2
]
+

1
2

[
(k + k j)

2−m2
]
+

1
2

[
2m2− (ki− k j)

2
]
. (62)

has been used in the T SPP term.
Let us now consider the AVV triangle, using rigorously the same steps and results. First we evaluate the AVV amplitude

defined in the Eq.(10 ), which after performing the traces we write

T AVV
λµν =−4

{−Fλµν +Nλµν +Mλµν +Pλµν
}

, (63)

where we have introduced the definitions

Pλµν = gµνεαβλξ

∫ d4k
(2π)4

(k + k1)α(k + k2)β(k + k3)ξ

[(k + k1)2−m2][(k + k2)2−m2][(k + k3)2−m2]
, (64)

Fλµν =
∫ d4k

(2π)4 {ενβλξ (k + k1)µ (k + k2)
β (k + k3)

ξ

+εµβλξ (k + k1)ν (k + k2)
β (k + k3)

ξ

+εµανβ (k + k1)
α (k + k2)

β (k + k3)λ

+ εµανξ (k + k1)
α (k + k3)

ξ (k + k2)λ

}

× 1[
(k + k1)

2−m2
][

(k + k2)
2−m2

][
(k + k3)

2−m2
] , (65)



1198 E. Gambin, G. Dallabona, and O. A. Battistel

Nλµν =
εµανλ

2

{∫ d4k

(2π)4
(k + k1)α

[(k + k2)2−m2] [(k + k1)2−m2]

+
∫ d4k

(2π)4
(k + k1)α

[(k + k1)2−m2] [(k + k3)2−m2]

+[2m2− (k3− k2)
2]

×
∫ d4k

(2π)4
(k + k1)α

[(k + k1)2−m2] [(k + k2)2−m2] [(k + k3)2−m2]

}
, (66)

Mλµν = m2εµναλ

∫ d4k

(2π)4
(k + k2)

α− (k + k1)
α +(k + k3)

α
[
(k + k1)

2−m2
][

(k + k2)
2−m2

][
(k + k3)

2−m2
] . (67)

The most severe degree of divergence the linear one is contained in the Nλµν term. The performed reorganization came from the
use of the identity (62). Using the results (30), (31 ), (55), (56) and (57) for the involved integrals we get

Pλµν = 0, (68)

Mλµν = −
(

i
16π2

)
εµανλm2 {

(k2− k1)
α (ξ00−ξ01)+(k3− k1)

α (ξ00−ξ10)
}

, (69)

Nλµν =
1
4

εµανλ (k2− k1)
α
{
−[

Ilog
(
m2)]+

(
i

16π2

)[
Z0

(
(k1− k2)

2 ;m2
)]

−
(

i
16π2

)[
2m2− (k3− k2)

2
]
(2ξ01)

}

+
1
4

εµανλ (k3− k1)
α
{
−[

Ilog
(
m2)]+

(
i

16π2

)[
Z0

(
(k1− k3)

2 ;m2
)]

−
(

i
16π2

)[
2m2− (k3− k2)

2
]
(2ξ10)

}

− 1
4

εµανλ

[
(k1 + k2)

β +(k3 + k1)
β
](

∆α
β

)
, (70)

Fλµν =
(

i
16π2

)
(k3− k1)

ξ (k2− k1)
β
{

ενβλξ[(k2− k1)µ (ξ02 +ξ11−ξ01)

+(k3− k1)µ (ξ20 +ξ11−ξ10)]

+εµβλξ[(k2− k1)ν (ξ02 +ξ11−ξ01)

+(k3− k1)ν (ξ20 +ξ11−ξ10)]
+εµβνξ[(k3− k1)λ (ξ11−ξ20 +ξ10)

+ (k2− k1)λ (ξ02−ξ11−ξ01)]}

− 1
4

εµνλξ

[
(k3− k1)

ξ +(k2− k1)
ξ
][[

Ilog
(
m2)]+

(
i

16π2

)
(−2η00)

]

+
1
4

ενβλσ (k2− k3)
β (

∆σ
µ
)
+

1
4

εµβλσ (k2− k3)
β (∆σ

ν)+

+
1
4

εµσνβ

[
(k2− k1)

β +(k3− k1)
β
](

∆σ
λ
)
. (71)
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The complete solution to AVV can be written in the following form

T AVV
λµν =

(
i

4π2

)
(k3− k1)

ξ (k1− k2)
β
{

ενλβξ[(k3− k1)µ (ξ20 +ξ11−ξ10)

+(k2− k1)µ (ξ11 +ξ02−ξ01)]

+εµλβξ[(k3− k1)ν (ξ11 +ξ20−ξ10)

+(k2− k1)ν (ξ02 +ξ11−ξ01)]

+εµνβξ[(k3− k1)λ (ξ11−ξ20 +ξ10)

+ (k2− k1)λ (ξ02−ξ01−ξ11)]}

−
(

i
16π2

)
εµνλβ (k3− k1)

β
{[

Z0

(
(k1− k3)

2 ;m2
)]
−

[
Z0

(
(k2− k3)

2 ;m2
)]

+
[
2(k3− k2)

2− (k3− k1)
2
]
(ξ10)

−(k2− k1)
2 (ξ01)+

[
1−2m2 (ξ00)

]}

−
(

i
16π2

)
εµνλβ (k2− k1)

β
{[

Z0

(
(k1− k2)

2 ;m2
)]
−

[
Z0

(
(k2− k3)

2 ;m2
)]

+
[
2(k3− k2)

2− (k1− k2)
2
]
(ξ01)

−(k3− k1)
2 (ξ10)+

[
1−2m2 (ξ00)

]}

+ εµνβσ

[
(k2− k1)

β +(k3− k1)
β
](

∆σ
λ
)

− ενλβσ (k2− k3)
β (

∆σ
µ
)
+

εµλβσ

4
(k2− k3)

β (∆σ
ν)

+ εµνλα

[
(k1 + k2)

β +(k3 + k1)
β
](

∆α
β

)
. (72)

Note the presence of the potentially ambiguous term, the last
one in the above expression. The last ingredient involved in
the Ward identities that we want to verify is the PVV triangle,
defined in the Eq. (17), which, after the traces calculations
and using the results (55) and (56) in order to complete the
calculation, becomes

T PVV
µν =

(
1

4π2

)
mεµναβ (k2− k1)

α (k3− k1)
β (ξ00) . (73)

With these ingredients we have arrived at the position where
the Ward identities for the AVV and SVV triangle amplitudes
can be verified.

IV. WARD IDENTITIES VERIFICATION FOR THE
THREE-POINT FUNCTIONS

In the preceding section we have derived two properties for
the SVV triangle; Eqs. (5) and (6). It is time to ask : Is the
obtained result for the explicit calculation, a reasonable one
concerning such properties? In order to verify such relations
we need to evaluate the contractions of the amplitude with
the external momenta. Such verification requires a reasonable
algebraic effort. However, a considerable simplification can
be obtained if we note some properties of the ξnm (p, p′) and
Zk

(
p2;m

)
functions. They are
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p2 (ξ11)−
(

p · p′
)
(ξ02) =

1
2

{
−1

2
Z0

(
q2;m2)+

1
2

Z0
(

p′2;m2)+ p2 (ξ01)
}

, (74)

p2 (ξ20)−
(

p · p′
)
(ξ11) =

1
2

{
−

[
1
2

+m2 (ξ00)
]

+
p′2

2
(ξ01)+

3p2

2
(ξ10)

}
, (75)

p′2 (ξ02)−
(

p · p′
)
(ξ11) =

1
2

{
−

[
1
2

+m2 (ξ00)
]

+
p2

2
(ξ10)+

3p′2

2
(ξ01)

}
, (76)

p′2 (ξ11)−
(

p · p′
)
(ξ20) =

1
2

{
−1

2
Z0

(
q2;m2)+

1
2

Z0
(

p2;m2)+ p′2ξ10

}
, (77)

p2 (ξ10)−
(

p · p′
)
(ξ01) =

1
2

{−Z0
(
q2;m2)+Z0

(
p′2;m2)+ p2 (ξ00)

}
, (78)

p′2 (ξ01)−
(

p · p′
)
(ξ10) =

1
2

{−Z0
(
q2;m2)+Z0

(
p2;m2)+ p′2 (ξ00)

}
. (79)

Having this in mind we first contract the SVV explicit expression, Eq.(60), with (k1− k2)ν to get

(k1− k2)
ν T SVV

µν =
(

im
4π2

)
(k3− k1)µ

{
−4

[
(k2− k1)

2 (ξ11)− (k1− k2) · (k3− k1)(ξ20

]
)

+2
[
(k1− k2)

2 (ξ01)− (k1− k2) · (k3− k1)(ξ10)
]

+(k2− k1)
2 (2ξ10−ξ00)

}

+
(

im
4π2

)
(k2− k1)µ

{
−4

[
(k1− k2)

2 (ξ02)− (k1− k2) · (k3− k1)(ξ11)
]

−(k1− k2) · (k3− k1)(ξ00)

+2(k1− k2)
2 (ξ01)+2(η00)

}

+ 4m(k1− k2)µ
[
Ilog(m2)

]
+4m(k1− k2)

ν ∆µν

+ (k1− k2)
µ [

T SPP]
, (80)

where it becomes clear the useful character of the properties (74)-(79), which lead us to

(k1− k2)
ν T SVV

µν = 4m(k1− k2)µ

{[
Ilog(m2)

]−
(

i
16π2

)[
Z0

(
(k3− k2)

2 ;m2
)]

+
(

i
16π2

)
(k1− k2) · (k3− k1)(ξ00)

}

+ (k1− k2)µ
[
T SPP]

+ 4m(k1− k2)
ν (∆µν) . (81)

Looking at the SPP explicit expression, Eq. (61), this means that we get

(k1− k2)
ν T SVV

µν = 4m(k1− k2)α (4αµ) , (82)

which implies in the identification

(k1− k2)
µ T SVV

µν = TV S
ν (k2,k3)−TV S

ν (k1,k3) . (83)
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Following essentially the same steps we can also verify the contraction with (k3− k1)µ:

(k3− k1)
µ T SVV

µν =
(

im
4π2

)
(k3− k1)ν

{
4
[
(k3− k1)

2 (ξ20)− (k1− k2) · (k3− k1)(ξ11)
]

+(k1− k2) · (k3− k1)(ξ00)

−2(k3− k1)
2 (ξ10)−2(η00)

}

+
(

im
4π2

)
(k2− k1)ν

{
−2

[
(k3− k1)

2 (ξ10)− (k1− k2) · (k3− k1)(ξ01)
]

+4
[
(k3− k1)

2 (ξ11)− (k1− k2) · (k3− k1)(ξ02)
]

+(k3− k1)
2 (ξ00−2ξ01)

}

+4m(k3− k1)ν
[
Ilog(m2)

]
+(k3− k1)ν

[
T SPP]

+4m(k3− k1)
α (∆αν) , (84)

Considering the result (61) and the properties (74)-(79) we see
that

(k3− k1)
µ T SVV

µν = 4m(k3− k1)µ (4µν) . (85)

Comparing with (37), the above result means that

(k3− k1)
µ T SVV

µν = TV S
ν (k1,k2)−TV S

ν (k3,k2) . (86)

If we compare the Eqs. (83) and (86) with the results pre-
viously obtained, Eqs. (5) and (6), we see that the identities
among the involved Green’s functions are preserved before
any assumptions about the arbitrariness. At this point only
the correctness of the intermediary steps has been tested. In
order to give a definite significance for the SVV amplitude, a

definition for the 4µν piece, which is arbitrary, is required.
This means to choose a regularization method or an equiva-
lent philosophy. Such a choice must be taken using as a guide
the symmetry properties of the amplitude. The requirement
of the vector current conservation leaves no room for other
choices than to select a regularization such that ∆reg

µν = 0. As
we have pointed out before, the adoption of the DR leads us to
the desirable result once the required property is automatically
fulfilled by the method.

Let us now consider the most interesting case of three-point
functions concerning the symmetry properties maintenance.
The contractions of the Eq. (72) with the external momenta,
after the use of the identities (74)-(79), lead us to

(k3− k1)
µ T AVV

λµν = (k3− k1)
µ ΓAVV

λµν

+
(

i
8π2

)
ενβλξ (k3− k1)

ξ (k1− k2)
β , (87)

(k1− k2)
ν T AVV

λµν = (k1− k2)
ν ΓAVV

λµν

−
(

i
8π2

)
εµβλξ (k3− k1)

ξ (k1− k2)
β , (88)

(k3− k2)
λ T AVV

λµν = (k3− k2)
λ ΓAVV

λµν

−
(

i
4π2

)
εµνξβ (k3− k1)

ξ (k1− k2)
β [

2m2 (ξ00)
]
. (89)

where we have defined

ΓAVV
λµν

4
=

1
4

εµνβξ

[
(k2− k1)

β +(k3− k1)
β
](

∆ξ
λ

)

− 1
4

ενλβξ (k2− k3)
β
(

∆ξ
µ

)
− 1

4
εµλβξ (k2− k3)

β
(

∆ξ
ν

)

+
1
4

εµνλα

[
(k1 + k2)

β +(k3 + k1)
β
](

∆α
β

)
. (90)
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The above expressions can be rewritten in terms of other structures if we observe the Eq. (38) and Eq. (37). As an example, note
that

(k3− k2)
λ ΓAVV

λµν = 2εµναβ

[
(k1− k3)β(k1 + k3)ξ +(k2− k1)β(k1 + k2)ξ

] (
4α

ξ

)
, (91)

which means that

(k3− k2)
λ ΓAVV

λµν = T AV
µν (k1,k2)−T AV

νµ (k3,k1). (92)

Again, all the arbitrariness involved are still present. The ex-
pression (72), and, in consequence, the Eqs. (87)-(89), are
completely independent of the specific assumptions for the
divergent character of the amplitude. The next step involves
some arbitrary choices for the undefined quantities present in
the expressions. What becomes evident at this point is that
the relations (12) and (13) among the involved Green’s func-
tions have not been obtained satisfied. The terms which breaks
the identities comes from finite contributions. The violations
cannot be avoided by choosing properties for the divergent in-
tegrals. This seems to indicate that no regularization can be
constructed in order to preserve the three identities simulta-
neously by the simple reason that the violating terms cannot
be affected by the eventual properties of the regulating distri-
bution. The main point is that the arbitrariness involved, the
value for the 4α

ξ piece and the ambiguous combinations of
the internal lines momenta, do not play any relevant role in
the establishment of the violations.

V. FINAL REMARKS AND CONCLUSIONS

Applying a very general calculational method, concerning
the divergences treatment, we considered the aspects ambigu-
ities and symmetry relations using for this purpose two well-
known physical amplitudes; the SVV and AVV triangle am-
plitudes. From the point of view of traditional techniques, the
first cited one can be treated within the scope of DR and there-
fore consistently handled. The second one is a γ5-odd ampli-
tude and the recourse of the DR is not available. However,
from the point of view of the adopted strategy, both ampli-
tudes can be equally treated and exhibit very similar aspects
concerning the divergence character. This is due to the fact
that in the adopted strategy it is avoided the explicit use of
a regularization on the intermediary steps. The routing for
the internal lines momenta is adopted as completely arbitrary.
Only very general properties for an eventual regulating distri-
bution are assumed in order to perform an adequate reorgani-
zation of the divergent Feynman integrals. The terms which
present a dependence on the internal lines momenta are left
only in finite integrals. The undefined parts of the amplitudes
are organized in a small number of standard objects but, in
fact, they are not calculated. With this procedure all the in-
trinsic arbitrariness of perturbative calculations remain still
present in the final results. Due to this fact it becomes pos-
sible to map the obtained results into those corresponding to
any traditional regularization philosophies. Two of such treat-
ments are particularly important for the performed investiga-

tions: The DR and the explicit evaluation of surface’s term.
The DR is usually applied for the SVV treatment and the cor-
responding results can be easily recovered from ours. The
surface’s term evaluation is traditionally applied to the AVV
amplitude in order to justify the perturbative origin of the tri-
angle anomalies and the corresponding results can be equally
recovered from our results. However, these two mappings are
obtained through different interpretations for the undefined
objects. Precisely this aspect allows us to get very interesting
conclusions about the nature of the anomaly phenomenon. In
order to make the conclusions clean and sound let us summa-
rize the main steps.

First we stated identities relating the SVV and AVV external
momentum contracted amplitudes with other two and three-
point functions which are:

(k3− k1)
µ T SVV

µν = TV S
ν (k2,k1)−TV S

ν (k2,k3) , (93)

(k1− k2)
ν T SVV

µν = TV S
µ (k2,k3)−TV S

µ (k1,k3) , (94)

(k3− k2)
λ T AVV

λµν =−2imT PVV
µν +T AV

µν (k1,k2)−T AV
νµ (k3,k1) ,

(95)

(k3− k1)µT AVV
λµν = T AV

λν (k1,k2)−T AV
λν (k3,k2), (96)

(k1− k2)νT AVV
λµν = T AV

λµ (k3,k2)−T AV
λµ (k3,k1). (97)

The two-point functions that appeared on the right hand side
of the above equation have been evaluated from the point of
view of the adopted strategy leading to

TV S
µ (k1,k2) =−4m(k1 + k2)β (4βµ

)
, (98)

T AV
µν (k1,k2) =−2εµναβ(k1− k2)β(k1 + k2)ξ

(
4α

ξ

)
, (99)

where it must be noted the relation between them

T AV
µν (k1,k2) =

1
2m

εµναβ(k1− k2)β (T α)V S . (100)

which is non-ambiguous in spite of the potentially ambiguous
character of both involved amplitudes. The above relation is
valid at the traces level, i.e., independent of the calculational
aspects. The expressions (98) and (99) are the most general
ones for these mathematical structures. They preserve all the
intrinsic arbitrariness involved, which are present in the am-
biguous combinations of the internal lines momentum and in
the undefined4βµ piece. It is clear that, in order to give a defi-
nite value for the amplitudes some (arbitrary) choices must be
taken in to account. Which are then the best ones? The only
guides we have are the eventual physical requirements to be
imposed to the amplitudes in spite of the divergent character.
Once no other result than the identically zero one is accept-
able for the SV two-point function, which can be immediately
obtained in the DR method, we have no option at our disposal



Brazilian Journal of Physics, vol. 37, no. 4, December, 2007 1203

than to select a regularization such that ∆reg
µν = 0, and in conse-

quence TV S
µ = T AV

µν = 0. Given this choice, the Eqs. (93)-(97)
become

p′νT A→VV
λµν = pµT A→VV

λµν = 0, (101)

qλT A→VV
λµν =−2imT P→VV

µν , (102)

and

p′νT S→VV
µν = pµT S→VV

µν = 0. (103)

This is certainly what we wish to obtain for the last two equa-
tions but in the case of the AVV triangle amplitude at first
sight it can be a trouble. This is due to the fact that, with this
choice, the Eqs. (101)-(102) apparently imply that no viola-
tions in symmetry relations for the AVV amplitude may occur.
At least this is what we should conclude if we follow the tradi-
tional line of reasoning for the perturbative justification of the
AVV triangle anomaly. What should we make in order to rec-
oncile the situation? At this point one can say that both con-
sidered problems must not necessarily be constrained. This

means to adopt different choices for the indefinitions, i.e., in
the treatment of the SVV problem we adopt ∆reg

µν = 0, obtain-
ing the desirable result, while in the AVV amplitude we adopt
∆reg

µν 6= 0. It is precisely the present status of the problem: for
the SVV amplitude we adopt the DR point of view (∆reg

µν = 0)
and for the AVV anomaly’s justifications we adopt the sur-
face’s terms evaluation analysis (∆reg

µν 6= 0). In some sense
this option represents a very frustrating situation because both
problems (and many others) are deeply related. The last sen-
tence can be clearly viewed if we observe the Eqs. (93)-(97),
(98)-(99) and the Eq. (100). They indicate that the potentially
ambiguous terms present in the AVV structure are, in fact, SV
two-point functions. This is immediately verified if we take
the term between curly brackets on the left hand side of the
Eq. (10) and perform the traces. The answer can be written in
a similar form to the decomposition (63),

tAVV
λµν =−4

{− fλµν +nλµν +mλµν + pλµν
}

, (104)

where, after the integration, only nλµν will acquire a linear
divergence’s degree. It is explicitly given by

nλµν = εµανλ
(k + k2) · (k + k3)(k + k1)α

[(k + k1)2−m2] [(k + k2)2−m2] [(k + k3)2−m2]
, (105)

which can be conveniently reorganized as

nλµν =
εµανλ

4

{
2kα +(k1 + k2)α

[(k + k1)2−m2] [(k + k2)2−m2]
+

2kα +(k1 + k3)α

[(k + k1)2−m2] [(k + k3)2−m2]

}

+
εµανλ

4

{
(k1− k2)α

[(k + k1)2−m2] [(k + k2)2−m2]
+

(k1− k3)α

[(k + k1)2−m2] [(k + k3)2−m2]

+[2m2− (k2− k3)2]
2(k + k1)α

[(k + k1)2−m2] [(k + k2)2−m2] [(k + k3)2−m2]

}
. (106)

The first two terms contain now all the linear divergence and the ambiguous combination of the arbitrary internal lines momen-
tum. Given the identity (62) it is expected that such terms are related to SV two-point functions. In fact, it is easy to verify
that

4m
2kα +(ki + k j)α

[(k + ki)2−m2] [(k + k j)2−m2]
= Tr

[
1̂

1
(6 k + 6 ki)−m

γα
1

(6 k + 6 k j)−m

]
. (107)

After the integration in the momentum k, the right hand side
can be identified with the SV two-point function defined in
Eq. (7). The important aspect involved resides on the fact
that all the undefined pieces present in the AVV amplitude are
linked with the value of the SV physical amplitude. Conse-
quently, we can make use of the eventual physical constraints,
to be imposed on the SV amplitude, to guide us in taking the
consistent choices for the corresponding arbitrariness present
in the AVV amplitude. So, it seems not reasonable to assume
the zero value for the SV mathematical structure when we are
dealing with the SVV problem and, for the identical mathe-
matical structures, to attribute a non-zero value when we are

dealing with the AVV anomaly justification. After these im-
portant remarks, it become very clear that an alternative point
of view for the problem must be searched. In order to con-
struct it, we first note that the Eqs. (101)-(102) does not im-
ply that the anomalies are eliminated by the choice ∆reg

µν = 0.
In fact, the origin of the AVV triangle anomaly phenom-
enon is connected with the neutral electromagnetic pion decay
through the Sutherland-Veltman paradox [12]. There are four
properties to be satisfied by the AVV amplitude. Three of them
are precisely the Ward identities which we considered and the
fourth one is the kinematical limit: limqλ→0 qλT A→VV

λµν = 0,
which is related to the pion decay. The manipulations per-
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formed until the Eqs. (101) - (102) do not allow us to verify
simultaneously all four ingredients. Only the explicit calcu-
lation can reveal us all of them. So, following this point of

view, we first have to explicit evaluate the three-point func-
tions and after this to verify the Ward identities and the kine-
matical limit. The corresponding results are

(k3− k1)
µ T AVV

λµν = T AV
λν (k1,k2)−T AV

λν (k3,k2),

+
(

i
8π2

)
ενβλξ (k3− k1)

ξ (k1− k2)
β , (108)

(k1− k2)
ν T AVV

λµν = T AV
λµ (k3,k2)−T AV

λµ (k3,k1)

−
(

i
8π2

)
εµβλξ (k3− k1)

ξ (k1− k2)
β , (109)

(k3− k2)
λ T AVV

λµν = T AV
µν (k1,k2)−T AV

νµ (k3,k1)

+
(

i
4π2

)
εµξνβ (k3− k1)

ξ (k1− k2)
β [

2m2ξ00
]
. (110)

and

(k3− k1)
µ T SVV

µν = TV S
ν (k2,k1)−TV S

ν (k2,k3) , (111)

(k1− k2)
ν T SVV

µν = TV S
µ (k2,k3)−TV S

µ (k1,k3) . (112)

Now, if we adopt the same point of view for both problems, i.e., ∆reg
µν = 0, which implies in to assume T SV

µ = T AV
µν = 0, we get

(k1− k2)
ν T SVV

µν = (k3− k1)
µ T SVV

µν = 0, (113)

(k3− k1)
µ T AVV

λµν =
(

i
8π2

)
ενβλξ (k3− k1)

ξ (k1− k2)
β , (114)

(k1− k2)
ν T AVV

λµν =−
(

i
8π2

)
εµβλξ (k3− k1)

ξ (k1− k2)
β , (115)

(k3− k2)
λ T AVV

λµν =−2im
[
T PVV

µν
]
. (116)

The inclusion of the crossed channel gives us

pµT S→VV
µν = p′νT S→VV

µν = 0, (117)

pµT A→VV
λµν =

(
i

4π2

)
ενβλξ pξ p′β, (118)

p′νT A→VV
λµν =−

(
i

4π2

)
εµβλξ pξ p′β, (119)

qλT A→VV
λµν =−2im

[
T P→VV

µν
]
. (120)

Then it becomes clear what we mean about the problem. The
Ward identities for the SVV amplitude are satisfied, as they
should, and those corresponding to the AVV one present vi-
olations. The violating terms can be related to a kinematical
situation of the AVV amplitude. We can write the Ward iden-
tities as

(k3− k1)
µ T AVV

λµν = (k3− k1)
µ T AVV

λµν (0), (121)

(k2− k1)
ν T AVV

λµν = (k2− k1)
ν T AVV

λµν (0), (122)

(k3− k2)λ T AVV
λµν =−2im

[
T PVV

µν
]
, (123)

where

T AVV
λµν (0) =−

(
i

8π2

)
εµνλξ

[
(k3− k1)

ξ− (k1− k2)
ξ
]
, (124)

which is the anomalous term. The expressions above reflects
now what we expect for the anomaly phenomenon. The calcu-
lated AVV amplitude violates three of the four symmetry prop-
erties. The fundamental character of the phenomenon resides
in the fact that there is no dependence on the specific regu-
larization we eventually want to use. The symmetry breaking
involved represents a particular type of arbitrariness: once it
is not possible to satisfy simultaneously all symmetry proper-
ties (in accordance to the Sutherland-Veltman paradox [12]),
it is completely justifiable to take the best possible choice due
to physical reasons. It is evident that we must to choose what
is required by the phenomenology. This means to choose the
expression for the AVV triangle with a correct low energy be-
havior or to make the redefinition

(
T A→VV

λµν (p, p′)
)

phys
= T A→VV

λµν (p, p′)−T A→VV
λµν (0) , (125)
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where

T A→VV
λµν (0) =−

(
i

4π2

)
εµνλξ

(
pξ− p′ξ

)
.

Consequently, we get for the AVV physical amplitude(
T A→VV

λµν

)
phy

,

p′ν
(

T A→VV
λµν

)
phy

= pµ
(

T A→VV
λµν

)
phy

= 0, (126)

qλ
(

T A→VV
λµν

)
phy

=−2im
[
T P→VV

µν
]−

(
i

2π2

)
εµναβ pα p′β.

(127)

Note that, with the redefinition imposed by phenomenologi-
cal reasons, the vector Ward identities are now preserved in
the AVV amplitude. This is different from the usual argumen-
tation which is the redefinition of the calculated amplitude in
order to recover the U(1) gauge symmetry. The origin of the
violations do not reside in ingredients which are exclusive of

the perturbative approach as the divergences and ambiguities
are. No regularization can avoid the violation of at least one
of the four symmetry properties because the violating terms
come from finite parts of the amplitude.

The most important points of the conclusions are: (a) Con-
cerning the ambiguities: they cannot play any role in a con-
sistent interpretation of perturbative physical amplitudes. Any
result for a perturbative calculation which exhibit dependence
on the arbitrariness involved cannot be taken seriously; (b)
Concerning the regularizations it is possible to summarize all
we can say about them in a simple sentence: if a method
is consistent it is not necessary to take it explicitly in any
place so that no role is left to be played also for these tools.
These conclusions may be very important for the discussions
of many problems and controversies stated recently in the lit-
erature where the ambiguities are called to play relevant role
[10].
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