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Electrically Charged Pulsars
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In the present work we investigate one possible variation on the usual electrically neutral pulsars: the inclusion
of electric charge through a naive prescription. We study the effect of electric charge in pulsars assuming that the
charge distribution is proportional to the energy density. All calculations were performed for equations of state
obtained at zero temperature and also for fixed entropies. We then choose one of the models, the Nambu-Jona-
Lasinio model for zero temperature quark stars without the inclusion of leptons, what makes them electrically
charged, and compare the results with the previous one.
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I. INTRODUCTION

Pulsars are believed to be the remnants of supernova explo-
sions. They have masses 1–2M¯, radii∼ 10km, and a temper-
ature of the order of 1011 K at birth, cooling within a few days
to about 1010 K by emitting neutrinos. Pulsars are normally
known as neutron stars, name that does not reflect their real
composition, which is still a source of speculation. Some of
the possibilities are the presence of hyperons [1–3], a mixed
phase of hyperons and quarks [4–8], a phase of deconfined
quarks or pion and kaon condensates [9]. Another possibility
would be that pulsars are, in fact, quark stars [10]. In conven-
tional models, hadrons are assumed to be the true ground state
of the strong interaction. However, it has been argued [11–15]
that strange matter composed of deconfined u,d and s quarks
could be the true ground state of all matter. In the stellar mod-
eling, the structure of the star depends on the assumed EoS,
which is different in each of the above mentioned cases. While
neutron stars are bound by the gravitational force, quark stars
are self-bound by the strong interaction.

Once an adequate EoS is chosen, it is used as input to the
Tolman-Oppenheimer-Volkoff (TOV) equations [16], which
are derived from Einstein’s equations in the Schwarzschild
metric for a static, spherical star. Some of the stellar prop-
erties, as the radius, gravitational and baryonic masses, cen-
tral energy densities, etc are obtained. These results are
then tested against some of the constraints provided by as-
tronomers and astrophysicists [17, 18] and some of the EoS
are shown to be inappropriate for describing pulsars [5, 6, 9].

One should also bear in mind that the temperature in the
interior of the star is not constant [8, 19], but the entropy per
baryon is. This is the reason for choosing fixed entropies to
take the temperature effects into account. The maximum en-
tropy per baryon (S) reached in the core of a new born star is
about 2 (in units of Boltzmann’s constant) [20]. We then use
EoS obtained with S = 0 (T = 0), 1 and 2.

In the present work we investigate the effects of the elec-
tric charge in compact stars. This study was first performed in
stars composed of hot ionized gas [21] and then reconsidered
for a cold star (T = 0) described by a polytropic EoS [22].
The bulk of the stellar matter is expected to be electrically
neutral. Only in the thin surface layer of several fermi there

is a non-vanishing electric field. It is commonly believed that
the electric field in the bulk required to affect the EoS (of the
order of 1020V/m) is well above the Schwinger field. Hence,
the ad hoc assumption that the electric charge distribution is
proportional to the mass density has mainly academic value.
The TOV equations have to be modified to take the electric
field into account. Then, in order to check how far away from
the values obtained within a formalism that does not require
charge neutrality, we have recalculated quark star properties
from a model without leptons and consequentely, not charge
neutral by construction. In this case the distribution of the
electric charge is not uniform. We study the three possible
kinds of pulsars: hadronic, hybrid and quarkionic with re-
alistic EoS but the consideration of charged stars from first
principles is only developed for quark stars built within the
Nambu-Jona-Lasinio [23] model at zero temperature. Based
on the general trend of the stellar matter properties we believe
that the conclusions are general. Another possibility would be
to include the eletromagnetic field in the Lagrangian density
but in this case, a simple mean field approach would not be
enough since it forces the eletromagnetic field to vanish and
more sofisticated methods would be required.

This paper is organized as follows: in Sec. II the for-
malisms of the electrically charged stars are revisited and the
NJL model is discussed in some detail. In Sec. III the results
are presented, discussed and the main conclusions are drawn.

II. FORMALISM AND RESULTS

As the first step we need to know the EoS of the system,

ε = ε(p), n = n(p),

where p is the pressure, ε is the energy density, and n is the
number density of baryons. Once an adequate EoS is ob-
tained, it can be used to provide the stellar properties. The
influence of the entropy or analogously, of the temperature,
appears in the EoS. For hadronic stars we have used the non-
linear Walecka model [24] with a parametrization that de-
scribes the properties of saturating nuclear matter proposed
in [26], for which the binding energy is -16.3 MeV at the sat-
uration density ρ0 = 0.153 fm−1, the symmetry coefficient is



1184 M. D. Alloy and D. P. Menezes

32.5 MeV, the compression modulus is 300 MeV and the ef-
fective mass is 0.7M. For the meson-hyperon coupling con-
stants we have chosen them constrained by the binding of the
Λ hyperon in nuclear matter, hypernuclear levels and neutron
star masses (xσ = 0.7 and xω = xρ = 0.783) and have assumed
that the couplings to the Σ and Ξ are equal to those of the
Λ hyperon [26, 27]. For the construction of the EoS for hy-
brid stars, the hadronic phase was obtained with the non-linear
Walecka model and the parameters above and the quark phase
with the MIT bag model with Bag = (180 MeV )4. For the
quark stars within the MIT model [25], we have used mu =
md = 5.5MeV, ms = 150.0MeV and Bag = (180MeV)4. For
the purpose of the present work, the value of the bag parame-
ter does not play an important role. Concerning quark stars
within the NJL model [23], the set of parameters were chosen
in order to fit the values in vacuum for the pion mass, the pion
decay constant, the kaon mass and the quark condensates as
in [28, 29].

A. Electrically charged compact stars

In this section we include modifications in the TOV equa-
tions to describe electrically charged pulsars with null angular
velocity. The geometry that describes a static spherical star is
given by equation (1). In order that the Maxwell equations are
incorporated into the stress tensor T µ

ν , it becomes:

T µ
ν = (p+ε)uµuν− pδµ

ν +
1

4π

(
FµαFαν− 1

4
δµ

νFαβFαβ
)

, (1)

where again p is the pressure, ε is the energy density, and uµ

is the 4-velocity vector.
The electromagnetic field obeys the relation

[√−gFµν]
,ν = 4π jµ√−g, (2)

where jµ is the four current density. Next we consider static
stars only. Hence the electromagnetic field is only due to the
electric charge, which means that F01 = −F10, and the other
terms are absent. From the four-potential Aµ the surviving
potential is A0 = φ. Thus the electric field is given by

E(r) =
1
r2

∫ r

0
4πr2 j0e(ν+λ)/2dr, (3)

where j0eν/2 = ρch is the charge density. The electric field can
be written as

dE(r)
dr

=−2E
r

+4πρcheλ/2 (4)

and total charge of the system as

Q =
∫ R

0
4πr2ρcheλ/2dr, (5)

where R is the radius of the star.
In the star frame the mass is

dMtot

dr
(r) = 4πr2

(
ε+

E(r)2

8π

)
. (6)

To an observer at infinity, the mass is

M∞ =
∫ ∞

0
4πr2

(
ε+

E(r)2

8π

)
dr = Mtot(R)+

Q(R)2

2R
. (7)

By using the conservation law of the stress tensor (T µ
ν;µ = 0)

we obtain the hydrostatic equation

d p
dr

= −

[
Mtot +4πr3

(
p− E(r)2

8π

)]
(ε+ p)

r2
(

1− 2Mtot
r

)

+ ρchE(r)eλ/2. (8)

The first term on the right-hand side comes from the gravi-
tational force and the second term comes from the Coulomb
force. By using the metric and the relation

Rµ
ν−

1
2

Rδµ
ν =−8πT µ

ν , (9)

we obtain the following differential equation

dλ
dr

=

[
8πreλ

(
ε+

E(r)2

8π

)
−

(
eλ−1

r

)]
, (10)

which is used to determine the metric eλ.
So, we have a set of differential equations to be solved

formed by equations(19), (21), (23) and (25). The boundary
conditions at r = 0 are E(r) = 0, eλ = 1, n = ρc and at r = R,
p = 0. We assume that the charge goes with the energy density
ε as prescribed in [22]:

ρch = f ×0.86924×103ε. (11)

According to [22], this choice of charge distribution is a rea-
sonable assumption in the sense that a large mass can hold a
large amount of charge. One should bear in mind, however,
that the EoS used in the present work were built electrically
neutral and then f has to be a very small quantity. In table I
results for electrically charged neutron stars are presented. We
have calculated the results for 48 different configuration mod-
els of compact stars. The EoS for hadronic and hybrid stars
were taken from [8], the EoS for quark stars were taken from
[10]. In table I the electric charge Q is given in Coulomb and
f varies from zero (no charge) to a small value (0.0006). The
related mass-radius plots for hadronic, hybrid and quark stars
are given respectively in Figs. 4, 5 and 6-7. For quark stars
we present two sets of calculations, one for EoS obtained with
the MIT bag model and another one for EoS obtained with the
Nambu-Jona-Lasinio model because their strangeness compo-
sitions are very different, as seen in [10].

Some considerations are now in order: in building EoS that
describe stellar matter, β- equilibrium and charge neutrality
are always required since compact star properties are not af-
fected by electric fields below 1020V/m. What would be the
difference between the ad hoc naive prescription of including
electric charge by hand as in eq. (11) and another prescription
that assumes that the EoS is built naturally charged? This in-
vestigated is performed within the NJL model described next.
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FIG. 1: EoS obtained for S = 0 within the NJL model.
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FIG. 2: Strangeness content obtained for S = 0 within the NJL model.

B. The NJL model and charge neutrality

The main aspects of the construction of equation of states
with one of the models used in the present work, the Nambu-
Jona-Lasinio (NJL) model [28, 30, 31], that includes most of
the symmetries of QCD, including chiral symmetry are dis-
cussed as follows. For the other models, please refer to [8, 10]
among many other papers in the literature.

The NJL model is defined by the Lagrangian density

LNJL = q̄( iγµ ∂µ − m)q

+ gS

8

∑
a=0

[ ( q̄λa q)2 + ( q̄ iγ5 λa q)2 ] (12)

+ gD {det [q̄i (1+ γ5)q j]+det [q̄i (1− γ5)q j]},

where q = (u,d,s) are the quark fields and λa (0 ≤ a ≤ 8)
are the U(3) flavor matrices. The model parameters are: m =
diag(mu ,md ,ms ), the current quark mass matrix (md = mu),
the coupling constants gS and gD and the cut-off in three-
momentum space, Λ. The NJL model is valid only for quark
momenta smaller than the cut-off Λ.

The baryonic thermodynamical potential density is given
by

ΩB =−PB = EB−T SB −∑
i

µiρi−Ω0, (13)
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FIG. 3: Neutron and electron chemical potentials for S = 0 within
the NJL model.

where the energy density is

EB = − 2Nc ∑
i

∫ d3 p
(2π)3

p2 +miMi

Ei
×

[(ni−−ni+)θ(Λ2− p2)]

− 2gS ∑
i=u,d,s

〈q̄iqi〉2−2gD〈ūu〉〈d̄d〉〈s̄s〉

− E0 (14)

and the entropy density is

SB = − 2Nc ∑
i=u,d,s

∫ d3 p
(2π)3 θ(Λ2− p2)×

[[ni+ln(ni+)+(1−ni+)×
ln(1−ni+)]+ [ni+ → ni−]]. (15)

In the above expressions Nc = 3, T is the temperature, µi (ρi)
is the chemical potential (density) of particles of type i and E0
and Ω0 are included in order to ensure E = Ω = 0 in the vac-
uum. This requirement fixes the density independent part of
the EoS. n(∓)

i are the Fermi distribution functions of the neg-
ative (positive) energy states. Minimizing the thermodynam-
ical potential Ω with respect to the constituent quark masses
Mi leads to three gap equations for the masses Mi

Mi = mi −4gS 〈q̄i qi〉 − 2gD 〈q̄ j q j〉〈q̄k qk〉 , (16)

with cyclic permutations of i, j, k.
In a star with quark matter both beta equilibrium and charge

neutrality [26] are normally required. For β-equilibrium mat-
ter we must add the contribution of the leptons as free Fermi
gases (electrons and muons) to the energy density, pressure
and entropy density. The relations between the chemical po-
tentials of the different particles are then given by

µs = µd = µu +µe, µe = µµ. (17)

For charge neutrality we must impose

ρe +ρµ =
1
3
(2ρu−ρd −ρs). (18)
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FIG. 4: Solutions for electrically charged hadronic stars with different values of f .
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FIG. 5: Solutions for electrically charged hybrid stars with different values of f .
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FIG. 6: Solutions for electrically charged quark stars obtained with the MIT bag model for different values of f .

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 6  6.5  7  7.5  8  8.5  9

M
 
(
M

o
)

R (km)

s=0

a)f=0
f=0.0002
f=0.0004

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 6  6.5  7  7.5  8  8.5  9

M
 
(
M

o
)

R (km)

s=1

b)f=0
f=0.0002
f=0.0004

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 6  6.5  7  7.5  8  8.5  9

M
 
(
M

o
)

R (km)

s=2

c)f=0
f=0.0002
f=0.0004

FIG. 7: Solutions for electrically charged quark stars obtained with the NJL model for different values of f .
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In the present work we have also desconsidered the usual
hypothesis of charge neutrality and beta equilibrium by not
adding any leptons and, in this case, the system becomes nat-
urally charged. We refer to the charged EoS as NJL*. In Fig.
1 both EoS are displyed. The main effects appear at interme-
diate energy densities.

In Figs. 2 and 3 ρ is the total baryonic density and ρ0 is its
value at the nuclear matter saturation point. We investigate the
strangeness content (Ys = ρs/ρ) of both EoS in Fig. 2, from
where we can see that strange quarks appear at much higher
densities in a charged star. This is due to the fact that it has a
mass much larger than the u and d quarks and since no charge
neutrality or β-equilibrium are imposed, it does not have to
artificially appear to compensate for the electric charge and/or
the electron chemical potential. The chemical potentials of
both models are shown in Fig. 3. In the usual NJL model
the quark chemical potentials are defined as µq = µn/3−eqµe,
where µn is the neutron chemical potential and eq the elec-
tric charge of each quark. The electron chemical potential is
only present in the charge neutral EoS. Hence, in the NJL*, as
no electrons are introduced, all quark chemical potentials are
identical, as seen also from eq.(17), but the Fermi momenta
remain different because they depend on the quark masses as
well. Information on the net electric charge can be read off
Figs. 2 and 3.

III. RESULTS AND CONCLUSIONS

Let’s now go back to the stellar matter properties in order
to compare them with what is found in the literature and draw
the conclusions. In Table I we show, for each EoS investigated
and different values of f , the maximum stellar mass, the mass
at infinity, the radius, the central energy density and the elec-
tric charge the star can hold. Notice that Mmax stands for the
maximum value of a family of stars in each of the curves dis-
played while Mtot refers to the mass when the electric charge
is included in an ad hoc way, as seen in eq.(6). All the cor-
responding curves for the mass versus radius are plotted in
Figs. 4-7. The general trend is the same observed in a sim-
ple polytropic EoS for T = 0 [22], i.e., the electric charge,
the maximum mass and the mass observed at infinity increase
with f , as it should be. Although the EoS used in the present
work are very different from the one used in [22] the values
of the radii obtained and the electric charge for a fixed f value
are compatible. Figs. 4, 5, 6 and 7 also show the same be-
havior as fig. 2 of [22], i.e., as f increases, the maximum
mass and radius of a family of stars increase. The EoS used in
the present work are for bare pulsars, i.e. the crust is not in-
cluded. From table I one can see that the effect of entropy on
a charged star remains the same as in a neutral star: the max-
imum masses and the radii decrease with the increase of the
entropy for hadronic and quark stars within the NJL model.
For hybrid and MIT stars the behavior is not so well defined.

We now turn to the comparison of the quark star properties
obtained both with the neutral NJL model with electric charge
included by hand and its charged version. The mass radius
graph is shown in Fig. 8 for S = 0. One can see that the max-
imum mass of the naturally charged star appears in between
stars with f = 0.006 and f = 0.007, a quite high factor that
corresponds to a reasonably large electric charge. The radius
of the naturally charged star is a bit larger than their coun-
terparts but the values are within the expected range. This
study has shown that the ad hoc assumption that the charge is
distributed in a rate proportional to its energy density does, af-
ter all, contain some correct physics. The conclusions drawn
for the NJL model are general and are also valid for naturally
charged hadronic and hybrid stars. It is worth emphasizing
that we do believe that the presence of leptons are mandatory,
at least in the outmost layer of the star since electron-positron
pairs do escape from pulsars and are detected by astronomers.
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FIG. 8: Solutions for electrically charged quark stars obtained with
the NJL model for different values of f and the corresponding
charged version.

In the present work we have investigated one possible vari-
ation on the usual electrically neutral pulsars: the electric
charge is included in an ad hoc way. We have observed
that the behaviors shown in previous works with much sim-
pler EoS were also observed here. The influence of the tem-
perature was also investigated by means of fixed entropy per
baryon. The charge effect does not alter previous conclusions
related to the mass and radius behavior of protoneutron stars
with larger entropy [8, 10].
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TABLE I: Electrically compact stars with different charge fraction f .

Type Entropy f Mmax M∞ R εc Q
(M¯) (M¯) (km) (g/cm3) (C)

Hadronic 0 0 2.04 2.04 11.72 1.98×1015 0
Hadronic 0 0.0002 2.08 2.10 11.84 1.94×1015 7.97×1019

Hadronic 0 0.0004 2.22 2.28 12.18 1.84×1015 1.71×1020

Hadronic 0 0.0006 2.50 2.66 12.73 1.75×1015 2.91×1020

Hadronic 1 0 1.96 1.96 11.02 2.23×1015 0
Hadronic 1 0.0002 2.00 2.02 11.15 2.13×1015 7.69×1019

Hadronic 1 0.0004 2.13 2.19 11.44 2.04×1015 1.64×1020

Hadronic 1 0.0006 2.39 2.55 12.01 1.85×1015 2.78×1020

Hadronic 2 0 1.93 1.93 10.91 2.24×1015 0
Hadronic 2 0.0002 1.97 1.98 11.01 2.19×1015 7.55×1019

Hadronic 2 0.0004 2.09 2.15 11.26 2.15×1015 1.61×1020

Hadronic 2 0.0006 2.34 2.50 11.86 1.90×1015 2.72×1020

hybrid 0 0 1.64 1.64 12.33 1.57×1015 0
hybrid 0 0.0002 1.68 1.69 12.43 1.57×1015 5.98×1019

hybrid 0 0.0004 1.82 1.86 12.82 1.48×1015 1.31×1020

hybrid 0 0.0006 2.13 2.23 13.52 1.39×1015 2.31×1020

hybrid 1 0 1.50 1.50 11.32 1.75×1015 0
hybrid 1 0.0002 1.54 1.55 11.43 1.71×1015 5.44×1019

hybrid 1 0.0004 1.67 1.70 11.74 1.66×1015 1.19×1020

hybrid 1 0.0006 1.94 2.03 12.34 1.58×1014 2.10×1020

hybrid 2 0 1.50 1.50 11.76 1.58×1015 0
hybrid 2 0.0002 1.54 1.55 11.86 1.58×1015 5.41×1019

hybrid 2 0.0004 1.68 1.71 12.21 1.53×1015 1.18×1020

hybrid 2 0.0006 1.95 2.04 12.86 1.44×1014 2.10×1020

Quarkonic(MIT) 0 0 1.22 1.22 6.77 5.14×1015 0
Quarkonic(MIT) 0 0.0002 1.25 1.26 6.81 5.13×1015 4.75×1019

Quarkonic(MIT) 0 0.0004 1.33 1.37 6.97 4.95×1015 1.02×1020

Quarkonic(MIT) 0 0.0006 1.50 1.60 7.28 4.56×1015 1.74×1020

Quarkonic(MIT) 1 0 1.22 1.22 6.76 5.17×1015 0
Quarkonic(MIT) 1 0.0002 1.25 1.26 6.82 5.07×1015 4.75×1019

Quarkonic(MIT) 1 0.0004 1.33 1.37 6.98 4.88×1015 1.02×1020

Quarkonic(MIT) 1 0.0006 1.50 1.60 7.29 4.50×1015 1.74×1020

Quarkonic(MIT) 2 0 1.23 1.23 6.79 5.08×1015 0
Quarkonic(MIT) 2 0.0002 1.25 1.26 6.83 5.09×1015 4.77×1019

Quarkonic(MIT) 2 0.0004 1.34 1.37 6.98 4.94×1015 1.03×1020

Quarkonic(MIT) 2 0.0006 1.50 1.60 7.31 4.49×1015 1.74×1020

Quarkonic(NJL) 0 0 1.20 1.20 7.87 3.45×1015 0
Quarkonic(NJL) 0 0.0002 1.23 1.23 7.93 3.45×1015 4.42×1019

Quarkonic(NJL) 0 0.0004 1.32 1.34 8.14 3.30×1015 9.54×1019

Quarkonic(NJL) 0 0.0006 1.49 1.57 8.48 3.20×1015 1.64×1020

Quarkonic(NJL) 1 0 1.17 1.17 7.71 3.68×1015 0
Quarkonic(NJL) 1 0.0002 1.19 1.20 7.79 3.56×1015 4.32×1019

Quarkonic(NJL) 1 0.0004 1.28 1.31 8.00 3.50×1015 9.31×1019

Quarkonic(NJL) 1 0.0006 1.45 1.53 8.31 3.38×1015 1.60×1020

Quarkonic(NJL) 2 0 1.10 1.10 7.18 4.58×1015 0
Quarkonic(NJL) 2 0.0002 1.13 1.13 7.29 4.34×1015 4.09×1019

Quarkonic(NJL) 2 0.0004 1.20 1.23 7.42 4.40×1015 8.23×1019

Quarkonic(NJL) 2 0.0006 1.36 1.43 7.80 3.98×1015 1.50×1020


