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Quantum Well Systems: Effect of Magnetic Field
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Donor binding energies in quantum well systems using position dependent effective masses are obtained.
Results are provided for GaAs-Ga1−xAlxAs and the semimagnetic CdTe-Cd1−x MnxTe systems. In the latter
the barrier height reduces in a magnetic field. Using the available experimental data the variations of the barrier
height with magnetic field has been obtained using a simple model. Our results are in good agreement with
similar works in the literature in the case of constant effective mass for the donor electron. However, in the case
of the semi magnetic system and in the case of the position dependent effective mass, the results obtained are
shown to be appreciably different for narrow well dimensions. The validity of the effective mass approximation
in the case of applied magnetic field is also critically examined.
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I. INTRODUCTION

The effective mass theory (EMT) [1] enunciated by Kohn
and Luttinger is very useful in the study of impurity states
in semiconductors. Apart from many valley semi conductors
[2,3] such as Si, Ge, GaP etc. in almost all situations this
theory is used in interpreting the rich electrical and optical
data. This theory in its simplest form assumes a hydrogen
like donor atom immersed in a dielectric background. The
energy eigenvalues of such a system can be obtained using
a potential V (r)=e/ε(r)r where ε(r) is the static dielectric
screening function and r is the distance between the donor
ion and electron. Since the static dielectric constant ε and
the effective mass m∗ at the bottom of conduction band are
around 10 and 0.1 m0 respectively (m0 is free electron mass)
for a typical semiconductor, the impurity orbits are quite large,
∼100 Å. Hence the screening function may be replaced by a
static dielectric constant in the potential energy term of the
Hamiltonian. This theory rests on two basic approximations
[1]:

1) Eiona/∆E∗a << 1 where Eion is donor ionization en-
ergy, ∆E is the average separation between two bands, a
the lattice constant, a∗ the effective Bohr radius defined as
a∗ = ε~2/m∗e2, and
2)|κ|/κBZ = a/6.2a∗ << 1 where |κ| is approximately equal
to 1/a∗ and κBZ is the wave vector of the radius of the Bril-
louin zone approximating the real Brillouin zone of the sys-
tem, which is 3

√
24π2/a3 = 6.2/a

Low dimensional semiconductor systems have attracted
considerable attention in the last two decades. After the path-
breaking work of Bastard [4], several researchers have con-
tributed to the understanding of the optical and electronic
properties of impurities in quantum well (QW) systems. This
includes quantum well wires, quantum dots and superlattices.
Several novel superlattice systems have been fabricated and
rich interesting physics has come out of such studies [5,6].
In a QW system when the well dimension is much smaller
than the donor effective Bohr radius, the EMT requires close
scrutiny, since the potential varies rapidly at the barriers. In
almost all studies so far the EMT has been used even for well

dimensions of the order of a mono layer or so (< 10 Å). Inter-
estingly, the quantum effects such as the quantum size effect
manifest under strong confinement, which requires well di-
mensions ranging from 10 Å to about 200 Å or so. Hence
applications of the EMT to such confined systems require a
critical analysis.

Several works have appeared testing the validity of the ef-
fective mass approximation (EMA) in the past. Either they
suggest reformulation or lead to more numerical procedures
unsuitable for the interpretation of experimental data [7-9].

In the present work we have considered a donor electron
in a QW subjected to an external magnetic field. The donor
binding energies are calculated within the EMA by following
a variational procedure. We have considered quantum wells
(QWs) of the semimagnetic semiconductor system also. The
variations of the barrier height with magnetic field are con-
sidered using a simple model presented in [10]. The above
calculations were repeated using position dependent effective
mass (PDEM) as suggested in [11]. Finally the application of
the EMT to the QW case is critically examined in section V.

The paper is organized as follows. In section II we present
the theoretical framework. PDEM will be presented in sec-
tion III and a brief discussion of semimagnetic semiconduc-
tors will be given in section IV. We give our results and dis-
cussion in section V. Main conclusions are summarized in sec-
tion VI.

II. THEORETICAL FRAMEWORK

A. Infinite well model

The Hamiltonian for a donor impurity in the presence of a
magnetic field applied along the z-direction in a square QW is
given by

H =
(

1
2m∗

)(
P+

eA
c

)2

− e2

εr
+VW (z) (1)

where m∗ is the effective mass of the donor electron, A the
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TABLE I: Material parameters for non -magnetic and magnetic quan-
tum wells+

.

 

 

 
                    Material 

 

Parameter 

GaAs- 

Ga1-xAlxAs  

CdTe- 

Cd1-x MnxTe 

Symbol Unit 

Lattice Constant 

 

5.69 6.48 a Å 

Static Dielectric 

Constant 

12.65 10.9 !  - 

Effective Mass 

of the Electron 

0.067 m0 0.096 m0 m* a.u 

 

Effective Bohr 

radius of the 

Electron 

188.806 113.542 a* a.u 

 
+  

Data from Ref. [10] & [11]      

 

vector potential and ε the dielectric constant of the well mate-
rial. The values of the material parameters for non -magnetic
and magnetic QWs are given in Table 1.

The confining potential is given by

VW (z) = 0 |z| ≤ L
2

= ∞ |z|> L
2

(2)

Here L is the size of the QW.
After introducing the effective Rydberg R∗ = m∗e4/2~2ε2

as the unit of energy and effective Bohr radius a∗ = ~2ε/m∗e2

as the unit of length, the above Hamiltonian takes the new
form

H1 =−∇2 + γLz +
γ2ρ2

4
− 2

r
+

VW (z)
R∗

(3)

Here γ = ~ω/2R∗ is a dimensionless quantity. For GaAs,
γ=1 corresponds to approximately 6 Tesla. The contribution of
the second term vanishes for the ground state. We follow the
variational procedure to obtain the ground state energy [12].
The ground state wave function of the above Hamiltonian can
be written as

ψ1 = N1e−αρ2
e−βz2

cos
(πz

L

)
|z| ≤ L

2
(4)

where α and β are variational parameters and N1 is normal-
ization constant. Yafet et al. used the product Gaussian with
two parameters for bulk semiconductors [13]. This form was
shown to be accurate for γ > 1 Several subsequent works also
employ the form given in Eq. (4) for QW systems with great
success [14].

Minimizing < H1min > with respect to α and β, the ion-
ization energies for various magnetic fields can be calculated
using the following formula

Eion = ESub + γ−< H1min > (5)

ESub is the sub band energy in the presence of a magnetic field,
which can be calculated when the impurity potential is absent
in Eq.(3). Since the zero of energy fixed at the bottom of the
well is shifted above by Landau energy ~ωc/2 (which is γ
expressed in R∗) and the subband energy, Eion is obtained as
in Eq. (5).

B. Finite well model

The confining potential is given by

VW (z) = 0 |z| ≤ L
2

= V |z|> L
2

(6)

Here V is the barrier height of the QW. GaAs-Ga1−xAlxAs -
being a non-magnetic material, the barrier height doesn’t vary
with the applied magnetic field. CdTe-Cd1−xMnxTe being a
semimagnetic material, the barrier height varies with the ap-
plied magnetic field. In any QW of a magnetic material, the
barrier height decreases with applied magnetic field for one
spin orientation [10].

The ground state wave function of the above Hamiltonian
can be written as,

ψ2 = N2e−αρ2
e−βz2

cos(δz) |z| ≤ L
2

= N3e−αρ2
e−βz2

e−ξ|z| |z| ≥ L
2

(7)

Here

δ =

√
2m∗E
~2 and ξ =

√
2m∗ (V −E)

~2 (8)

where α and β are variational parameters; N2 and N3 are
normalization constants. The ionization energies for various
magnetic fields can be calculated using Eq. (5).

III. POSITION DEPENDENT EFFECTIVE MASSES

In the infinite barrier model, since tunneling is not allowed,
we use

1/m∗(L) = 1/m∗+(1−1/m∗)exp[−λL] (9)

where m∗ is the effective mass in the well (0.067m0 if the
well is GaAs material and 0.096 m0 if the well is CdTe ma-
terial). Free electron mass m0 = 1 in a.u and λ is a constant
which we choose to be 0.01 (Å−1). This choice is chosen
keeping in mind the fact that as L→ 0 the particle is strongly
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bound within a δ - function well, wherein there is no period-
icity (in the z-direction), whereas as L → ∞, the system is 3-
dimensional (i.e. bulk) characterized by the conduction band
effective mass m∗. A choice λ−1 ≤ a∗ looks reasonable.

When the Barrier height is finite, which is always true in all
practical situations, in addition to the mass correction given
by Eq. (9), another contribution becomes essential. Since the
carrier can tunnel through the barrier, the barrier mass should
also be considered. We suggest

1/m∗(z) = A(1−Bz2) (10)

where A is as given by the RHS of Eq. (9), B = ∆/L2 and L is
the size of the well. ∆ is as given below.

The position dependent effective mass used in Ref [15,
16] is given by m∗

1(z) = g(z)m∗
1 = a + bz2 where g(z) =

1+0.4018z2/L2.
It is shown that the contribution by PDEM is less than

1meV.We point out two draw backs of this mass variation.
(1) Either in the infinite barrier model or in a realistic sit-

uation when x is large like 0.4, the probability of finding an
electron at the boundary of the well is zero. Hence the above
variation does not represent this situation eventhough the au-
thors of Ref [15, 16] use x=0.32.

(2) Unlike their claim in Ref [15] that the effective mass
tends to the bulk value when L → 0 and as L → ∞, we notice
that in the limit L → 0 the effective mass becomes infinity
which is un physical. However in this limit for a finite barrier
problem, due to tunneling the effective mass should be that of
the barrier. To overcome these draw backs we have suggested
the mass variation as in Eq. (10).

The derivation of position dependent effective mass
[1/m(z)] of Eq. (10) is as given below. The effective mass
of the electron in the well can be written as

1/m∗(z) = a+bz2 (11)

Appling the boundary conditions
(i) when z = 0, 1/m∗(0) becomes ‘a’ which is equal to

1/m∗
w given by Eq. (9).

(ii) when z = L,1/m∗(L) becomes 1/m∗w+ bL2. We know
that the mass at z = L is 1/m∗

b, which is the barrier mass that
depends on x. The value of b is 1/L2

[
1/m∗

b−1/m∗
W

]
. The

effective mass of GaAs in the barrier varies with composition
as m∗b (x)= 0.067+0.0835 x for 0≤ x≤ 0.4.

Eq.(11) is modified as

1
m∗ (z)

=
1

m∗
W
− z2

L2

(
1

m∗
W
− 1

m∗
b

)

=
1

m∗
W

[
1− z2

L2

(
0.0835 x

m∗
W

)]

=
1

m∗
W

[
1− ∆z2

L2

]
(12)

where ∆ = 0.0835 x/m∗
wππ 1 for GaAs-Ga 1−xAl xAs system.

In the present work we extend our earlier work [11] to the
case of CdTe-Cd1−xMnxTe, which is a semimagnetic material.
The effective mass of CdTe in the barrier region varies with
composition as, m∗

b(x) = 0.096 + 0.067x for 0 ≤ x ≤ 0.7 for
CdTe-Cd1−xMnxTe system.

Eq. (12) is valid with ∆ = 0.067x/m∗
wππ 1 and we have

chosen x=0.2 for both the systems.
After simplifying the expression for ∆, we obtain ∆= 0.2

and 0.123 for GaAs-Ga1−xAlxAs and CdTe-Cd1−xMnxTe QW
systems respectively. The present results of mass variation are
compared with the one used in Ref [15, 16] as given in Fig. 1.

 

 

0.04

0.08

0.12

0.16

0.2

0 50 100 150 200

z variable(Å)

m
*(

z)
 (

a.
u

)

our model for L=100 Å

Qi model and L=100Å 

Our model andL=1000 Å

Qi model and L=1000 Å

 

 

 

 

 

 

 

 

 

 

FIG. 1: Variation of effective mass in the well region for two different
models.

In the present work, our aim is to check whether the use
of a PDEM affects the donor ionization energy or not. The
effects of such a PDEM on the donor binding energies in the
presence of an external perturbation such as a magnetic field,
that is applied along the growth direction of QW, is discussed
using perturbation method for infinite and finite barrier con-
finements.

The perturbation for infinite QW is chosen as

H1 =−~
2

2

(
1

m∗ (L)
− 1

m∗
w

)
∇2

and for finite QW,

H1 =−~
2

2

(
1

m∗ (z)
− 1

m∗
w

)
∇2.

We replace

1
2

(
1

m∗ (z)

)
∇2

as

1
4

[
1

m∗ (z)
∇2 +∇2 1

m∗ (z)

]
.

The expressions for (1/m∗ (L)) and 1/m∗ (z) are as given in
Eqs. (9) and (10).

The effect of the position dependent effective mass on sub-
band energy and ionization energies are obtained by perturba-
tion method. The first order energy corrections are given by
∆E(1) = 〈Ψ,H1Ψ〉, where Ψ is the ground state wave function
given by Eq.(4) for infinite barrier and Eq.(7) for finite barrier
QW.
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IV. SEMIMAGNETIC SEMICONDUCTORS

Diluted magnetic semiconductors are semiconductor com-
pounds in which some cations are randomly substituted by
magnetic ions. The most widely studied alloys are II-VI semi-
conductors containing manganese, particularly Cd1−xMnxTe.
This (wide gap semiconductor) diluted magnetic quantum
well system has received immense attention due to the in-
teresting properties arising from the strong exchange inter-
action between the magnetic ions and the carriers of con-
duction and valence bands. One of the interesting prop-
erties of the semi magnetic semiconductor is the barrier
height decrease in a magnetic field. The variation of
the band gap difference with magnetic field is given by
[17]

(
∆EB

g /∆E0
g
)

= ηe−ξγ−1/η−1 where ∆EB
g and ∆E0

g
are the band gap differences with and without magnetic
field . The band gap of the material is given by [18]
Eg(Cd1−xMnxTe)=1606+1587x(meV). Using the experimen-
tally available critical magnetic fields at which Type I to Type
II superlattice transition occurs for acceptors, the results for
the donors may be obtained by using the procedure as given
in [10]. Fig. 2 shows the variation of barrier height with mag-
netic field.

 

 

 

 

 

 

 

 

0

50

100

150

200

250

0 1 2 3 4 5 6

Gamma

B
a
rr

ie
r 

h
e
ig

h
t(

m
e
V

)

CdTe-Cd(1-x)Mn(x)Te

 

 

 

 

FIG. 2: Variation of barrier height with magnetic field [Ref.10].

V. RESULTS AND DISCUSSION

The variation of ionization energy with magnetic field in the
infinite well model for non-magnetic QW is shown in Table 2.
We conclude that the ionization energy increases with mag-
netic field for all well dimensions. This result is in agreement
with other works [18, 19]. But at the same time the ionization
energy due to PDEM is always greater than the ionization en-
ergy due to constant effective mass for all well dimensions
L≤ a∗. We found similar enhancements in an electric field in
our earlier work [20]. The ionization energies of Ref [18, 19]
are somewhat lower than our results. This is due to the neglect
of the magnetic field effect on the subband energies in those
references.

The results for the variation of subband energy for a finite
barrier magnetic quantum well, in the presence of magnetic
field, shows that the subband energy decreases as the well size

increases, which is a consequence of quantum size effect. The
PDEM drastically reduces the subband energy up to L=100 Å
for all applied magnetic fields. It also follows that the effect
of PDEM is unimportant when the well dimension is greater
than the effective Bohr radius.

We have also seen how the subband energy varies with
well size in the presence of a magnetic field in a finite non
–magnetic QW. In general, the PDEM affects the subband en-
ergies for narrow wells such that L ≤ a ∗ . Also the subband
energy decreases in the presence of PDEM.
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FIG. 3: Variation of ionization energy with well size-finite barrier
model.

Figure 3 shows the results of the variation of ionization en-
ergy of non –magnetic QW with finite barrier, in the presence
of two different magnetic fields. In the case of strong applied
magnetic field, we observe that the ionization energy due to
m ∗ (z) is greater than the ionization energy due to constant
effective mass.
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FIG. 4: Variation of subband energy with magnetic field for
L=100 Å.

Figure 4 shows the variation of sub band energy with mag-
netic field for the finite non –magnetic QW having the dimen-
sion of 100 Å for constant effective mass and PDEM. The
effect of PDEM on the sub band energy is appreciable.

The variation of ionization energy with well size for the in-
finite magnetic QW for two different effective masses has also
been studied. Here also PDEM affects the energy for narrow
wells. We present our results of the variation of ionization en-
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TABLE II: Variation of effective mass in the well region for two different models.

 

 

Table 2. Donor ionization energies (meV) in a non-magnetic quantum well in magnetic 

field-infinite barrier model 
# 

 

 
#   In all cases I and II refer to m* =0.067 a.u and m*(z) respectively. 
 

Table 3. Validity of EMT for an isolated non- magnetic infinite quantum well in different   

magnetic fields 
$
   

 

 

$     I  and II are as in Table2.;      #    Eion (!)=
a

e

2

2

   

 

L (Å) 
 

50 100 200 300 500 

! 

I II I II I II I II I II 

2 34.49 37.84 31.81 32.77 28.51 28.59 26.49 26.50 24.31 24.40 

5 59.94 63.39 55.94 60.94 51.07 51.15 48.25 48.25 45.49 45.46 

7 75.45 79.03 70.66 71.64 64.93 65.04 61.71 61.74 58.74 58.72 

10 97.58 100.20 91.72 92.75 84.89 85.01 81.25 81.54 78.07 78.07 

                                E2 sub  

                                (meV) 

                  
LE

aEion γγ
2,1

*
  # 

           γ =2           γ =5         γ =10          γ =0       γ =2        γ =5      γ =10 

Well 

size 

       

(Å) 
I II I II I II I II I II I II I II 

50 908.65 579.54 925.72 593.51 954.17 616.79 0.017 0.026 0.017 0.027 0.017 0.027 0.017 0.027 

100 235.70 203.06 252.77 218.92 281.22 245.36 0.034 0.039 0.034 0.039 0.034 0.039 0.034 0.039 

200 67.46 66.13 84.53 83.02 112.98 111.17 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 

500 20.35 20.35 37.42 37.42 65.87 65.87 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 
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Table1. Material parameters for non -magnetic and magnetic quantum wells
+
. 

 

 
                    Material 

 

Parameter 

GaAs- 

Ga1-xAlxA  

CdTe- 

Cd1-x MnxTe 

Symbol Unit 

Lattice Constant 

 

5.69 6.48 a Å 

Static Dielectric 

Constant 

12.65 10.9 $  - 

Effective Mass 

of the Electron 

0.067 m0 0.096 m0 m* a.u 

 

Effective Bohr 

radius of the 

Electron 

188.806 113.542 a* a.u 

 
+  

Data from Ref. [10] & [11]      

 

 

FIG. 5: Variation of ionization energy with well size in the finite
barrier model for CdTe-Cd(1-x)Mn(x)Te system.

ergy in a finite magnetic QW in the presence of magnetic field
for two different masses in Fig. 5. A similar trend is observed.

The variation of sub band energy with well size for the in-
finite magnetic QW in the absence of magnetic field has also
been investigated. The effect of PDEM is low for well dimen-
sions L≤ a∗.

In the QW case the applicability of EMT requires the fol-
lowing criterion has to be satisfied. Since Eion/∆E1,2 should
be << 1, where ∆E1,2 is the separation between the first two
subbands and a∗/L should also be less than 1, we obtain the
following criterion: Eiona∗/∆E1,2L << 1.

To calculate the energy of the first excited sub band, we
have chosen a wave function

ψ3 = N4e−αρ2
e−βz2

sin
(

2πz
L

)
|z| ≤ L

2
in the infinite well case,

ψ4 = N5e−αρ2
e−βz2

sin(δz) |z| ≤ L
2

= N6e−αρ2
e−βz2

e−ξ|z| |z| ≥ L
2

in the finite well case

and followed the variational method [12] to obtain the energy.
These wave functions may be easily seen to be orthogonal to
the ground state subband wave functions, Eqs. (4) and (7).
The obtained results are summarized in Table 3 and Table 4.
In all cases, as can be seen from these tables, the EMT is not
violated irrespective of whether one uses the constant effective
mass or a PEDM.

The second criterion for the validity of EMT, as given in
the introduction, demands |κ|/κBZππ 1. This condition is
automatically satisfied for shallow donors in bulk semicon-
ductors, since a/a∗ππ 1. However, in superlattice systems
one may have to consider mini Brillouin zones for which
κBZ ∼= π/L, where L is the super lattice period. Hence the
criterion |κ|/κBZ ∼= L/πa∗π 1, for GaAs, would mean

L π 300Å. However, in the case of an isolated quantum well,
which alone is considered in the present work, this criterion
coincides with the above, as in bulk.

VI. CONCLUSIONS

In this work, we have considered the effects of PDEM and
magnetic field in the estimation of donor ionization energies
of GaAs-Ga1−xAlxAs and CdTe-Cd1−xMnxTe quantum wells
with two different confinements. The PDEM leads to appre-
ciable contributions to the donor ionization energies for nar-
row wells. Since the contributions are larger, we verify the
validity of EMT in all cases studied. We do not find any vio-
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TABLE III: Validity of EMT for an isolated non-magnetic inifinite quantum well in different magnetic fields$.

 

 

Table 2. Donor ionization energies (meV) in a non-magnetic quantum well in magnetic 

field-infinite barrier model 
# 

 

 
#   In all cases I and II refer to m* =0.067 a.u and m*(z) respectively. 
 

Table 3. Validity of EMT for an isolated non- magnetic infinite quantum well in different   

magnetic fields 
$
   

 

$     I  and II are as in Table2.;      #    Eion (!)= (((( ))))γε ∗∗∗∗a

e

2

2

   

 

 

L (Å) 
 

50 100 200 300 500 

! 

I II I II I II I II I II 

2 34.49 37.84 31.81 32.77 28.51 28.59 26.49 26.50 24.31 24.40 

5 59.94 63.39 55.94 60.94 51.07 51.15 48.25 48.25 45.49 45.46 

7 75.45 79.03 70.66 71.64 64.93 65.04 61.71 61.74 58.74 58.72 

10 97.58 100.20 91.72 92.75 84.89 85.01 81.25 81.54 78.07 78.07 

                                E2 sub  

                                (meV) 

                  
(((( )))) (((( ))))

(((( ))))LE

aEion

γ
γγ

2,1

*

∆
  # 

           γ =2           γ =5         γ =10          γ =0       γ =2        γ =5      γ =10 

Well 

size 

       

(Å) 
I II I II I II I II I II I II I II 

50 908.65 579.54 925.72 593.51 954.17 616.79 0.017 0.026 0.017 0.027 0.017 0.027 0.017 0.027 

100 235.70 203.06 252.77 218.92 281.22 245.36 0.034 0.039 0.034 0.039 0.034 0.039 0.034 0.039 

200 67.46 66.13 84.53 83.02 112.98 111.17 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 

500 20.35 20.35 37.42 37.42 65.87 65.87 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 

TABLE IV: Validity of EMT for an isolated non-magnetic finite quantum well in different magnetic fields∗.

 

 

Table 4.Validity of EMT for an isolated non- magnetic finite quantum well in 

              different magnetic fields * 

 

 

*   I and II are as in Table2. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                  E2 sub  

                                   (meV) 
         

(((( )))) (((( ))))
(((( ))))LE

aE
ion

γ
γγ

2,1

*

∆
   

       γ =0          γ =2         γ =5        γ =0    γ =2        γ =5 

Well 

size 

       

(Å) 
I II I II I II I II I II I II 

100 108.54 99.05 119.67 94.01 136.74 115.92 0.072 0.079 0.072 0.086 0.072 0.082 

200 39.32 38.24 50.58 46.52 67.65 64.03 0.097 0.101 0.097 0.104 0.097 0.102 

500 7.78 7.68 19.14 18.66 36.21 35.55 0.195 0.198 0.196 0.202 0.196 0.206 

lation of EMT in isolated QW cases. The effect of PDEM on
the critical concentrations of donors for Metal-Insulator Tran-
sition (MIT) in QW systems will form the basis for another
publication.

We hope that the present work will be useful in interpret-
ing all the experimental data relevant to optical and electronic
properties of doped QW systems as the EMT is vigorously
tested and found to be valid.
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