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Effects of Multiplicative Colored Noise on Bacteria Growth
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We use the logistic growth model to describe the bacterium growth in the presence of a Gaussian colored
noise. The effects of multiplicative colored noise on the steady state probability distribution of the bacterium
growth were investigated. Our results show that increasing the strength of the multiplicative colored noise may
lead to decreasing bacterium number and even bacterium extinction. Our studies also indicate that increasing
the correlate time of the noise may facilitate the bacterium growth to some extent.
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I. INTRODUCTION

Recently, nonlinear stochastic systems with noise terms
have attracted extensive investigations and the concept of
noise-induced transition has wide applications in some fields,
such as physics, chemistry, and biology [1-4]. Usually, in
these systems, the noise affects the dynamics through a system
variable, i.e., the noise is both multiplicative and additive [5].
The focal theme of these investigations is to study the steady
state properties of systems in which fluctuations, generally ap-
plied from outside, are considered independent of the system’s
characteristic dissipation. In a previous work [6], we studied
the steady state properties of the logistic growth model in the
presence of the correlated white noises. However, in some
cases, the noise may be colored, for example, Masoliver and
co-workers [7] investigated the mean first-passage time for a
bistable system driven by Gaussian colored noise.

There are several mathematical functions for describing
microbial growth curves, such as three-phase linear, logis-
tic, Gompertz, Von Bertalanffy, Richards, Morgan, Weibull,
France and Baranyi function [8]. A new logistic model
for bacterial growth successfully described sigmoidal growth
curves of Escherichia coli at various initial cell concentra-
tions and constant temperatures [9]. The model predicted
well the bacterial growth curves, similar to the Baranyi model
and better than the modified Gompertz model [9]. The im-
proved model has the potential to successfully predict micro-
bial growth [10].

In this paper, we study the bacterial growth in the presence
of a colored noise. We emphasize on finding how the colored
noise effects the bacterial growth.

II. THE BACTERIUM GROWTH MODEL

The logistic growth model has been used in many cases as a
basic model of both cell growth and, more particularly, tumor
cell growth [11]. In this paper, we consider bacterium growth.
The logistic differential equation is

dx
dt

= ax−bx2, (1)

where x is the bacterium number, a the growth rate, and b the

decay rate. We consider effects due to some external factors
such as temperature, pH, energy, water activity, etc. These
factors can influence the bacterium number directly as well as
alter the bacterium growth and decay rate. In other words, the
fluctuation of these factors affects the parameter a and b, gen-
erating multiplicative colored noise. Providing the bacterium
growth rate fluctuates, we obtain

dx
dt

= ax−bx2 + xQ(t) , (2)

where Q(t) is a Gaussian colored noise with the following
properties:

〈Q(t)〉= 0, (3)

〈
Q(t)Q(t ′)

〉
=

α
τ

e−
|t−t′|

τ , (4)

where α is the strength of the noise, τ is the correlation time
of the noise.

In the other case, when the bacterium decay rate fluctuates,
we obtain

dx
dt

= ax−bx2− x2H(t), (5)

where H(t) is a Gaussian colored noise with the following
properties:

〈H(t)〉= 0, (6)

〈
H(t)H(t ′)

〉
=

D
τ

e−
|t−t′|

τ , (7)

where D is the strength of the noise, τ the correlation time of
it.
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III. STEADY STATE ANALYSIS AND RESULTS

Since the bacterium number x can not be negative, based
on the method in [12, 13] we can obtain the Fokker-Planck
equation for the evolution of steady probability distribution
function (SPDF) corresponding to Eq. (2) under the constraint
x≥ 0. The equation is [12,13]

∂P(x, t)
∂t

=− ∂
∂x

A(x,τ)P(x, t)+
∂2

∂x2 B(x,τ)P(x, t), (8)

where P(x, t) is the probability density and

A(x,τ) =
ax−bx2

1+bτx
+

αx
(1+bτx)2 −

αbτx2

(1+bτx)3 , (9)

B(x,τ) =
αx2

(1+bτx)2 . (10)

The stationary probability distribution of equation is given
as [12,13]

Pst(x) =
N

B(x,τ)
exp

[∫ x A(x′,τ)
B(x′,τ)

dx′
]

, (11)

where N is a normalization constant. Using the explicit forms
of A(x,τ) and B(x,τ) we obtain the following SPDF [12,13]:

Pst(x) =
N(1+bτx)

α
x(a/α−1) exp[

(−bτx+2aτ−2)bx
2α

]. (12)

In Figs. 1 and 2, we show the effects of the strength of the
multiplicative colored noise Q(t) on the steady state probabil-
ity distribution (SPD). Clearly, as α is increased, the position
of the extremum of SPD moves from a large value of x to a
small value ofx, showing that the multiplicative noise is a drift
term, which denotes that the multiplicative noise can push the
system bacterium towards extinction [6]. In addition, the max-
imum value of Pst(x) decreases with increasing α. These indi-
cate that the fluctuation of bacterium growth rate a can hinder
the bacterium growth. The results demonstrate that the evolu-
tion of the nonlinear biological systems is suppressed by the
strength of the multiplicative colored noise.

Figures 3 and 4 show the effects of the correlation time of
multiplicative colored noise Q(t) on the SPDF. We can see
that as τ = 0, the colored noise becomes white noise, and
Pst(x) reaches a maximum value at x = 7. The maximum
value of Pst(x) increases as τ is increased. These indicate that
the large correlation time of the colored noise can advance the
bacterium growth and make the evolution of bacterium more
steadily. So we can abate the effects of the multiplicative noise
on the nonlinear biological systems by increasing the correla-
tion time of the noise.

In the other case, when the bacterium decay rate fluctuates,
the FP equation for the evolution of the SPDF corresponding
to Equation (5) is the same as Equation (8) and here

FIG. 1: Plot of Pst(x)(probability density) vs. x (bacterium number)
for low values of the noise intensity a. a = 1,b = 0.1,τ = 0.1and
α = 0.1, 0.2, 0.3 and 0.4, respectively(units are arbitrary).

FIG. 2: Plot of Pst(x)(probability density) vs. x (bacterium number)
for high values of the noise intensity a. a = 1,b = 0.1, τ = 0.1 and
α = 0.5, 0.7, 0.9 and 1.0, respectively(units are arbitrary).

FIG. 3: Plot of Pst(x)(probability density) vs. x (bacterium number)
for different values of the noise correlation time τ. a = 1,b = 0.1,
α = 0.3 and τ = 0, 1, 3 and 5, respectively(units are arbitrary).
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FIG. 4: Plot of Pst(x) (probability density) vs. x (bacterium number)
for different values of the noise correlation time τ. a = 1,b = 0.1,
α = 0.3 and τ = 10,30,50 and 100, respectively(units are arbitrary).

A(x,τ) =
ax−bx2

1+aτ
+

2Dx3

(1+aτ)2 , (13)

B(x,τ) =
Dx4

(1+aτ)2 . (14)

Using the explicit forms of A(x,τ) and B(x,τ) we obtain the
following SPDF [1213]:

Pst(x) =
N(1+aτ)2

Dx2 exp
[
(2bx−a)(1+aτ)

2Dx2

]
. (15)

FIG. 5: Plot of Pst(x)(probability density) vs. x (bacterium num-
ber) for different values of the multiplicative colored noise intensity
D. a = 1, b = 0.1, τ = 0.1 and D = 0.1, 0.2, 0.3 and 0.4, respec-
tively(units are arbitrary).

Figure 5 depicts the effects of the strength of the multiplica-
tive colored noise H(t) on the SPDF. We can perceive that

the bacterium number is small in the presence of the noise
H(t). As D is increased, the maximum value of Pst(x) in-
creases and the peak of SPD moves towards the value of x = 0.
It’s clear that the fluctuation of the bacterium decay rate hin-
ders the bacterium growth badly, which means the bacterium
number is diminished greatly. Deeply inferred, the fluctuation
of the bacterium decay rate caused by the multiplicative col-
ored noise significantly affects the steadiness of the nonlinear
biological systems.

FIG. 6: Plot of Pst(x)(probability density) vs. x (bacterium number)
for different values of the noise correlation time τ. a = 1,b = 0.1,
D = 0.3 and τ = 0, 1, 3 and 5, respectively(units are arbitrary).

FIG. 7: Plot of Pst(x)(probability density) vs. x (bacterium number)
for different values of the noise correlation time τ. a = 1,b = 0.1,
D = 0.3 and τ = 10, 30, 50 and 100, respectively(units are arbitrary).

Figures 6 and 7 display the effects of the correlation time of
the multiplicative colored noise H(t) on the SPDF. As τ = 0,
the colored noise becomes white noise, the position of the ex-
tremum of the SPDF is at x = 1

3 . As τ is increased, the peak of
SPD moves towards the larger values of x and the maximum
value of Pst(x) decreases. As for the large value of τ, the max-
imum value of Pst(x) decreases slightly with τ. The bacterium
number can increase to about seven as τ is increased to 100.
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These indicate that increasing the correlation time of the mul-
tiplicative noise results in increased bacteria number. In other
words, the large correlation time of the multiplicative colored
noise plays a positive role on the evolution of the nonlinear
biological systems.

IV. CONCLUSION

To sum up, we have studied the effects of the external en-
vironmental fluctuations on bacterium growth and its steady
state properties. Our results demonstrate that the fluctuation
of both bacterium growth rate and decay rate caused by the
multiplicative colored noise can decrease bacterium number

and even make bacterium extinction, which is similar to the
case of the white noise. It is inferred that the variation of the
external condition can hinder the evolution of the nonlinear bi-
ological systems. The multiplicative colored noise makes the
maximum of SPD move from a large value of x to the small
values of x, showing that the multiplicative noise is a drift
term in the process from the physical point of view. The result
is consistent with the one for white noise obtained previously,
where we find additive noise is a diffusive factor, while the
multiplicative noise is a drift factor in the process of the tu-
mor cell growth [6]. We also find the bacterium number may
be increased to some extent by increasing the correlation time
of the multiplicative colored noise, while the white noise only
hinder the population growth.
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