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Coherence Length Calculation for the Outcoupled Beam of Atom Laser
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We use the theory of coupled Gross-Pitaevskii equations to derive an expression for the current density of
the propagating atoms coupled out of the condensate under the influence of gravity. By describing the propaga-
tion vector of the atoms and using a theoretical definition of the coherence length, we calculate the coherence
lengths of 37K, 141Ce, and 249Fm atom lasers numerically. Our calculation method is verified with the available
experimental and theoretical data in the literature. The results showed a very good agreement.
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I. INTRODUCTION
The observation of Bose-Einstein condensate (BEC) in di-

lute alkali gases in 1995 [1–3], confirmed by the award of the
2001 Nobel Prize to the pioneers [4, 5], was the key to the re-
cent advancements in atomic, optical, and molecular physics.
That observation has lead to a new field of research that deals
with a propagating and coherent beam of matter waves, known
as an atom laser. These matter waves were proven to interact
with each other as they propagate, and their focused beams
have shown interference patterns associated with phase co-
herence [6, 7].

In this paper, we use the theory of coupled Gross-Pitaevskii
(GP) equations to calculate a general expression for the cur-
rent density of the propagating beam of atoms coupled out of
the condensate due to the mean-field potential under the influ-
ence of gravity. We calculate the coherence lengths of 37K,
141Ce, and 249Fm atom lasers by solving the definition of the
coherence length as proposed by Castellanos and Lopez [8].
The calculations are made numerically using a computer pro-
gramme created in FORTRAN. To verify the validity of our
calculation method, first we applied it to three other atoms
(23Na, 87Rb, and 7Li) of known coherence lengths in the liter-
ature [8, 9]. The results showed a very good agreement.

In section 2, we use the coupled GP equations to review
and derive the outcoupled wave function ψ0 for the untrapped
atoms, taking into account the influence of gravity and the
weak coupling limit relevant to the quasi-continuous atom
laser [10]. In section 3, we calculate the current of the prop-
agating atoms coupled out of the condensate. Considering a
pair of atoms, we derive the propagation vector of the travel-
ling atoms and obtain a definition for the coherence length of
the atom laser in section 4. Solving this equation of the coher-
ence length numerically, we describe our calculation method
of the coherence length for the 37K, 141Ce, and 249Fm atom
lasers in section 5, comparing and discussing our results with
the available data in the literature and making a conclusion on
the validity of our calculation method.

II. THE COUPLED GROSS-PITAEVSKII EQUATIONS
THEORY

Output coupling is essential in turning the trapped BEC
into an atom laser. The output coupler consists of a mono-
chromatic resonant radio frequency (rf) field of frequency ωrf,

which has been used to transfer the confined condensate of
atoms from the trapped state to untrapped magnetic states, en-
abling the atoms to leave the trap under the influence of grav-
ity with the generation of a coherent atom laser [11]. Grav-
ity determines the propagation direction of the extracted atom
laser as well as its amplitude and its phase. Theoretically, the
output coupling from BEC is governed by Gross-Pitaevskii
(GP) equations for the wave functions of the condensate in the
trapped and untrapped magnetic states, coherently coupled by
an external electromagnetic field. That is, the field associated
with the BEC obeys equations of quantum nature which re-
duce, for the condensate, to the following time-dependent GP
equation (see [12] and references therein).
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Mathematically, this equation is also the coupled time-

dependent non-linear Schrodinger equation for the condensate
wave function ψm(r,t). Here U0 = 4π~2a

M is the interaction
coupling constant, where a is the scattering length, and M is
the atomic mass. Considering 87Rb in the hyperfine level
F = 1 at T = 0K, with m = −1,0,+1 representing the three
Zeeman sublevels, where m = 0 and m = +1 states refer to
the untrapped and the repelled atoms, respectively, and the
m = −1 state refers to the trapped atoms in the magnetic po-
tential [10]:
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Here, ωx is the frequency of the trap in the x direction and
ω⊥ is the frequency of the trap in the y-z plane. The extraction
of atoms from the trapped BEC under the influence of gravity
is treated in the weak coupling regime [13]. In this regime,
the coupling into the m = +1 state is neglected and the cou-
pling strength is so small that the populations Nm of the three
sublevels satisfy the inequality N+1 ¿ N0 ¿ N−1. The BEC
wave functions ψm(t) = 〈ψm(t)〉exp(−imωrft), under the ro-
tating wave approximation in the hyperfine level F = 1, satisfy
the following pair of coupled GP equations:
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where the coupling constant ~Ω = µBBrf
2
√

2
refer to the Rabi

frequency due to the magnetic field Brf of the trap, ~δrf =
Voff − ~ωrf is the detuning from the bottom of the trap, µB
is Bohr magneton, g is the gravitational acceleration, and p is
the particles momentum. Here, the total condensate density
n(r,t) has been replaced by the modulus of the wave function
|ψ−1(r,t)|2.

Gravity results in a sag of the trapped condensate. The dis-
placement of the minimum of the external potentials away
from the trap centre at z = 0 depends on m and is given by
zsag = g/ω2

⊥. The zero of energy is chosen at z = 0 in the
m = 0 state so that the level splitting at the bottom of the trap
is given by:

Voff =
µBBoff

2
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where Boff is the offset magnetic field of the trap. For a many-
body interacting system, like trapped BEC, mean-field ap-
proaches using GP type equations are usually developed to
overcome the problem of solving the many-body Schrodinger
equation [12–15]. GP equations provide an understanding of
the main features of the condensation and are known in their
direct treatment of the interactions between particles. Accord-
ingly, equations (3) and (4) are outcoupled within the for-
malism of the mean-field theory, obtaining for the outcoupled
atom laser wave function the following expression [10]:
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Here, φ−1 (x,y,zres) is the time dependent ground state of the
condensate, with energy equals to the chemical potential µ

given by µ =
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2 is the harmonic oscillator length. E−1 =

~δrf + µ is the energy of the m = −1 state, zres = ~δrf+4µ/7
2Mg

is the resonance point where the output coupling takes place,
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is the falling time of the atoms from point

zres and is constant for each particular atom laser, l =
(
~2
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) 1
3

is the falling height such that l ¿ x0,y0,z0, the paramete
ξres = (z+zres)

l provides a size scale of the trap, and F (t, tfall)
describes the finite extent of the atom laser due to the finite
coupling time. In the Thomas-Fermi (TF) approximation, the
time-dependent ground state wave function φ−1 (x,y,zres) is
[10, 14]:
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where the BEC dimensions x0 =
(
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(
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. The time dependence of φ−1 (x,y,zres) is contained

in µ, x0,y0, and z0, which decrease with N−1(t), whereas the
quantity |φ−1 (x,y,zres)|2 corresponds to the trapped atomic
population at the resonance point zres.
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III. THE CURRENT OF ATOMS WITH RF-FIELD
SWITCHED ON

As soon as the output coupling rf-field is switched on at
t = 0, the whole condensate undergoes an initial rapid oscilla-
tions damping through all the coupled states due to the escape
of the untrapped atoms out of the trap under the influence of
gravity within less than one Rabi cycle. At the same time,

other atoms move to the resonance point replacing the leav-
ing atoms, until a quasi-stationary state is reached. That is,
the m =−1 condensate wave function decays slowly without
oscillations while atoms coupled out of the condensate are ex-
pelled due to the mean-field potential and form a steady cur-
rent. The kinetic energy term in equation (1) implies that a
spatial transport of the atoms occurs, satisfying the conserva-
tion law:

∂ |ψ0(r,t)|2
∂t

+∇ · J = 0 (8)

The current density is defined as:
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)
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The state-vector for the beam of atoms propagating out of the trap can be written as:

ψ0 (r,t) = ∑
k

Ak(k)exp [i(k · r−ωt)] (10)

We shall now calculate a general expression for the current density of the propagating beam of atoms. Considering rapid
oscillations of the output coupling (i.e., neglecting the time dependence), the current density can be written using equation (10)
as:
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In the integral form, this equation reads as:
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Taking:

τ = k−k′ (13)

then dτ = dk for a fixed k′. Equation (13) describes a correlation between particles of momentum k and (k− τ) for a given k′.
The beam of particles can be experimentally prepared in such a way that A(k) is a real number. That is, for the initial condition
(t = 0,r = 0), A(k) has some definite values including zero. Accordingly, equation (12) becomes [8]:
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which can be written as::
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This is the expression that we have been seeking for the cur-
rent density of the propagating beam of atoms coupled out of

the condensate.
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IV. NUMERICAL MODEL FOR THE COHERENCE
LENGTH OF ATOM LASER

The second term in equation (15) describes a focusing phe-
nomenon, both directional and longitudinal. For a pair of
atoms travelling with a slight difference in k, the focusing
along z will correspond to those points where [8]:

(
k′−k

) · z = 2nπ, n = 1,2, ... (16)

The propagation vector k is calculated using equation (6).
With ρ = |ψ|2, the particles velocity is:
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Using De Broglie relation p = ~k = mv, the magnitude of k
will be:
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Using this expression of k into equation (16) results in:
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Here z− z′ represents the correlation length between two
different points of the atom laser. Taking z′ = zres, an expres-
sion for the coherence length of the atom laser, measured from
the resonance point zres, is found as follows [8]:

z
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1
2

]
= 2nπl

3
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Solving this equation numerically for n = 1, we calculated
the coherence lengths, z, of 37K, 141Ce, and 249Fm atom lasers.

V. RESULTS AND CONCLUSIONS

We have developed a computer programme in FORTRAN
to solve equation (20) numerically and calculate the coherence
lengths, z, of 37K, 141Ce, and 249Fm atom lasers. To verify our
calculation method, we applied the programme first to three
other atom lasers (23Na, 87Rb, and 7Li) of known coherence
lengths in the literature [8, 9]. This resulted in a very good
agreement, encouraging us to calculate the coherence lengths
of 37K, 141Ce, and 249Fm atom lasers. Our results are listed
in Table 1.

Table 1: Coherence lengths of some atom lasers obtained
by this work and other researchers. The first three atoms
were used to verify our calculation method.

Coherence length (µm)
This work Theoreticala Experimentalb

23Na 2.4814 2.4622 2.0 to 5.0
87Rb 1.0246 1.0299
7Li 5.4803 5.4461
37K 1.7722
141Ce 0.7263
249Fm 0.4968
aRef. [8]
bRef. [9]

We could not trace other values in the literature for these
atom lasers in order to compare our results of the coherence
lengths. Based on the validity of our calculation method and
the excellent results that we have obtained for other atom
lasers (23Na, 87Rb, and 7Li) of known coherence lengths, we
conclude that our results for the coherence lengths of 37K,
141Ce, and 249Fm atom lasers are very reasonable.

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, and C. E. Wie-
man, E. A. Cornell, Science 269, 198 (1995).

[2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten,
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,
3969 (1995).

[3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys.
Rev. Lett. 75, 1687 (1995).

[4] E. A. Cornell, C. E. Wieman, Rev. Mod. Phys. 74, 875 (2002).
[5] W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).
[6] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee,

D. M. Kurn, and W. Ketterle, Science 275, 637 (1997).
[7] A. Rohrl, M. Naraschewski, A. Schenzle, and H. Wallis,

Phys.Rev. Lett. 78, 4143 (1997).
[8] L. M. Castellanos, F. E. Lopez, quant-ph/0312168.
[9] M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Juli-

enne, E. W. Hagley, L. Deng, M. Kozum, K. Helmerson, S. L.

Rolston, and W. D. Phillips, J. Phys. B: At. Mol. Opt. Phys. 33,
47 (2000).

[10] F. Gerbier, P. Bouyer, and A. Aspect, Phys. Rev. Lett. 86, 4729
(2001).

[11] M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G.
Townsend, and W. Ketterle, Phys. Rev. Lett. 78, 582 (1997).

[12] F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Rev.
Mod. Phys. 71, 463 (1999).

[13] H. Steck, M. Narachewski, and H. Wallis, Phys. Rev. Lett. 80,
1 (1998).

[14] R. J. Ballagh, K. Burnett, and T. F. Scott, Phys. Rev. Lett. 78,
1607 (1997).

[15] R. Ballagh, C. M. Savage, Mod. Phys. Lett. B 14 Suppl. Issue 1
153 (2000).


