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In this paper general solutions are found for domain walls in Lyra geometry in the plane symmetric spacetime
metric given by Taub. Expressions for the energy density and pressure of domain walls are derived in both cases
of uniform and time varying displacement field β. Some physical consequences of the models are also given.
Finally, the geodesic equations and acceleration of the test particle are discussed.
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I. INTRODUCTION

Domain walls form when a discrete symmetry is sponta-
neously broken [1-5]. In simplest models, symmetry breaking
is accomplished by a real scalar field φ whose vacuum man-
ifold is disconnected. For example, suppose that the scalar
potential for φ is U(φ) = λ(φ2− µ2)2. The vacuum manifold
for φ consists of the two points [φ = µ and φ = −µ]. Af-
ter symmetry breaking, different regions of the universe can
settle into different parts of the vacuum with domain walls
forming the boundaries between these regions. The stress en-
ergy for a static, plane-symmetric domain wall consists of a
positive surface energy density and a surface tension equal in
magnitude to the surface energy [3]. We note, however that
this analysis neglects the effects of gravity [6]. Locally, the
stress energy for a wall of arbitrary shape is similar to that of a
plane-symmetric wall having both surface energy density and
surface tension. Closed-surface domain walls collapse due to
their surface tension. However, the details of the collapse for
a wall with arbitrary shape and finite thickness are largely un-
known.

The spacetime of cosmological domain walls has now been
a subject of interest for more than a decade since the work
of Vilenkin and Ipser and Sikivie [7, 8] who use Israel’s thin
wall formalism [9] to compute the gravitational field of an
infinitesimally thin planar domain wall. After the original
work by Vilenkin, Ipser and Sikivie [7, 8] for thin walls,
attempts focused on trying to find a perturbative expansion
in the wall thickness [6, 10]. With the proposition by Hill,
Schramn and Fry [11] of a late phase transition with thick
domain walls, there was some effort in finding exact thick
solution [12, 13]. Recently, Bonjour et al [14] considered
gravitating thick domain wall solutions with planar and
reflection symmetry in the Goldstone model. Bonjour et al
[15] also investigated the spacetime of a thick gravitational
domain wall for a general potential V (φ). Jensen and Soleng
[16] have studied anisotropic domain walls where the solution
has naked singularities and the generic solution is unstable to
Hawking decay.

The investigation of relativistic cosmological models
usually has the energy momentum tensor of matter generated

by a perfect fluid. To consider more realistic models one
must take into account the viscosity mechanisms, which have
already attracted the attention of many researchers. Most
studies in cosmology involve a perfect fluid. Large entropy
per baryon and the remarkable degree of isotropy of the
cosmic microwave background radiation, suggest that we
should analyze dissipative effects in cosmology. Further,
there are several processes which are expected to give rise to
viscous effect. These are the decoupling of neutrinos during
the radiation era and the recombination era [17], decay of
massive super string modes into massless modes [18], gravi-
tational string production [19, 20] and particle creation effect
in grand unification era [21]. It is known that the introduction
of bulk viscosity can avoid the big bang singularity. Thus, we
should consider the presence of a material distribution other
than a perfect fluid to have realistic cosmological models
(see Grøn [22] for a review on cosmological models with
bulk viscosity). A uniform cosmological model filled with
fluid which possesses pressure and second (bulk) viscosity
was developed by Murphy [50]. The solutions that he found
exhibit an interesting feature that the big bang type singularity
appears in the infinite past.

To study thick domain walls, one can study the field equa-
tions as well as equations of the domain walls treated as
the self interacting scalar field. A thick domain wall can
be viewed as a soliton-like solution of the scalar field equa-
tion coupled with gravity. In order to determine the gravita-
tional field one has to solve Einstein’s equation with an en-
ergy momentum tensor Tµν describing a scalar field φ with
self-interactions contained in a potential V (φ) [6–8, 12].

Tµν = δµφδνφ−gµν

(
1
2

δσφδσφ−V (φ)
)

(1)

The influence of the viscous fluid in the evolution of the uni-
verse is performed by means of its energy momentum tensor,
which acts as the source of the corresponding gravitational
field. Thick domain walls are characterized by the energy mo-
mentum tensor of a viscous field which has the form

Tik = ρ(gik +wiwk)+ p̄wiwk, wiwi =−1, (2)
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where

p̄ = p−ξwi
;i. (3)

Here ρ, p, p̄, and ξ are the energy density, the pressure in the
direction normal to the plane of the wall, effective pressure,
bulk viscous coefficient respectively and wi is a unit space
like vector in the same direction.

In 1951 Lyra [24] proposed a modification of Riemannian
geometry by introducing a gauge function into the structure-
less manifold, as a result of which the cosmological constant
arises naturally from geometry. This bears a remarkable
resemblance to Weyl’s geometry [25]. But in Lyra’s geome-
try, unlike Weyl’s, the connection is metric preserving as in
Riemannian; in other words, length transfers are integrable.
Lyra also introduced the notion of a gauge and in the “normal”
gauge the curvature scalar is identical to that of Weyl. In sub-
sequent investigations Sen [26], Sen and Dunn [27] proposed
a new scalar-tensor theory of gravitation and constructed
an analog of the Einstein field equations based on Lyra’s
geometry. It is, thus, possible [26] to construct a geometrized
theory of gravitation and electromagnetism along the lines
of Weyl’s “unified” field theory without inconvenience of
non-integrability length transfer. Halford [28] has pointed
out that the constant vector displacement field φi in Lyra’s
geometry plays the role of cosmological constant Λ in the
normal general relativistic treatment. It is shown by Halford
[29] that the scalar-tensor treatment based on Lyra’s geometry
predicts the same effects, within observational limits as the
Einstein’s theory. Several investigators viz. Sen and Vanstone
[30], Bhamra [31], Karade and Borikar [32], Kalyanshetti
and Wagmode [33], Reddy and Innaiah [34], Beesham [35],
Reddy and Venkateswarlu [36], Soleng [37], Singh and Singh
[38], Singh and Desikan [39], Pradhan and Vishwakarma
[40], Pradhan et al [41, 42] have studied cosmological models
based on Lyra’s manifold with a constant displacement field
vector. However, this restriction of the displacement field
to be constant is merely one of convenience and there is no
a priori reason for it. Soleng [37] has pointed out that the
cosmologies based on Lyra’s manifold with constant gauge
vector φ will either include a creation field and be equal to
Hoyle’s creation field cosmology [43]−[45] or contain a
special vacuum field which together with the gauge vector
term may be considered as a cosmological term. In the
latter case the solutions are equal to the general relativistic
cosmologies with a cosmological term.

The universe is spherically symmetric and the matter
distribution in it is on the whole isotropic and homogeneous.
But during the early stages of evolution, it is unlikely that
it could have had such a smoothed out picture. Hence we
consider plane symmetry which provides an opportunity for
the study of inhomogeneity. Motivated by the situations dis-
cussed above, in this paper we shall focus upon the problem
of establishing a formalism for studying the general solution
for domain wall in Lyra geometry in the plane symmetric
spacetime metric in presence of bulk viscous in an expanding

universe. Expressions for the energy density and pressure
of domain walls are obtained in both cases of uniform and
time varying displacement field β. We have also shown that
the result obtained by Rahaman et al [23] is a special case
of our solutions. This paper is organized as follows. The
metric and the field equations are presented in Section II. In
Section III we deal with the solution of field equations. The
Subsection A contain the solution of uniform displacement
field (β = β0, constant). This section also contain the two
different models and also the physical consequences of these
models. The Subsection B deal with the solution with time
varying displacement field (β = β0tα). This subsection also
contain two different models and these physical consequences
are discussed. The geodesic equations and accelerations of
the test particle are discussed in Section IV. Finally in Section
V concluding remarks will be given.

II. FIELD EQUATIONS

In this section we shall consider the field equations, in normal
gauge for Lyra’s manifold, obtained by Sen [26] as

Ri j− 1
2

gi jR+
3
2

φiφ j− 3
4

gi jφkφk =−8πGTi j, (4)

for study domain walls. The energy momentum tensor Ti j in
comoving coordinates for thick domain walls take the form

T 0
0 = T 2

2 = T 3
3 = ρ, T 1

1 =−p̄, T 0
1 = 0 (5)

and displacement vector φi is defined by φi = (0,0,0,β),
where β may be considered constant as well as function of
time coordinate like cosmological constant in Einstein’s the-
ory of gravitation.
We consider the most general plane symmetric spacetime met-
ric suggested by Taub [46]

ds2 = eA(dt2−dz2)− eB(dx2 +dy2) (6)

where A and B are functions of t and z.
Using equation (5) the field equations (4) for the metric (6)
reduce to

e−A

4
(−4B′′−3B′2 +2A′B′)+

e−A

4
(Ḃ2 +2ḂȦ)− 3

4
e−Aβ2 = 8πρ,

(7)

e−A

4
(−B′2−2B′A′)+

e−A

4
(−4B̈+3Ḃ2−2ȦḂ)+

3
4

e−Aβ2 =−8πp̄,

(8)

e−A

4
[−2(A′′+B′′)−B′2]+

e−A

4
[2(Ä+B̈)+Ḃ2]+

3
4

e−Aβ2 = 8πρ,

(9)

−Ḃ′+ Ḃ(A′−B′)+ ȦB′ = 0. (10)

In order to solve the above set of field equations we assume
the separable form of the metric coefficients as follows

A = A1(z)+A2(t), B = B1(z)+B2(t) (11)
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From Eqs. (10) and (11), we obtain

A′1
B′1

=
(Ḃ2− Ȧ2)

B2
= m, (12)

where m is considered as separation constant.
Eq. (12) yields the solution

A1 = mB1 (13)

A2 = (1−m)B2 (14)

Again, subtracting Eq. (9) from Eq. (7) and using Eq. (11),
we obtain

A′′1 −B′′1 −B′21 +A′1B′1 = Ä2 + B̈2− Ȧ2Ḃ2 +3β2 = k, (15)

where k is another separation constant. With the help of Eqs
(13) and (14), Eq. (15) may be written as

(m−1)[B′′1 +B′21 ] = k (16)

(2−m)B̈2 +(m−1)Ḃ2
2 = k−3β2 (17)

III. SOLUTIONS OF THE FIELD EQUATIONS

In this section we shall obtain exact solutions for thick
domain walls in different cases.

Using the substitution u = eB1 and a = k
1−m , Eq. (16) takes

the form

u′′+au = 0, (18)

which has the solution

eB1 = u = c1 sinh(z
√
| a |)+ c2 cosh(z

√
| a |) when a < 0,

(19)
where c1 and c2 are integrating constants. Eq. (19) represent
the general solution of the differential Eq. (18) when a <
0. It may be noted that Rahaman et al [23] have obtained a
particular solution for the case a < 0 in presence of perfect
fluid. Their solution can be obtained from Eq. (19) by taking
c1 = 0 and c2 = 2.
Eq. (17) may be written as

B̈2− (1−m)
(2−m)

Ḃ2
2 +

3
(2−m)

β2 =
k

2−m
. (20)

Now we shall consider uniform and time varying displace-
ment field β separately.

A. Case I: Uniform displacement field (β = β0, constant)

By use of the transformation v = e−
(1−m)
(2−m) B2 , Eq. (19) re-

duces to

v̈+bv = 0, (21)

where

b =
(1−m)(k−3β2

0)
(2−m)2 .

Again, it can be easily seen that Eq. (21) possesses the solu-
tion

e−
(1−m)
(2−m) B2 = v = c̄1 sinh(t

√
| b |)+ c̄2 cosh(t

√
| b |) when b < 0,

(22)
where c̄1 and c̄2 are integrating constants. Hence the metric
coefficients have the explicit forms as

eA = {c1 sinh(z
√
| a |)+ c2 cosh(z

√
| a |)}m×

{c̄1 sinh(t
√
| b |)+ c̄2 cosh(t

√
| b |)}(m−2) when a < 0, b < 0,

(23)

eB = {c1 sinh(z
√
| a |)+ c2 cosh(z

√
| a |)}×

{c̄1 sinh(t
√
| b |)+ c̄2 cosh(t

√
| b |)}−

(2−m)
(1−m) when a < 0, b < 0.

(24)
With the help of Eqs. (23) and (24), the energy density and

pressure can be obtained from Eqs. (7) and (8)

32πρ = e−A
[
(m+1) | a |

(
Z2

Z1

)2

−4 | a |+

(3−m)(2−m)2

(1−m)2 | b |
(

T2

T1

)2

−3β2
0

]
when a < 0, b < 0,

(25)

32π(p−ξθ) = e−A
[
(m+1) | a |

(
Z2

Z1

)2

− 4(2−m)
(1−m)

| b |+

(2−m)(2m2−7m+2)
(1−m)2 | b |

(
T2

T1

)2

−3β2
0

]
when a < 0, b < 0,

(26)
where
e−A = cosh−m(z

√
| a |)cosh2−m(t

√
| b |)Z−m

1 T 2−m
1 ,

Z1 = c2 + c1 tanh(z
√
| a |) ,

Z2 = c1 + c2 tanh(z
√
| a |) ,

T1 = c̄2 + c̄1 tanh(t
√
| b |) ,

T2 = c̄1 + c̄2 tanh(t
√
| b |) .

Here ξ, in general, is a function of time. The expression for
kinematical parameter expansion θ is given by

θ =
(m−2)(3−m)

√
| b |

2(1−m)
e−

A
2

(
T2

T1

)
. (27)

Thus, given ξ(t) we can solve Eq. (26). In most of the inves-
tigations involving bulk viscosity is assumed to be a simple
power function of the energy density [47]− [49]:

ξ(t) = ξ0ρn, (28)
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where ξ0 and n are constants. For small density, n may even be
equal to unity as used in Murphy’s work for simplicity [50].
If n = 1, Eq. (28) may correspond to a radiative fluid [51].
However, more realistic models [52] are based on n lying in
the regime 0≤ n≤ 1

2 .
For simplicity and realistic models of physical importance, we
consider the following two cases (n = 0,1).

1. Model I: solution for ξ = ξ0

When n = 0, Eq. (28) reduces to ξ = ξ0 = constant. Hence
in this case Eq. (26), with the use of (27), leads to

32πp = 32πT3 + e−A
[
(m+1)| a |

(
Z2

Z1

)2

− 4(2−m)
(1−m)

| b |+

(2−m)(2m2−7m+2)
(1−m)2 | b |

(
T2

T1

)2

−3β2
0

]
, (29)

where

T3 =
(m−2)(3−m)

2(1−m)

√
| b |e− A

2

(
T2

T1

)
ξ0.

2. Model II: solution for ξ = ξ0ρ

When n = 1, Eq. (28) reduces to ξ = ξ0ρ and hence Eq.
(26), with the use of (27), leads to

32πp = e−A
[{

(m+1)| a |
(

Z2

Z1

)2

−3β2
0

}
(T3 +1)−4

(
| a |T3 +

(2−m)
(1−m)

| b |
)

+
(2−m)
(1−m)2 | b |

(
T2

T1

)2 {
(3−m)(2−m)T3 +2m2−7m+2

}]
. (30)

3. Physical Consequences of the models

From the above results in both models, it is evident that
at any instant the domain wall density ρ and pressure p in
the perpendicular direction decrease on both sides of the wall
away from the symmetry plane and both vanish as Z −→±∞.
The space times in both cases are reflection symmetry with

respect to the wall. All these properties are very much
expected for a domain wall. It can be also seen that the
viscosity, as well as the displacement field β exhibit essential
influence on the character of the solutions.

The weak and strong energy conditions, we have, in Model
I

32π(ρ− p) = e−A
[ (2−m)
(1−m)2 | b |

(
T2

T1

)2

(−m2 +2m+4)+

4
{ (2−m)

(1−m)
| b |− | a |

}]
−32πT3, (31)

32π(ρ+ p) = e−A
[ (2−m)
(1−m)2 | b |

(
T2

T1

)2

(3m2−12m+8)+2(m+1)| a |
(

Z2

Z1

)2

+

−4
{ (2−m)

(1−m)
| b |+ | a |

}
−6β2

0

]
+32πT3, (32)

32π(ρ−3p) = e−A
[ (2−m)
(1−m)2 | b |

(
T2

T1

)2

(−5m2 +16m)+4
{

3
(2−m)
(1−m)

| b |− | a |
}
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−2(m+1)| a |
(

Z2

Z1

)2

+6β2
0

]
−96πT3, (33)

32π(ρ+3p) = e−A
[ (2−m)
(1−m)2 | b |

(
T2

T1

)2

(7m2−26m+12)+4(m+1)| a |
(

Z2

Z1

)2

−4
{
| a |+ 3(2−m)

(1−m)
| b |

}
−12β2

0

]
+96πT3. (34)

In Model II, we have

32π(ρ− p) = e−A
[ (2−m)
(1−m)2 | b |

(
T2

T1

)2 {
(−m2 +5m−6)(T3−1)+2m2−7m+2

}

−4
{
| a |(T3 +1)+

(2−m)
(1−m)

| b |
}
− (m+1)| a |

(
Z2

Z1

)2

T3 +3β2
0T3

]
, (35)

32π(ρ+ p) = e−A
[ (2−m)
(1−m)2 | b |

(
T2

T1

)2 {
(m2−5m+6)(T3 +1)+2m2−7m+2

}

+(m+1)| a |
(

Z2

Z1

)2

(T3 +2)−4
{
| a |(T3 +1)+

(2−m)
(1−m)

| b |
}
−3β2

0(T3 +2)
]
, (36)

32π(ρ−3p) = e−A
[
− (2−m)

(1−m)2 | b |
(

T2

T1

)2 {
(m2−5m+6)(3T3−1)+6m2−21m+6

}

−(m+1)| a |
(

Z2

Z1

)2

(3T3 +2)+4
{
| a |(3T3−1)+

3(2−m)
(1−m)

| b |
}

+3β2
0(3T3 +2)

]
, (37)

32π(ρ+3p) = e−A
[ (2−m)
(1−m)2 | b |

(
T2

T1

)2 {
(m2−5m+6)(3T3 +1)+6m2−21m+6

}

+(m+1)| a |
(

Z2

Z1

)2

(3T3 +4)+4
{
| a |(3T3 +1)+

3(2−m)
(1−m)

| b |
}
−3β2

0(3T3 +4)
]
. (38)

The reality conditions ρ ≥ 0, p ≥ 0 and ρ− 3p ≥ 0 impose
further restrictions on both of these models.

B. Case II: Time varying displacement field (β = β0tα)

Using the aforesaid power law relation between time coor-
dinate and displacement field, Eq. (19) may be written as

ẅ−
[3(1−m)β2

0
4(2−m)2 t2α− k(1−m)

(2−m)2

]
w = 0, (39)

where

w = e−
(1−m)
(2−m) B2. (40)

Now, it is difficult to find a general solution of Eq. (39)
and hence we consider a particular case of physical interest. It
is believed that β2 has similar behaviour as the cosmological
constant which decreases during expansion of universe. Sev-
eral authors [53]−[65] have considered the relation β∼ 1

t for
study of cosmological models in different context.
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Considering α =−1, β = β0
t and hence Eq. (39) reduces to

t2ẅ+
[k(1−m)
(2−m)2 t2− 3

4
(1−m)
(2−m)2 β2

0

]
w = 0. (41)

Eq. (41) yields the general solution

wtr+1 = (t3D)r
[c1eht + c2e−ht

t2r−1

]
, (42)

where
D≡ d

dt

r = 1
2 [{1+ 3(1−m)

(2−m)2 β2
0}

1
2 −1]

h2 = k(1−m)
(2−m)2

For r = 1, β2
0 = 8(2−m)2

3(1−m) , Eq. (42) suggests

w =
(

h− 1
t

)
c3eht −

(
h+

1
t

)
c4e−ht , (43)

where c3 and c4 are integrating constants.

Hence the metric coefficients have the explicit forms as

eA = {c1 sinh(z
√
| a |)+ c2 cosh(z

√
| a |)}m×

[(
h− 1

t

)
c3eht−

(
h+

1
t

)
c4e−ht

](m−2)
when a < 0 (44)

eB = {c1 sinh(z
√
| a |)+ c2 cosh(z

√
| a |)}×

[(
h− 1

t

)
c3eht −

(
h+

1
t

)
c4e−ht

]− (2−m)
(1−m) when a < 0

(45)
With the help of Eq. (44) and (45), the energy density and
pressure can be obtained from Eqs. (7) and (8)

32πρ = e−A
[
| a |

{(
Z2

Z1

)2

(1+m)−4

}
+

(3−m)(2−m)2

(1−m)2

(
c3h2t

T5
− 1

t

)2

− 3β2
0

t2

]
when a < 0 (46)

32π(p−ξθ) = e−A
[
(m+1)| a |

(
Z2

Z1

)2

− (1+2m)(2−m)2

(1−m)2

(
c3h2t

T5
− 1

t

)2

−

4(2−m)
(1−m)

{
1
t2 −

4c4h3te−2ht

T5
+h2

(
T4

T5

)2
}
− 3β2

0
t2

]
when a < 0 (47)

where
T4 = c3 + c4(1+2ht)e−2ht

T5 = c3(ht−1)− c4(1+ht)e−2ht

From the above results in both cases it is evident that at
any instant the domain wall density ρ and pressure p in the
perpendicular direction decreases on both sides of the wall

away from the symmetry plane and both vanish as Z −→±∞.
The space times in both cases are reflection symmetry with
respect to the wall. All these properties are very much
expected for a domain wall.

The expression for kinematical parameter expansion θ is
given by

θ =
(m−2)(3−m)

2(1−m)
e−

A
2

[
c3(h2t2−ht +1)+ c4e−2ht(h2t2 +ht +1)

]
. (48)

In this case we again consider the following two cases:

1. Model I: solution for ξ = ξ0

When n = 0, Eq. (28) reduces to ξ = ξ0 = constant. Hence in this case Eq. (47), with the use of (48), leads to

32πp = e−A
[
(m+1)| a |

(
Z2

Z1

)2

+
(1+2m)(2−m)2

(1−m)2

(
c3ht
T5

− 1
t

)
−
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4(2−m)
(1−m)

{
1
t2 −

4c4h3te−2ht

T5
+h2

(
T4

T5

)2
}
− 3β2

0
t2

]
+

16πe−
A
2 (m−2)(3−m)
(1−m)

(
T6

T5

)
, (49)

where T6 =
[
c3(h2t2−ht +1)+ c4e−2ht(h2t2 +ht +1)

]
ξ0.

2. Model II: solution for ξ = ξ0ρ

When n = 1, Eq. (28) reduces to ξ = ξ0ρ. Hence in this case Eq. (47), with the use of (48), leads to

32πp = e−A
[
(m+1)| a |

(
Z2

Z1

)2 {e−
A
2 (m−2)(3−m)

2(1−m)

(
T6

T5

)
+1

}
+

(
c3h2t

T5
− 1

t

)2 (m−2)
(1−m)

{e−
A
2 (3−m)

2

(
T6

T5

)
− (1+2m)(m−2)

(1−m)

}

−3β2
0

t2 (T6 +1)+h2
(

T4

T5

)2

− 4c4h3te−2ht

T4

]
(50)

3. Physical Consequences of the models

From the above results in both cases it is evident that at
any instant the domain wall density ρ and pressure p in the
perpendicular direction decreases on both sides of the wall
away from the symmetry plane and both vanish as Z −→±∞.

The space times in both cases are reflection symmetry with
respect to the wall. All these properties are very much
expected for a domain wall.

The weak and strong energy conditions, we have, in
Model I

32π(ρ− p) = e−A
[
4
(

2−m
1−m

){ 1
t2 −

4c4h3te−2ht

T5
+h2

(
T4

T5

)2 }
−4| a |

− (2−m)2(3m−2)
(1−m)2

(
c3h2t

T5
− 1

t

)2 ]
− 16πe−

A
2 (m−2)(3−m)
(1−m)

(
T6

T5

)
, (51)

32π(ρ+ p) = e−A
[
2(m+1)| a |

(
Z2

Z1

)2

−4
(

2−m
1−m

){ 1
t2 −

4c4h3te−2ht

T5
+

h2
(

T4

T5

)2 }
+4| a |+ (2−m)2(m+4)

(1−m)2

(
c3h2t

T5
− 1

t

)2

− 6β2
0

t2

]

+
16πe−

A
2 (m−2)(3−m)
(1−m)

(
T6

T5

)
, (52)

32π(ρ−3p) = e−A
[
12

(
2−m
1−m

){ 1
t2 −

4c4h3te−2ht

T5
+h2

(
T4

T5

)2 }
−4| a |

−2(m+1)| a |
(

Z2

Z1

)2

− 7m(2−m)2

(1−m)2

(
c3h2t

T5
− 1

t

)2

+
6β2

0
t2

]
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−48πe−
A
2 (m−2)(3−m)
(1−m)

(
T6

T5

)
, (53)

32π(ρ+3p) = e−A
[
4(m+1)| a |

(
Z2

Z1

)2

−12
(

2−m
1−m

){ 1
t2 −

4c4h3te−2ht

T5
+

h2
(

T4

T5

)2

+4| a |
}

+
(2−m)2(5m+6)

(1−m)2

(
c3h2t

T5
− 1

t

)2

− 12β2
0

t2

]

+
48πe−

A
2 (m−2)(3−m)
(1−m)

(
T6

T5

)
. (54)

In Model II, we have

32π(ρ− p) = e−A
[(

2−m
1−m

)(
c3h2t

T5
− 1

t

)2 { 3−m
(1−m)2 +

e−
A
2 (3−m)

2

(
T6

T5

)
+

(1+2m)(m−2)
(1−m)

}
+

3β2
0

t2 T6− (m+1)| a |
(

Z2

Z1

)2 e−
A
2 (m−2)(3−m)

2(1−m)

(
T6

T5

)

−h2
(

T4

T5

)2

+4
{c4h3te−2ht

T5
− | a |

}]
, (55)

32π(ρ+ p) = e−A
[
(m+1)| a |

(
Z2

Z1

)2 {e−
A
2 (3−m)(m−2)

2(1−m)

(
T6

T5

)
+2

}

+
(

2−m
1−m

)(
c3h2t

T5
− 1

t

)2 {3−m
1−m

− e−
A
2 (3−m)

2

(
T6

T5

)
+

(1+2m)(m−2)
(1−m)

}

−3β2
0

t2 (T5 +2)+h2
(

T4

T5

)2

−4
{c4h3te−2ht

T5
+ | a |

}]
, (56)

32π(ρ−3p) = e−A
[(

2−m
1−m

)(
c3h2t

T5
− 1

t

)2 {3−m
1−m

+
e−

A
2 (3−m)

2

(
T6

T5

)

− 3(1+2m)(m−2)
(1−m)

}
+

3β2
0

t2 (3T6 +2)−3h2
(

T4

T5

)2

+4
{c4h3te−2ht

T5
− | a |

}]
, (57)

32π(ρ+3p) = e−A
[
(m+1)| a |

(
Z2

Z1

)2 {e−
A
2 (3−m)(m−2)

2(1−m)

(
3T6

T5

)
+4

}

+
(

2−m
1−m

)(
c3h2t

T5
− 1

t

)2 {3−m
1−m

− e−
A
2 (3−m)

2

(
3T6

T5

)
+

3(1+2m)(m−2)
(1−m)

}
− 3β2

0
t2 (3T6 +4)+3h2

(
T4

T5

)2

−4
{c4h3te−2ht

T5
+ | a |

}]
. (58)

The reality conditions ρ≥ 0, p≥ 0 and ρ−3p≥ 0 impose further restrictions on both of these models.

IV. STUDY OF GEODESICS

The trajectory of the test particle xi{t(λ),x(λ),y(λ),z(λ)}
in the gravitational field of domain wall can be determined by

integrating the geodesic equations

d2xµ

dλ2 +Γµ
αβ

dxα

dλ
dxβ

dλ
= 0 (59)
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for the metric (5). It has been already mentioned in [23], the
acceleration of the test particle in the direction perpendicular
to the domain wall ( i.e. in the z-direction) may be expressed
as

z̈ =
eB−A

2
∂B
∂z

(ẋ2 + ẏ2)− 1
2

∂A
∂z

(ṫ2 + ż2)− ∂A
∂z

ṫż (60)

By simple but lengthy calculation, one can get expres-
sion for acceleration which may be positive, negative (or
zero) depending on suitable choice of the constants. This
implies that the gravitational field of domain wall may be re-
pulsive or attractive in nature, or without a gravitational effect.

V. CONCLUSIONS

The present study deals with plane symmetric domain wall
within the framework of Lyra geometry, in presence of bulk
viscous fluid. The essential difference between the cosmo-
logical theories based on Lyra geometry and Riemannian
geometry lies in the fact that the constant vector displace-
ment field β arises naturally from the concept of gauge in
Lyra geometry, whereas the cosmological constant Λ was
introduced in ad hoc fashion in the usual treatment. Currently
the study of domain walls and cosmological constant have
gained renewed interest due to their application in structure
formation in the Universe. Recently Rahaman et al [23] have
presented a cosmological model for domain wall in Lyra
geometry under a specific condition by taking displacement

fields β as constant. The cosmological models based on vary-
ing displacement vector field β have widely been considered
in the literature in different context [38]−[42]. Motivated by
these studies it is worthwhile to consider domain walls with a
time varying β in Lyra geometry. In this paper both cases viz.,
constant and time varying displacement field β, are discussed
in the context of domain walls with the framework of Lyra
geometry. It has been pointed out that the result of Rahman et
al [23] is a special case of our results.
The study on domain wall in this article successfully de-
scribes the various features of the Universe. The effect of bulk
viscosity is to produce a change in perfect fluid and hence
exhibit essential influence on the character of the solution.
We observe here that Murphy’s conclusion [50] about the
absence of a big bang type singularity in the infinite past in
models with bulk viscous fluid is, in general, not true. The
results obtained in [20] also show that, it is, in general, not
valid, since for some cases big bang singularity occurs in
finite past.
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