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Global Conservation Laws and Femtoscopy of Small Systems
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It is increasingly important to understand, in detail, two-pion correlations measured in p + p and d + A col-
lisions. In particular, one wishes to understand the femtoscopic correlations, in order to compare to similar
measurements in heavy ion collisions. However, in the low-multiplicity final states of these systems, global
conservation laws generate significant N-body correlations which project onto the two-pion space in non-trivial
ways and complicate the femtoscopic analysis. We discuss a model-independent formalism to calculate and
account for these correlations in measurements.

Keywords: Proton collisions; Femtoscopy; Heavy ions; Pion correlations; RHIC; LHC

I. INTRODUCTION

The unique and distinguishing feature of heavy ions is their
large (relative to the confinement scale) size and the possibil-
ity to generate bulk systems which may be described in ther-
modynamic terms, allowing to discuss the Equation of State
of strongly-interacting matter. The primary evidence for the
creation of bulk matter at the highest energies is the existence
of strong collective flow [1]. The dominant feature of flow are
the correlations between space and momentum which it gen-
erates; thus, momentum-only observables such as pT spectra
and azimuthal anisotropies [2–5] represent only an indirect
projection of the effect. Femtoscopic measurements access
space as a function of particle momentum, thus providing the
most direct probe of the most crucial feature of heavy ion col-
lisions [c.f. e.g. 6]. In particular, flow is manifest by a negative
correlation between the “HBT radius” and the transverse mass
(mT ) of the particles [7].

Clearly, then, a detailed understanding of femtoscopic mea-
surements in heavy ion collisions is crucial to proving the ex-
istence of, or probing the nature of, the bulk system gener-
ated in the collision. It is in fact possible to quantitatively
interpret both the femtoscopic and momentum-only observa-
tions at RHIC in consistent, flow-dominated models of the
system [e.g. 8]. All seems well.

However, two-pion femtoscopic measurements are also
common in e+ + e− or p + p(p̄) collisions [9]. In these
collisions, too, “HBT radii” are observed to fall with mT .
Speculations of the physics behind this observation have
included Heisenberg uncertainty-based arguments, string-
breaking phenomena, and temperature gradients; an excellent
overview may be found in [10]. Typically, however, one might
not expect the system created in a p + p collision to exhibit
bulk behavior similar to that from heavy ion collisions.

Quantitative comparisons between femtoscopic measure-
ments in A +A and p+ p systems have been complicated be-
cause techniques for event-mixing, frame definitions, and the
like, have been different in the particle-physics and heavy-ion
communities. As importantly, kinematic acceptance and col-
lision energies are usually quite different. Recently, however,
the STAR experiment has reported the first preliminary study

of directly-comparable femtoscopic measurements from A+A
and p+ p systems [11] at the same

√
sNN , using the same de-

tector, and with identical techniques. The results indicate that
the femtoscopic probe of flow– falling “HBT radii” with mT –
is essentially identical in the small and large systems. This
might signal an unexpected “universality” in the spatial sub-
structure of hadronic and heavy ion collisions. Unravelling
the physics behind this similarity might provide new insight
into the dynamical space-time substructure of both hadronic
and heavy ion collisions.

Before drawing strong physics conclusions from “HBT
radii” coming from fits to the pion correlations measured in
p+ p collisions, however, the measured correlation functions
themselves must be understood in detail. The STAR data
show clear non-femtoscopic correlations which must be dis-
entangled from the femtoscopic ones [11]. Femtoscopic cor-
relations are those which depend directly on the two-particle
separation distribution [c.f. 6]. Non-femtoscopic correlations
may arise from string or jet fragmentation, resonance decay,
or global conservation laws.

In this work, we explore the projection of N-body Energy
and Momentum Conservation-Induced Correlations (EM-
CICs) onto a two-particle relative momentum correlation
function. In Section II we briefly discuss the harmonic rep-
resentation of the correlations which best illustrates the effect.
In Section III we discuss EMCICs generated by a Monte Carlo
event generator containing only global conservation laws. A
method to calculate analytically (but using distributions from
the data) EMCICs is shown in Section IV. This provides
an “experimentalist’s formula,” given in Section V, useful to
disentangle EMCICs from the data, allowing a femtoscopic
analysis of the correlation functions. We summarize in Sec-
tion VI.

II. SPHERICAL HARMONIC DECOMPOSITION OF
CORRELATION FUNCTIONS

At asymptotically high relative momentum |~q| (or |~k∗|),
femtoscopic contributions to the the correlation function
(those described by the Koonin-Pratt equation [discussed in
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FIG. 1: (Color online) Preliminary STAR two-pion correlation func-
tions [11] presented as 1D projections in the Bertsch-Pratt decompo-
sition.

6]) must approach a constant value, usually normalized to
unity, independent of the direction of ~q. Preliminary STAR
measurements [11] of small systems, Fig. 1, show clear non-
femtoscopic correlations in addition. Also shown is a fit with
the commonly Gaussian (with Coulomb suppression) func-
tional form [6]. Clearly, the fit is a poor representation of the
data. We stress, however, that it is not the (non-)Gaussian na-
ture of the source at issue here; any source function will lead
to vanishing femtoscopic correlations at large |~q| and will thus
contradict the data.

We further stress that the problem is not one of normaliza-
tion. Shown in the Figure is the common representation of the
3-dimensional correlation function into three 1-dimensional
axes [cf 6]. The projections, then, are not independent and
cannot be independently normalized. The problem is that the
value approached at large |~q| depends on the direction in ~q
space.

One-dimensional projections present a limited tool for ex-
ploring detailed structure of the three-dimensional correlation
function. The spherical harmonic decomposition (SHD) is a
much more efficient representation of the data which uses all
of the data to show the shape of the correlation function in
3D ~q space. There, the spherical harmonic coefficients Al,m,
which depend on Q≡ |~q|, are calculated as

Al,m(Q) = ∑
bins i

C (Q,cosθi,φi) ·

Yl,m (cosθi,φi)Fl,m
(
cosθi,∆cosθ,∆φ

)
, (1)

where Fl,m represents a numerical factor correcting for finite
bin sizes ∆cosθ and ∆φ; it turns out not to depend on φi. The
angles θ and φ are related to the Bertsch-Pratt Cartesian coor-
dinate system through

qo = Qsinθcosφ, qs = Qsinθsinφ, ql = Qcosθ. (2)
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FIG. 2: (Color online) Preliminary STAR two-pion correlation func-
tions [11] presented in the SHD representation.

See [12] for a complete discussion.
Preliminary STAR correlation functions in the SHD repre-

sentation [11] are shown in Fig. 2. Coefficients for l ≥ 4 are
much less significant, compared to error bars; to good approx-
imation, the non-femtoscopic behavior is quadrupole (l = 2)
in nature.

The presence of non-femtoscopic correlations is clear from
the non-vanishing behavior of Al 6=0,m’s at large Q. However, it
is by no means clear that these contributions to the correlation
function are confined to large Q. Thus, one cannot attempt to
interpret the low-Q region only in terms of femtoscopic corre-
lations, while parameterizing or ignoring the large-Q region;
see [13] for further discussion.

III. EMCICS GENERATED BY THE GENBOD MONTE
CARLO GENERATOR

Non-femtoscopic correlations may arise from a variety of
sources. Jets will clearly induce momentum-space correla-
tions between its fragmentation products. While this cannot
be discounted, the low momentum of the pions under consid-
eration (pT ∼ 0.2 GeV) puts us squarely in the region in which
factorization breaks down and the jet interpretation becomes
significantly murkier. We do not explore this possibility here.
In the kinematic region under consideration, string fragmen-
tation may play a role; this is an area for future study, though
significant model-dependence will be present.

Resonances induce correlations among daughters as well;
while these might even dominate π+π− correlations, they
should be negligible for identical pion correlations. Collec-
tive bulk flow (e.g. anisotropic elliptic flow) will generate N-
body correlations which will project onto the two-body space.
Non-femtoscopic correlations of the type observed by STAR
in small systems are not, however, observed in Au+Au colli-
sions, despite the fact that elliptic flow is much larger there;
therefore, we do not believe that collective flow generates the
observed effects.
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FIG. 3: (Color online) A high-probability multiplicity-30 event
calculated by GENBOD . Lines correspond to particle momenta
px, py, pz.
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FIG. 4: (Color online) A low-probability multiplicity-30 event calcu-
lated by GENBOD . Lines correspond to particle momenta px, py, pz.

Without doubt, one physical effect which must be at play
is momentum and energy conservation. As global conserva-
tion laws, these provide an N-body constraint on the event,
which projects down onto 2-body spaces. The observed non-
femtoscopic effects [11] become more and more significant as
the multiplicity (N) of the event decreases, as expected from
conservation laws. It is these EMCICs which we focus on
here.

To clearly understand the role of EMCICs, we would like
to have events in which there is no other physics involved be-
sides the conservation laws. Such a tool has been provided
almost 40 years ago in the form of the GENBOD computer
program [see 14, for an excellent write-up of the method and
physics] in the CERN library. Given a requested total mul-
tiplicity (N), a list of masses (mi) of emitted particles, and a
total amount of energy (Etot) to distribute among them, GEN-
BOD returns an event of random momenta (four vectors p j),
subject only to the condition of energy and momentum conser-
vation. More importantly, it returns, for each event, a weight
proportional to the probability that the event will actually oc-
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FIG. 5: (Color online) SHD coefficients for GENBOD -generated
events consisting of 18 pions, as measured in the pair CMS frame.
Green squares are Al,m’s from the GENBOD events. For discussion of
the other symbols, see Section IV.
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FIG. 6: (Color online) Same as in Fig. 5, except only using pions
with |η|< 0.5 in the correlation function.

cur in nature. This weight is proportional to the phasespace
integral RN

RN =
∫ 4N

δ4

(
P−

N

∑
j=1

p j

)
N

∏
i=1

δ
(

p2
i −m2

i
)

d4 pi, (3)

where P =
(

Etot,~0
)

is the total momentum four-vector of the
event. See [14] for a practical iterative prescription to calcu-
late RN . Thus, it is a much different tool than, say RQMD, in
which each event returned may be treated as equally probable.

We select (via Monte Carlo) GENBOD events according to
their weight and run them through identical software as used
for experimental analysis. Fortunately, the code is fast, since
one must calculate large statistics from which to select. This
is because the phase-space weights vary by large factors. As
a very extreme case, Figs. 3 and 4 show a likely and unlikely
event, respectively, for multiplicity N = 30. As one would
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FIG. 7: (Color online) SHD coefficients for GENBOD -generated
events consisting of 18 pions, as measured in the pair LCMS frame.
Green squares are Al,m’s from the GENBOD events. For discussion of
the other symbols, see Section IV.
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FIG. 8: (Color online) Same as Fig. 7, but for 9-pion events.

expect, the “rounder” event is more likely, though one might
be surprised by the factor of a hundred million between the
probabilities.

Figures 5 and 6 show the Al,m’s calculated by GENBOD for
18-pion events without and with a selection of |η| < 0.5, re-
spectively. Note that this cut applies to the pions which are
used in the analysis, not to the set of particles for which en-
ergy and momentum is conserved; energy and momentum is
always conserved for the full event. Clearly visible are signif-
icant and nontrivial Al,m’s due only to EMCICs. We observe
also that the l = 4 coefficients are about an order of magnitude
smaller than the l = 2 ones; this is generically expected [cf
12]. Comparing the two figures, it is clear that kinematical se-
lection has significant effect on the EMCIC effects. Also sig-
nificant (but not shown) is whether one includes other species
(say protons) into the mix of emitted particles.

Comparison of Figs. 7, 8 and 9 makes clear the multiplicity
dependence of the EMCICs. As expected, lower multiplicity
events show a greater effect. Also (not shown), increasing the
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FIG. 9: (Color online) Same as Fig. 7, but for 6-pion events.

amount of energy to be distributed among the particles, for
fixed multiplicity, decreases EMCICs, as one expects.

Finally, we note that EMCICs can affect the correlation
function even down to very low Q, again reminding us that
we cannot (responsibly) ignore these effects in a femtoscopic
analysis.

IV. ANALYTIC CALCULATION OF EMCICS

Now then, EMCIC effects generated by GENBOD “resem-
ble” the experimental data, but it is likely unwise to use GEN-
BOD itself to correct the data for several reasons. Firstly, there
is strong sensitivity to the (not completely measured) number
and species-mix of all particles emitted in the event, includ-
ing neutrinos and possible magnetic monopoles (or, less exoti-
cally, particles escaping detector acceptance). Secondly, there
is strong sensitivity to the energy “available” in the event; it is
not obvious that this is

√
sNN of the collision. Clearly, EMCIC

effects depend on the individual momenta ~p1 and ~p2 of the
particles entering the correlation function. This will depend
on acceptance, efficiency, kinematic cuts and, to a degree,
the underlying single-particle phasespace. (While correlation
functions are insensitive to the single-particle phasespace, the
correlations which they measure may, in fact, depend on this
phasespace, due to physical effects.)

Thus, one would like to calculate EMCICs, based on the
data itself. Here, we expand upon previous results [15–17] to
write down correction factors which implement EMCICs onto
multi-particle distributions.

A. Integral correction factors

Danielewicz [15], and later Borghini, Dinh and Olli-
traut [16], considered EMCIC-type effects on two-particle
azimuthal correlations (elliptic flow v2). They considered
transverse momentum (~PT ) conservation only, but Borghini
later [17] generalized to the case of an arbitrary number D
of independent (orthogonal) spatial dimensions and very re-
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cently considered momentum conservation effects on three-
particle analyses of jet-like behavior [18].

As we shall see below, the conservation of energy generates
effects of similar magnitude as does conservation of (three-)
momentum. We deal only with on-shell particles, for which
energy cannot be treated as independent of the momentum (as,
say, px would be largely independent of py). Thus, it is far
from clear that we may simply take the D = 4 case of ref-
erence [17]. In fact, the distinction is significant in the final
result, since in D = 3⊕1, conservation of the final component
couples into the first three, unlike the D = 4 case [20].

Here, we remain in the case of interest – D = 3 spatial di-
mensions – and conserve 3-momentum ~p. We implement en-
ergy conservation and on-shell constraints a bit later.

We define [21]

f (~pi)≡ d3N
d~p3

i
(4)

as the single-particle momentum distribution unaffected by
EMCICs. Then, the k−particle distribution (k less than the
total multiplicity N) including EMCICs is

fc (~p1, ...,~pk) =

(
k

∏
i=1

f (~pi)

)
×

∫ (
∏N

j=k+1 d3~p j f (~p j)
)

δ3
(
∑N

i=1~pi
)

∫ (
∏N

j=1 d3~p j f (~p j)
)

δ3
(
∑N

i=1~pi
) (5)

(Note the difference between numerator and denominator in
the starting value of the index j on the product.)

In our case, we add in total energy conservation ∑Ei =√
s, which simply entails the replacement δ3

(
∑i~pN

i=1i
) →

δ4
(
∑N

i=1 pi−P
)

in Eq. 5, where P =
(√

s,~0
)

is the total

energy-momentum of the event, and p0
i = Ei =

√
~p2

i +m2
i is

the energy of the on-shell particle.

To apply the central limit theorem (below) to energy and
momentum, we need to integrate independently over both. We
begin by using the Lorentz-invariant distributions

f̃ (pi)≡ 2Ei
d3N
d~p3

i
= 2Ei f (pi) (6)

and simply rewriting Eq. 5 as

f̃c (p1, ..., pk) =

(
k

∏
i=1

f̃ (pi)

)
×

∫ (
∏N

j=k+1
d3~p j
E j

f̃ (~p j)
)

δ4
(
∑N

i=1 pi−P
)

∫ (
∏N

j=1
d3~p j
E j

f̃ (~p j)
)

δ4
(
∑N

i=1 pi−P
)

=

(
k

∏
i=1

f̃ (pi)

)
×

∫ (
∏N

j=k+1 d4 p jδ
(

p2
j −m2

j

)
f̃ (p j)

)
δ4

(
∑N

i=1 pi−P
)

∫ (
∏N

j=1 d4 p jδ
(

p2
j −m2

j

)
f̃ (p j)

)
δ4

(
∑N

i=1 pi−P
)

=

(
k

∏
i=1

f̃ (pi)

)
×

∫ (
∏N

j=k+1 d4 p jg(p j)
)

δ4
(
∑N

i=1 pi−P
)

∫ (
∏N

j=1 d4 p jg(p j)
)

δ4
(
∑N

i=1 pi−P
) . (7)

Thus, we arrive at an integral over four independent variables,
in which the integrand function g(p) is “highly peaked” and
with strong correlations in the 4-D p−space.

According to Eq. 7, the k-body momentum distribution, in-
cluding EMCICs, is the k-body distribution not affected by
EMCICs – i.e. just an uncorrelated product of single-particle
distributions – multiplied by a “correction factor” which en-
forces the EMCIC. The numerator of this factor just demands
that the remaining N−k on-shell particles are configured so as
to conserve total energy and momentum, and the denominator
just normalizes the distribution.

B. Application of the Central Limit Theorem

To arrive at a useful result, we wish to use the arguments
of [15–17] to apply the central limit theorem (CLT) to Eq. 7.
Those authors note that the distribution of a large number M
of uncorrelated momenta P′ = ∑M

i=1 pi is, by the Central Limit
Theorem, a Gaussian distribution

FM
(
P′

) ≡
∫ (

M

∏
i=1

d4 pig(pi)

)
δ4

(
M

∑
i=1

pi−P′
)

=
1

πσ2 exp

(
− (P′)2

2σ2

)
. (8)

Strictly speaking, it is not obvious that application of the
CLT is valid in our case. The authors of [15–17] neglect any
correlation in p-space of the single-particle distribution g(p).
This means neglecting elliptic flow and any longitudinal de-
pendence of the pT distribution. These approximations should
be fine, since the authors consider small v2, and discuss effects
of transverse momentum only. In our cases, however, g(p)
obviously has very strong correlations in the 3+1 space, due
to the on-shell constraint. It turns out [22] however, that the
correlation between the total momentum and total energy of a
system of N particles becomes quickly negligible for N & 10.
We then recognize the integral in the numerator in Eq. 7 as
the distribution of N − k momenta ∑N

j=k+1 p j = P−∑k
j=1 p j
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so that for “large enough” N− k, we find [23]

f̃c (p1, ..., pk) =

(
k

∏
i=1

f̃ (pi)

)
×

(
N

N− k

)2

· exp

[
−

3

∑
µ=0

(
∑k

i=1 (pi,µ−〈pµ〉)
)2

2(N− k)σ2
µ

]
(9)

where

σ2
µ ≡ 〈p2

µ〉−〈pµ〉2 (10)

and

〈p2
µ〉 ≡

∫
d p f̃ (p) · p2

µ. (11)

Naturally, 〈p(µ=1,2,3)〉 = 0. (In these equations, we now as-
sume only one species of particles, so that no species label
is needed for 〈p2

µ〉. This is only for simplicity of notation
here; results, including the “experimentalist’s formula” below,
only become more cumbersome to write, but are similar oth-
erwise.)

Note that even the single-particle momentum distribution is
affected by EMCICs

f̃c (pi) = f̃ (pi) ·
(

N
N−1

)2

× (12)

exp

[
− 1

2(N−1)

(
p2

i,x

〈p2
x〉

+
p2

i,y

〈p2
y〉

+
p2

i,z

〈p2
z 〉

+
(Ei−〈E〉)2

〈E2〉−〈E〉2
)]

The k-particle correlation function is defined as the mea-
sured (i.e. EMCIC-affected) k-particle yield divided by the
product of the measured single-particle yields

C (p1, ..., pk)≡ f̃c (p1, ..., pk)
f̃c (p1) · · · f̃c (pk)

=

( N
N−k

)2

( N
N−1

)2k × (13)

exp
[

−1
2(N−k)

{
∑3

µ=1

(
(∑k

i=1 p2
i,µ)

2

〈p2
µ〉

)
+ (∑k

1(Ei−〈E〉))2

〈E2〉−〈E〉2

}]

exp
[

−1
2(N−1) ∑k

i=1

{
∑3

µ=1
p2

i,µ
〈p2

µ〉 + (Ei−〈E〉)2

〈E2〉−〈E〉2

}]

An important point: EMCICs result from the constraint that
the event’s energy-momentum is the same fixed number for
all pairs in the event. This is true in the laboratory frame, but
not in LCMS or pair rest frame. Thus, while one may bin the
correlation function in the frame of one’s choice, the momenta
which appear on the right-hand-side of Eq. 13 must be in the
laboratory system.

To first order in 1/N, the two-particle correlation function
becomes

C(p1, p2) = 1− (14)
1
N

(
2
~p1,T ·~p2,T

〈p2
T 〉

+
p1,z · p2,z
〈p2

z 〉
+

(E1−〈E〉)(E2−〈E〉)
〈E2〉−〈E〉2

)

where we have taken 〈p2
x〉= 〈p2

y〉= 〈p2
T 〉/2. In what follows,

we shall refer to the first, second, and third terms within the

parentheses of Eq. 14 as the “pT term,” “pz term,” and “E
term,” respectively.

If we know N, 〈p2
T 〉, 〈p2

z 〉, 〈E2〉, and 〈E〉 from the data,
we can calculate EMCICs using Eq. 13. Better yet, if N is
large enough, then we can use Eq. 14. This is what is done in
Figs. 5-8. The black circles, blue stars, and red triangles show
the pT , pz and E terms, respectively, from the first-order ex-
pansion (Eq. 14), while the open circles and orange inverted
triangles represent the results of Eq. 14 and Eq. 13, respec-
tively.

Several observations are in order. Firstly, each of the three
terms in Eq. 14 produce non-trivial behavior of the Al,m’s, in-
terfering with each other in interesting ways. We find also that
the pz term affects A2,2; this was initially surprising since A2,2
quantifies the behavior of the correlation function in the “out-
side” plane, while ẑ is the “long” direction in the Bertsch-Pratt
system. Clearly, EMCICs projected onto a 2-particle space are
non-trivial objects.

It is seen that the first-order expansion (Eq. 14) agrees well
with the full expression (Eq. 13) well for N >∼ 10. Such
multiplicities are relevant for the p+ p measurements done at
RHIC (especially recalling that N includes all particles, even
unmeasured ones). We see also that the analytic calculations
(open circles and inverted triangles) approximate the results
of the GENBOD simulation (green squares), especially as the
multiplicity and total energy of the event increases; increas-
ing agreement for large N and Etot is expected, given the ap-
proximations leading to our analytic expressions. We observe
also that the analytically-calculated expressions respond iden-
tically to the kinematic cuts as does the simulation (c.f. Figs. 5
and 6).

Finally, the analytic calculations never reproduce exactly
the simulations; we discuss this further in the next Section.

V. AN EXPERIMENTALIST’S FORMULA

Even for large N and energy, the calculations do not ex-
actly reproduce the EMCIC effects in the simulation. One
reason for this may be found, in fact, in the definition of the
average values (e.g. 〈p2

z 〉) themselves. In Eq. 11, average
quantities are calculated using the distribution f̃ (p), which
is not affected by EMCICs. Naturally, the only measurable
distribution available to the experimentalist (even when GEN-
BOD simulations serve as the “experiment”) is f̃c(p).

Thus, it appears the experimentalist cannot plug her data
into the equations 10, 11 and 14 to fully calculate EMCICs.
However, such an ambition would have been hopeless any-
how. After all, even the total multiplicity N (again, including
photons etc) is rarely fully measured. And finite kinematic
acceptance (e.g. in η) will require extrapolation to calculate,
e.g. 〈p2

z 〉.
To the practicing femtoscopist, there is a natural solution.

Having at hand (1) educated guesses for the quantities N, 〈E2〉
etc, and (2) a physically-motivated functional form which
connects these quantities to the correlations we’d like to un-
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derstand, we perform a fit. Let us rewrite Eq. 14 as

C (p1, p2) = 1−M1 · {~p1,T ·~p2,T}−M2 · {p1,z · p2,z} (15)

−M3 · {E1 ·E2}+M4 · {E1 +E2}− M2
4

M3
.

where

M1 ≡ 2
N〈p2

T 〉
, M2 ≡ 1

N〈p2
z 〉

M3 ≡ 1
N (〈E2〉−〈E〉2) , M4 ≡ 〈E〉

N (〈E2〉−〈E〉2) . (16)

The notation {X} in Eq. 15 highlights the fact that X is a
two-particle quantity which depends on p1 and p2 (or ~q, etc):
{X}(~q). From a practical point of view, X is averaged over the
same~q bins as used for the correlation function. This involves
nothing more than adding four more histograms to the several
already being constructed by the experimentalist as she runs
through all pairs in the data. The binned functions {X} then
automatically reflect the same event and particle selection as
the correlation function.

It is appropriate here to re-emphasize the point made in ref-
erence to Eq. 13. The event’s total energy and momentum is a
fixed quantity in a fixed (e.g. lab) frame; in particular, the mo-
mentum in Eq. 13 is assumed ~P =~0 – i.e. the collision-center-
of-mass (CCM) frame is assumed. In a pair-dependent frame
(e.g. pair center-of-mass PCM or longitudinally co-moving
system LCMS), the event’s energy and momentum will de-
pend on the pair. EMCICs, therefore, must be calculated with
CCM momentum. Thus, in the function {p1,z · p2,z}(~q), p1,z
and p2,z must be calculated in the CCM frame, while the bin-
ning variable ~q should be in whatever frame one chooses to
construct the correlation function C.

The parameters Mi defined in Eq. 16, on the other hand, are
global and independent of p1 and p2. It is these which we
will use as fit parameters. The task is then fast and straight-
forward; the EMCIC part of the correlation function C(~q) is
simply a weighted sum of four functions. Indeed, one may
calculate coefficients as in Eq. 1 for the four new functions.
For example

ApZ
l,m (Q)≡ ∑

bins i
{p1,z · p2,z}(Q,cosθi,φi) · (17)

Yl,m (cosθi,φi)Fl,m
(
cosθi,∆cosθ,∆φ

)
,

etc. Then, thanks to the linearity of Eq. 15 and the orthonor-
mality of Yl,m’s, the measured Al,m’s themselves are similarly
just weighted sums of harmonics

Al,m(Q) = δl,0 ·
(
1−M2

4/M3
)−M1 ·ApT

l,m (Q) (18)

−M2 ·ApZ
l,m (Q)−M3 ·A(E·E)

l,m (Q)+M4 ·A(E+E)
l,m (Q) .

Treating Eq. 18 as a fit, we have a few (say six, for l ≤ 4)
one-dimensional functions to fit with four adjustable weights.

A first example of such a fit is shown in Fig. 10. Again
the GENBOD simulation is compared to the first-order form of
Eq. 15. The filled circles, stars and triangles show the “pT ”
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FIG. 10: (Color online) Al,m’s from 18-pion GENBOD -generated
events. Green inverted triangles (often underneath black squares)
is the correlation function (measured in PRF) from GENBOD . Filled
brown circles, filled blue stars and filled red triangles show, respec-
tively, the “pT ,” “pz,” and “E” terms, defined in Eq. 14; black filled
squares show their sum. Open symbols of the same shape and color
(identified as “FIT” in the legend) show corresponding terms, except
with weights (see Eq. 16) adjusted to maximize agreement between
the open black squares and the simulation.

(M1), “pz” (M2), and “E” (M3 and M4) terms when the weights
(Eq. 16) are calculated directly from the events, as discussed
in Section IV. Treating the Mi as adjustable parameters leads
to a slightly different weighting of the terms, and a slightly
better fit to the data.

Lest we forget, our original goal was not to understand EM-
CICs per se, but to extract the femtoscopic information from
measured two-particle correlations. Assuming that the only
non-femtoscopic correlations are EMCICs, one may simply
add the femtoscopic terms (e.g. Gaussian in (qo,qs,ql) space
or whatever) to the fitting function in Eq. 15 or 18. Common
femtoscopic fitting functions usually contain ∼ 5 parameters
(e.g. Rout ) In the imaging technique [19], one assumes the
separation distribution is described by a sum of splines (rather
than, say, a Gaussian); here, too, there are usually 4-5 fit para-
meters (spline weights). We have found that the number of fit
parameters now must be doubled to account also for EMCICs.
This is a non-trivial increase in analysis complexity. However,
we keep in mind two points.

Firstly, the increased work is necessary. EMCICs (and
possibly other important non-femtoscopic correlations) are
present and increasingly relevant at low multiplicity. One op-
tion is to ignore them, as has sometimes been done in early
high-energy experiments. However, with the new high-quality
data and desire for high-detail understanding at RHIC, ignor-
ing obvious features such as those seen in Figs. 1 and 2 is
clearly unacceptable. Perhaps a slightly better option is to
invent an ad-hoc functional form with no real physical basis
(and often manifestly wrong symmetry [cf 13]), which intro-
duces new parameters in any case. We hope that the results
here present a relatively painless, and considerably more re-
sponsible, third option.
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Secondly, while the non-femtoscopic EMCICs are not con-
fined to the large-Q region (an important point!), the femto-
scopic correlations are confined to the small-Q region. There-
fore, one hopes that the addition of four new parameters
to the fit of the correlation function will not render the fit
overly unwieldy. While we can not expect complete block-
diagonalization of the fit covariance matrix, one hopes that the
Mi are determined well enough at high Q that the femtoscopic
fit parameters can be extracted at low Q.

VI. SUMMARY

To truly claim an understanding of the bulk nature of matter
at RHIC and the LHC, a detailed picture of the dynamically-
generated geometric substructure of the system created in
heavy ion collisions is needed. It is believed that this substruc-
ture, and the matter itself, is dominated by strong collective
flow. The most direct measure of this flow is a measurement
of the space-momentum correlation (e.g. R(mT )) it generates.
The physics of this large system, and the signals it generates,
should be compared to the physics dominating p + p colli-
sions, as is increasingly common in high-pT studies at RHIC.
For the small systems, however, non-femtoscopic effects con-
tribute significantly to the correlation function, clouding the
extraction and interpretation of the femtoscopic ones.

EMCICs, correlations generated by kinematic conservation
laws, are surely present and increasingly relevant as the event
multiplicity is reduced. Using the code GENBOD to study cor-
relation functions solely driven by EMCICs, we found highly
non-trivial structures strongly influenced by event characteris-
tics (multiplicity and energy) and kinematic particle selection.

We extended the work of Danielewicz and Ollitrault to in-
clude four-momentum conservation and applied it to corre-

lation functions commonly used in femtoscopy. We found
structures associated individually with the conservation of
the four-momentum components, which interfere in nontrivial
ways. Comparison of the analytic EMCIC calculations with
the GENBOD simulation gave confidence that the approxima-
tions (e.g. “large” multiplicity N) entering into the calculation
were sufficiently valid, at least for multiplicities considered
here. We further showed that the full EMCIC calculation can
safely be replaced with a first-order expansion in 1/N.

Based on this first-order expansion, we developed a practi-
cal, straight-forward “experimentalist’s formula” to generate
histograms from the data which are later used in a generalized
fit to the measured correlation function, including EMCICs
and femtoscopic correlations.

The huge systematics of results and interest in femtoscopy
in heavy ion collisions is renewing similar interest in the
space-time signals from p+ p collisions. Direct comparisons
between the two systems are now possible at RHIC and have
already produced intriguing (albeit preliminary) results. Very
soon, p + p collisions will be measured in the LHC exper-
iments, and the heavy ion experimentalists will be eager to
apply their tools. The femtoscopic tool is one of the best in
the box – so long as we keep it sufficiently calibrated with re-
spect to non-femtoscopic effects increasingly relevant in small
systems.
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