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Rapidity Dependence of HBT Radii Based on a Hydrodynamical Model
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We calculate two-pion correlation functions at finite rapidities based on a hydrodynamical model which does
not assume explicit boost invariance along the collision axis. Extracting the HBT radii through χ2 fits in both
Cartesian and Yano-Koonin-Podgoretskiı̆ parametrizations, we compare them with experimental results from
the PHOBOS collaboration. Based on the results, we discuss longitudinal expansion dynamics.
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I. INTRODUCTION

“Perfect fluidity” of the matter created at the Relativistic
Heavy Ion Collider (RHIC) at BNL is some of the most excit-
ing news in the field of high energy nuclear physics [1]. Ex-
perimental results and their comparison with theoretical cal-
culation reveal that the matter created in Au+Au collisions
should be something like a liquid of quarks and gluons, un-
like a gas of almost free partons as naively expected [2]. One
strong piece of evidence for this finding is the observation of
large elliptic flow (v2) and its agreement with a perfect fluid-
dynamical calculation [3]. In order to reproduce the experi-
mental result with such models, an equation of state assuming
a partonic state at high temperature and a phase transition and
rapid thermalization time (τ0 ≤ 1fm/c) are required [3]. The
hydrodynamic model based on numerical solutions of the rela-
tivistic hydrodynamic equation for perfect fluid has become an
indispensable tool for theoretical analyses of relativistic heavy
ion collisions. Furthermore, the model itself has been becom-
ing more sophisticated in order to reproduce new experimen-
tal data with higher statistics. Currently, the most sophisti-
cated calculations model a full three-dimensional (solving hy-
drodynamic equation without any symmetry) hydrodynamic
expansion followed by a hadronic cascade [4, 5]. These mod-
els can reproduce most soft hadronic observables. Especially,
the simultaneous description of particle ratios, transverse mo-
mentum spectra and elliptic flow is possible with such hybrid
models.

However, there are still some insufficient ingredients in the
hydrodynamic analyses. First, we don’t have reasonable ini-
tial condition derived from first principles. Recently, the Color
Glass Condensate (CGC) has been proposed as a suitable ini-
tial condition for relativistic heavy ion collisions [6]. This
picture has been examined as an initial condition for a hydro-
dynamic model in Ref. [7] and found to give a good descrip-
tion of some observables in the case of fully hydrodynamic
description of the collision process. However, this initial con-
dition fails if one takes hadronic dissipation into account [4].
This fact suggests there is still open space for a dissipative
partonic phase, or improvement of the initial condition.
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Second, the equation of state (EoS) of QCD matter has not
yet been fully understood. Since one of the most important
merit of using a hydrodynamic model is that it can be directly
related to the EoS, detailed information on the EoS for all re-
gion of temperature and baryonic chemical potential is indis-
pensable. As for RHIC energies, the net baryon number ob-
served at midrapidity is small enough to neglect it [8]. Never-
theless, the EoS at finite baryonic chemical potential may play
an important role in the forward rapidity region and in heavy
ion collisions at lower energies. Because of the well-known
difficulty of lattice QCD at finite baryonic chemical poten-
tial [9], lattice QCD calculations have not yet provided the
complete solution. For vanishing baryonic chemical potential,
the lattice equation of state clearly shows a different behavior
from the free parton gas [10], and a lattice-inspired EoS has
been implemented in hydrodynamic calculations [11].

At last, in spite of the success in most soft observables, re-
sults of the two-pion momentum intensity correlation from
such hydrodynamical models do not yet agree with experi-
mental data. According to the symmetry of the wave function
of two identical bosons, the two-particle correlation function
can be related to sizes of the source from which particles are
emitted. This fact is known as Hanbury Brown-Twiss (HBT)
effect. Because it concerns source sizes, which depend on mo-
mentum of particle pairs due to collective flow, the pion corre-
lation function is a diagnostic tool for the space-time evolution
of the matter. Since the disagreement was first found with a
(2+1)-dimensional model with boost invariance along the col-
lision axis [12], many extensions such as an explicit longitu-
dinal expansion [13, 14], incorporating chemical freeze-out
[14], chiral model EoS [15], an opaque source [16], fluctu-
ating initial conditions and continuous freeze-out [17], have
been examined. The discrepancy has been reduced, but the
situation is still unsatisfactory. There are various possibilities
for further improvements.

So far discussion on the HBT radii at the RHIC has been
limited to midrapidity because of the acceptances of the two
experiments, STAR and PHENIX. PHOBOS also has mea-
sured the two-pion correlation function. By virtue of the
wider acceptance of the PHOBOS detector, measurements at
non-zero rapidity windows has been performed, and the data
are now available in Ref. [18]. For analyses of such data in
terms of the Cartesian parameterization [19, 20], it should be
noted that there exists an additional HBT radius called “out-
long cross term” [21] which vanishes at midrapidity due to
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the symmetry. This radius contains information on the corre-
lation between freeze-out points on the transverse plane and
those on the longitudinal direction. Hence, it is expected that
this quantity is sensitive to longitudinal expansion dynamics
beyond the boost-invariant approximation. Similar consider-
ations also hold for the Yano-Koonin-Podgoretskiı̆ parame-
trization which has three radius parameters and one velocity
parameter called YK velocity [22, 23]. The PHOBOS data
also provide rapidity dependence of the YKP radii and YK ve-
locity [18], which may impose a restriction on the longitudinal
expansion dynamics. Indeed, the initial matter distribution as
an input for hydrodynamic calculations has not yet been fixed.
This is indicated by Hirano in Ref. [24], in which two different
initial energy density distributions result in reasonable agree-
ment with experimental data of pseudorapidity distribution of
charged hadrons measured in 130A GeV Au+Au collisions at
RHIC.

In this work, we employ two different initial energy density
distributions for the hydrodynamic equations, as in Ref. [24].
We focus our discussion on central collisions. Both of them
are tuned so that they reproduce the pseudorapidity distribu-
tion of charged hadrons measured in the most central events
at 200A GeV Au+Au collisions. Then, we compare the space-
time evolution and shape of the freeze-out hypersurface of the
fluids and see how the difference in the initial condition is re-
flected onto them. We calculate the two-pion correlation func-
tion as the most promising experimental observable to see the
difference. Extracting the HBT radii through Gaussian fits, we
compare them with the experimental results and discuss the
transverse momentum and rapidity dependence of the HBT
radii. In the next section, we briefly review the hydrodynam-
ical model used in this work. Initial conditions are given in
Sec.III. In Sec. IV, we show numerical solutions of hydrody-
namical equations for the initial conditions given in Sec. III.
Results for the HBT radii as compared with the experimental
data are given in Sec. V. Section VI is devoted to a summary.

II. HYDRODYNAMICAL MODEL

The basic equation of hydrodynamical models is the
energy-momentum conservation law

∂µT µν = 0, (1)

where T µν is the energy-momentum tensor. For a perfect fluid,

T µν = (ε+P)uµuν−Pgµν, (2)

where gµν = diag(+,−,−,−) and ε, P and uµ are the energy
density, pressure and the four velocities of the fluid, respec-
tively. If one takes a conserved charge i such as baryon num-
ber and strangeness into account, the conservation law

∂µ(niuµ) = 0 (3)

is added. Providing an EoS P = P(ε,ni), one can solve these
coupled equations numerically.

In this work, we consider the baryon number charge as a
conserved charge and adopt an equation of state which ex-
hibits a first order phase transition on the phase boundary in

the T−µB plane from the free massless partonic gas with three
flavors to the free resonance gas which consists of hadrons ex-
cept for hyperons up to 2 GeV/c2 of mass with excluded vol-
ume correction[25]. See Ref.[26] for the detail. The critical
temperature Tc at vanishing baryonic chemical potential is set
to 160 MeV. This model is basically same as the one used in
Refs. [13, 16].

Defining the z-axis as the collision axis, we use a cylindrical
coordinate system (τ,ηs,r,φ) as follows;

t = τcoshηs, (4)
z = τsinhηs, (5)

rx = r cosφ, (6)
ry = r sinφ. (7)

Here, τ =
√

t2− z2 is the proper time and ηs = 1/2ln[(t +
z)/(t− z)] is the space-time rapidity. Since we focus on cen-
tral collisions, we assume an azimuthally symmetric system.
Then, by virtue of uµuµ = 1, the four velocities are given in
terms of a longitudinal flow rapidity YL and a transverse flow
rapidity YT as

uτ = cosh(YL−ηs)coshYT, (8)
uηs = sinh(YL−ηs)coshYT, (9)
ur = sinhYL. (10)

To solve the equations numerically, we employed a method
based on the Lagrangian hydrodynamics which traces flux of
the current. The numerical procedure is described in Ref. [27].
For treatment of the first order phase transition, we introduce
a fraction of the volume of the QGP phase to express the
energy density and net baryon number density at the mixed
phase [26]. In this algorithm, we explicitly solve the entropy
and baryon number conservation law. We checked that these
quantities are conserved throughout the numerical calculation
within 1% accuracy for a time step δτ = 0.01 fm/c, by choos-
ing proper mesh sizes of ηs and r directions.

III. INITIAL CONDITIONS

Firstly, we choose an initial proper time as τ0 = 1 fm/c.
Initial values for other variables are given on this hyper-
bola. Longitudinal flow rapidity is set to the Bjorken’s scaling
ansatz YL = ηs [28]. Transverse flow is simply neglected at
the initial proper time [29]. For the matter distributions, we
assume that the energy and baryon number density are pro-
portional to the number of binary collisions. Hence, for the
Woods-Saxon profile of the nucleon density in nuclei,

ρW(r,z) =
ρ0

e(
√

r2+z2−R)/ξ +1
, (11)

where R = 1.12A1/3− 0.86A−1/3 fm is the radius of the nu-
clear with mass number A, ξ = 0.54 fm is the surface diffuse-
ness and ρ0 is the normal nuclear matter density, the density
of binary collisions at vanishing impact parameter is given by

nBC(r) = σ0

[∫ ∞

−∞
dzρW(r,z)

]2

, (12)
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with σ0 being the total inelastic nucleon-nucleon cross section
which is absorbed into the proportionality constant between
nBC and matter distributions.

Then, the energy density distribution is parameterized with
a “flat+Gaussian” form,

ε(τ0,ηs,r) = ε0 exp

[
− (|ηs|−ηs0)2

2σ2
ηs

θ(|ηs|−ηs0)

]
nBC(r).

(13)
Here, nBC(r) is the normalized density of binary collisions
(12), ε0 the maximum energy density, and ηs0 and σηs are
parameters which determine the length of the flat region and
width of the Gaussian part, respectively. Similarly, the net
baryon number density distribution is parameterized as

nB(τ0,ηs,r) = nB0

{
exp

[
− (|ηs|−ηsD)2

2σ2
sD

]
θ(|ηs|−ηs0)

+exp
[
− (ηs0−ηsD)2

2σ2
sD

]
θ(ηs0−|ηs|)

}
nBC(r), (14)

where nB0 is the maximum net baryon number density and
ηsD and σsD are the shape parameters as in Eq. (13).

To calculate final particle distribution, we use the Cooper-
Frye prescription [30]. The pseudorapidity distribution for a
particle species i is given by

dNi

dη
=

di

(2π)2

∫ ∞

0
dkt

kt |k|
k0

∫

Σ
k ·dσ f (k ·u,T,µB), (15)

where kµ is the momentum of thermally produced particles i
with di being the number of degrees of freedom, the pseudo-
rapidity η defined by η = 1/2ln[(|k|+ kz)/(|k| − kz)], and
f (k ·u,T,µB) describing the the equilibrium distribution func-
tions. We take into account not only directly produced par-
ticles but also resonance decay contributions. The freeze-
out hypersurface Σ is defined by picking a constant temper-
ature, T = Tf = 140 MeV. Here, we assume that thermal and
chemical freeze-out occur simultaneously. Since experimen-
tal data of particle yields can be well described by the statisti-
cal model with high chemical freeze-out temperature close to
Tc [31], we cannot reproduce the correct particle yields with
this lower freeze-out temperature. However, in hydrodynamic
analyses, kt spectra are sensitive to the thermal freeze-out tem-
perature, which affects the transverse expansion. In this calcu-
lation, we set the freeze-out temperature so that pion kt spec-
trum is roughly reproduced in IC B and set the same freeze-
out temperature for IC A and IC B. Note that the freeze-
out temperature depends on the choice of the transverse pro-
file of the initial matter distribution because a steeper pres-
sure gradient yields larger transverse flow. For example, even
Tf ' 150− 160 MeV is possible with an initialization based
on pQCD+saturation model [32]. Our value is only slightly
different from Ref. [24], where the initial profile is very sim-
ilar. In order to reproduce both the particle yields and the
kt spectra in dynamical regimes, one should introduce sepa-
rate freeze-out temperatures [14, 33] or go to hybrid approach
[4, 5, 34, 35]. In this work, however, our main argument will
not be so affected by the description of the freeze-out because
we focus on longitudinal expansion.

TABLE I: Parameters in initial matter distributions.
ε0 [GeV/fm3] ηs0 σηs nB0 [fm−3] ηsD σsD

IC.A 23.0 1.0 1.48 0.47 2.2 0.9
IC.B 20.5 3.0 0.33 0.55 2.2 0.75

In Table I, two sets of the initial parameters are listed. The
corresponding initial energy density distributions, resultant
pseudorapidity distributions and transverse momentum distri-
butions are illustrated in Fig. 1, 2 and 3, respectively. We
have chosen two initial conditions, both of which reproduce
the experimental data of PHOBOS for the pseudo-rapidity
distribution of charged hadrons [36], and of PHENIX for the
transverse momentum distributions of π−, K− and p̄ [37], and
of BRAHMS for the rapidity distribution of net protons [38].
These two initial conditions are characterized by two parame-
ters, ηs0 and σs0. One has small ηs0 and large σs0, which we
denote initial condition A (IC.A). The other, which we rep-
resent IC.B, has the opposite feature; ηs0 is large and σs0 is
small. The initial energy densities are both much larger than
experimental estimations (∼ 5 GeV/fm3) based on Bjorken’s
formula [2], but note that ε0 in Table I is not an average energy
density but maximum energy density, which strongly depends
on the profile of initial matter distributions [39]. We calcu-
lated pseudorapidity distributions for not only these two ini-
tial conditions, but also for intermediate ones by varying ηs0
from 1.0 to 3.0, and found that they can also reproduce the ex-
perimental data by adjusting other parameters appropriately.
Perhaps the best fit will exist in the middle of this parameter
range [40]. Here, we choose the extreme cases in order to see
differences in the space-time evolution of the fluids originat-
ing from the difference in the initial conditions.

IV. SPACE-TIME EVOLUTION OF THE FLUIDS

Figures 4 and 5 show the space-time evolution of the tem-
perature distributions and deviation from the scaling solution
YL = ηs, as a function of ηs at r = 0 for various τ, respectively.
From these figures, we find that the space-time evolution at
forward rapidity is quite different between IC.A and IC.B in
spite of the fact that both solutions give similar pseudorapid-
ity distributions of hadrons. In IC.B, the sharp decrease of
temperature, which is identical to steep pressure gradient at
forward rapidity, causes rapid acceleration of the longitudinal
flow at the edge of the fluid. On the other hand, in IC.A, pres-
sure gradient is rather gradual. Hence, the resultant deviation
from the scaling solution is smaller. However, because pres-
sure gradients exist at smaller ηs in IC.A, such deviations take
place at ηs ' 1 while the flow maintains the scaling solutions
up to ηs ' 2 in IC.B. This fact explains the slightly larger ε0
in IC.A since faster longitudinal expansion than the scaling
expansion pushes entropy per unit rapidity to forward rapidity
[13, 41].

Although Figs. 4 and 5 show that there exist differences be-
tween IC.A and IC.B in the space-time evolution, it is not triv-
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FIG. 1: Initial energy density distributions
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data measured by PHOBOS are taken from Ref.[36].
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ial that such differences can survive at the freeze-out hypersur-
faces. Since hadrons strongly interact and provide informa-
tion only at thermal freeze-out, differences in the freeze-out
hypersurfaces are necessary to lead to a signature in hadronic
experimental observables.

We show the freeze-out proper time τf of all fluid elements
in Fig. 6. This characterizes the shape of the freeze-out hyper-
surface, which is expected to affect the HBT radii. In Fig. 6,
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we can see that the system expands in the transverse direc-
tion in both of the fluids. Due to the same transverse profile,
there is no apparent difference in the transverse direction. On
the other hand, the shape of the hypersurface in the ηs di-
rection shows some variations. In IC.B, expansion appears
and the freeze-out proper time is mostly constant in the broad
range of ηs, while it moderately decreases with ηs in IC.A.
This is a consequence of the different longitudinal flow profile
(Fig. 5). We also plot the deviation from the scaling solution
at the freeze-out in Fig. 7. The large deviation seen at forward
rapidity in IC.B (Fig. 5) survives until freeze-out. We will see
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how these differences affect the HBT radii in the next section.

V. HBT RADII

A. Two-pion correlation function

Assuming that the source is completely chaotic, we can cal-
culate the two-particle correlation momentum intensity corre-
lation function through this formula [42]

C2(q,K) = 1+
|I(q,K)|2

I(0,k1)I(0,k2)
, (16)

where q = k1 − k2 is the four-relative momentum and K =
1/2(k1 + k2) is the four-average momentum, with ki being
on-shell momentum of emitted pions. The interference term
I(q,K) can be chosen as

I(q,K) =
∫

Σ
K ·dσeiq·x f (u ·K,T ), (17)

so that I(0,ki) reduces to the Cooper-Frye formula [43].
Experimentally, the two-pion correlation function is de-

fined as

C2(q) =
A(q)
B(q)

, (18)

where A(q) is the measured two-pion pair distribution with
momentum difference q, and B(q) is the background pair
distribution generated from mixed events. Momentum ac-
ceptances are imposed separately in the numerator and the
denominator. Accounting for the large acceptance in the
PHOBOS experiment, 0.4 < Yππ < 1.3 for three KT bins and
0.1 < KT < 1.4 GeV/c for three rapidity bins, we integrate the
correlation function as follows:

C(q;KT) = 1+
∫ 1.3

0.4 dYππ|I(q,K)|2
∫ 1.3

0.4 dYππI(0,k1)I(0,k2)
, (19)

C(q;Yππ) = 1+
∫ 1.4

0.1 dKT KT |I(q,K)|2
∫ 1.4

0.1 dKT KT I(0,k1)I(0,k2)
. (20)

For simplicity, we consider only directly emitted pions and
neglect resonance decay contributions.

B. KT dependence of the HBT radii in the Cartesian
parametrization

Physical meaning of the HBT radii depends on the choice
of three independent components of the relative momentum
q. The most standard choice is the so-called Cartesian Bertch-
Pratt parametrization [19, 20] q = (qout,qside,qlong) in which
“long” means parallel to the collision axis, “side” perpendicu-
lar to the transverse component of the average momentum KT
and “out” parallel to KT. In the case of azimuthally symmet-
ric system as considered here, one can put KT = (KT,0) so
that qout = qx and qside = qy. Note that qlong = qz. Then, the

Gaussian form of the two-pion correlation function is given as
[21]

C2fit(q) = 1+λexp(−q2
outR

2
out−q2

sideR2
side−q2

longR2
long

−2qoutqlongR2
ol). (21)

The HBT radii Ri can be extracted by a χ2-fit to the above
fitting function. For a chaotic source, the chaoticity parame-
ter λ should become unity. However, the experimentally ob-
served chaoticity is smaller than 1 because of such contribu-
tions as long-lived resonance decay [44]. Here we fix λ = 1
in the Gaussian fit to the calculated correlation functions with
Eqs. (19) and (20).

By expanding the correlation function (16) for q · x ¿ 1,
the size parameters Ri can be related to second order moments
of the source function [21]. In the Cartesian parametrization,
taking the longitudinal co-moving system (LCMS) makes the
expression simple;

R2
out = 〈(r̃x−β⊥t̃)2〉

= 〈r̃x
2〉−2β⊥〈r̃xt̃〉+β2

⊥〈t̃2〉. (22)

R2
side = 〈r̃y

2〉, (23)

R2
long = 〈z̃2〉, (24)

R2
ol = 〈(r̃x−β⊥t̃)z̃〉, (25)

where

〈A(x)〉 ≡
∫

Σ k ·dσ f (u · k,T )A(x)∫
Σ k ·dσ f (u · k,T )

, (26)

x̃ ≡ x− 〈x〉, and β⊥ = kT/Ek. Hence, Rout, Rside and Rlong
can be interpreted as a mixture of the thickness of the source
and the emission duration, the transverse source size, and the
longitudinal source size, as seen from the LCMS, respectively.
The validity of these expressions for a hydrodynamical model
is discussed in Ref. [45]. Although they have been shown to
be good approximations, it is also pointed out that there are
still some discrepancies, and one should use fitted HBT radii
for comparison with the experimental data which are obtained
from the fit [46].

Figure 8 shows results for the four HBT radii compared
with the experimental data measured by PHOBOS [18]. For
comparison of the initial conditions, any qualitative and quan-
titative difference cannot be seen in Rout and Rside, as expected
from Fig. 6. Rlong of IC.A is about 1 fm smaller than that of
IC.B. This can be considered as a consequence of the fact that
the deviation from the scaling solution at small ηs is larger in
IC.A, because faster flow causes more thermal suppression of
the emission region [13]. For these three radii, our calcula-
tion cannot reproduce the experimental results and show sim-
ilar behavior with other perfect fluid dynamical calculations
of Ref.[12–14, 16]. Especially Rlong shows the largest devi-
ation from experimental data, although the calculation is im-
proved by including longitudinal expansion without explicit
boost invariance [13, 14]. In the bottom of Fig. 8, the result of
the out-long cross term is presented. Reflecting the uniform
shape of the freeze-out hypersurface in Fig. 6, the value of R2

ol
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FIG. 8: KT dependence of Cartesian HBT radii. Closed squares and
open squares denote our results for IC.A and IC.B, respectively. Ex-
perimental data are taken from Ref. [18]. Error-bars for the experi-
mental data are statistical only.

of IC.B is smaller than that of IC.A. At the lowest KT bin, the
difference is about 4 fm2. Unfortunately, experimental uncer-
tainty is still too large to distinguish which initial condition is
favored. However, it should be noted that both of two results
agree with the experimental data, in spite of the disagreement
of other radii.

C. Rapidity dependence of the HBT radii in the YKP
parametrization

In the YKP parametrization, three independent components
of the relative momentum q are q⊥ =

√
q2

x +q2
y , q‖ = qz =

qlong and qτ = E1−E2. Then, the Gaussian fitting correlation
function is given as

C2YKP(q) = 1+λexp
[
−R2

⊥q2
⊥−R2

‖(q
2
‖−q2

τ)

−(R2
τ +R2

‖)(q ·U)2
]
, (27)

where Uµ = γ(1,0,0,vYK), γ = 1/
√

1− v2
YK and vYK is the

fourth fitting parameter called the YK velocity. The three
HBT radii, R⊥, R‖ and Rτ are invariant under a longitudinal
boost. Physical meaning of the parameters can be given in a
similar manner [23] and becomes the simplest as follows, if
one adopt the YK frame where vYK = 0,

R2
⊥ = 〈r̃y

2〉= R2
side, (28)

R2
‖ ' 〈z̃2〉= R2

long, (29)

R2
τ ' 〈t̃2〉. (30)

The main advantage of using YKP parametrization is that the
three HBT radii directly give the transverse, longitudinal and
temporal source size, that are seen from the YK frame. How-
ever, one should note that the latter two, (29) and (30), are
approximate expressions which hold only if the source is not
opaque [45]. Hence, R‖ and Rτ cannot be always regarded
as the source sizes in the presence of strong transverse flow
which makes the source highly opaque [16]. The general ex-
pression of vYK is complicated one [23] but it can be regarded
as a longitudinal flow velocity of the source measured in an
observer’s frame.

We plot results of HBT radii for the YKP parametriza-
tion in Fig. 9. Though PHOBOS measures only at small
values of rapidity, we calculate the HBT radii for Yππ =
0.602,0.877,1.122,1.5,2.0,2.5,3.0,3.5 and 4.0 and show the
results as a prediction. For comparison between IC.A and
IC.B, R⊥ seems to barely reflect the uniform structure along
ηs direction in IC.B. While R‖ shows a difference of order 1
fm at small rapidity coming from the deviation of the scaling
solution as well as in the third panel of Fig. 8, Rτ shows little
difference and agrees with experiment. Large experimental
errors will be due to the known difficulty of the limited kine-
matic region in the YKP parameterization [47]. Because of the
large KT window of the data, it is difficult to estimate the geo-
metrical opacity effect on Rτ. If we assume this effect is small,
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FIG. 9: HBT radii for the YKP parametrization. The identification
of the symbols is the same as in Fig. 8.

a possible origin of the deviation of our result from the data is
larger emission duration. Some model calculations based on
source parametrization [48] and parametric exact solution of
hydrodynamics [49] show very small emission duration time,
0-2 fm/c in agreement with data on the bottom panel of Fig. 9.
We cannot see any significant differences in the HBT radii at
forward rapidity expected from Figs. 6 and 7 which display
the differences of the source shape and the longitudinal flow.
This will come from the fact that the number of produced par-
ticles is larger at late freeze-out proper time in the case of the
current freeze-out condition [45].

Finally, the Yano-Koonin rapidity YYK = 1/2ln[(1 +
vYK)/(1−vYK)] is shown as a function of Yππ in Fig. 10. Both
results from IC.A and IC.B surprisingly agree with the exper-

imental data and show no difference between the two. In the
forward rapidity region, our results show deviation from the
infinite boost invariant case, which is indicated by the straight
line. Although our solutions of longitudinal flow show devia-
tion from the scaling solution (Figs. 5 and 7), the result would
have to yield YYK larger than a given Yππ, if YYK correctly rep-
resents the longitudinal source velocity. Hence, this deviation
will be caused by the finite size effect [45] which becomes
more significant at forward rapidity rather than the difference
in the flow velocity.
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FIG. 10: The Yano-Koonin rapidity YYK. The identification of the
symbols is the same as in Figs. 8 and 9. The solid line indicates the
case of the infinite boost-invariant source.

VI. SUMMARY

In summary, we calculated the two-pion correlation func-
tion for two sources which are given by a hydrodynamical
model without explicitly boost invariance along the collision
axis. The two initial conditions are so chosen that both of
them give consistent pseudorapidity distribution with the ex-
perimental data and have different shape in the longitudinal di-
rection. Other model ingredient, initial transverse profile from
the binary collision model, scaling solution for initial longitu-
dinal flow, vanishing initial transverse flow, EoS with first or-
der phase transition and Cooper-Frye freeze-out prescription
with Tf = 140 MeV are the same in the two solutions. We find
that there exist some differences in the space-time evolution
of the fluids in spite of the fact that both fluids give similar
particle distribution. The HBT radii are extracted from the
two-pion correlation functions and compared with the exper-
iment. In the Cartesian parametrization, the out-long cross
term which arises at nonzero rapidities shows a difference be-
tween two initial conditions and the good agreements with the
experimental data. The correlation function is also analyzed
with the YKP parametrization. We find a small difference be-
tween the two initial conditions in R‖ which reflects deviation
from the scaling solution in the longitudinal expansion as well
as Rlong in the Cartesian parametrization. Possible sources
of this disagreement are followings: EoS of current use ex-
hibits first order phase transtion which makes the lifetime of
the fluid longer, and assumes hadronic states is in fully chem-
ical equilibrium. It is known that both crossover EoS [15] and
incorporating chemical freeze-out [14] improve the lifetime
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then Rlong and R‖. We used the conventional Cooper-Frye
prescription for the freeze-out. Improvement of the freeze-
out prescription by continuous freeze-out [11] and hybrid ap-
proach [4, 5] can yield larger Rside but this may lead to larger
Rout because of extended emission duration. Nevertheless, as
a transport calculation [50] shows, positive x− t correlation in
the source function may resolve this problem. Finally, in spite
of the disagreement of the HBT radii, the YK rapidity shows
a good agreement with the experimental data. Our calculation
predicts some deviations at larger rapidities from the infinite
boost-invariant case. Hence, measurements at this region is

needed for further understanding of the expansion dynamics.
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arXiv:hep-ph/0606074 .
[41] K. J. Eskola, K. Kajantie, and P. V. Ruuskanen, Eur. Phys. J. C

1, 627 (1998).
[42] E. V. Shuryak, Phys. Lett. B 44, 387 (1973).
[43] S. Chapman, U. Heinz, Phys. Lett. B 340, 250 (1994).
[44] K. Morita, S. Muroya, and H. Nakamura, Prog. Theor. Phys.

114, 583 (2005); ibid, 116, 329 (2006). See also references
therein.

[45] K. Morita, S. Muroya, H. Nakamura, and C. Nonaka,
Phys. Rev. C. 61, 034904 (2000).

[46] E. Frodermann, U. Heinz, and M. A. Lisa, Phys. Rev. C 73,
044908 (2006).
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