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The decoupling surface in relativistic heavy-ion collisions may not be homogeneous. Rather, inhomogeneities
should form when a rapid transition from high to low entropy density occurs. We analyze the hadron “chem-
istry” from high-energy heavy-ion reactions for the presence of such density inhomogeneities. We show that
due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potential
such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental
data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of
inhomogeneities and the role of local and global strangeness neutrality.
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I. INTRODUCTION

In relativistic collisions of heavy nuclei very hot and baryon
dense QCD matter is produced [1]. In particular, it is expected
that at sufficiently high energies, a transient state of decon-
fined matter with broken Z(3) center symmetry and/or with
(approximately) restored chiral symmetry is present. Lat-
tice QCD simulations [2] indicate that a second-order criti-
cal point exists, which was predicted by effective chiral La-
grangians [3]; present estimates locate it at T ≈ 160 MeV,
µB ≈ 360 MeV. This point, where the σ-field is massless, is
commonly assumed to be the endpoint of a line of first-order
phase transitions in the (µB,T ) plane. To detect that endpoint,
it is hoped that by varying the beam energy, for example, one
can “switch” between the regimes of first-order phase tran-
sition and cross over, respectively. If the particles decou-
ple shortly after the expansion trajectory crosses the line of
first order transitions one may expect a rather inhomogeneous
(energy-) density distribution on the freeze-out surface [4, 5]
(similar, say, to the CMB photon decoupling surface observed
by WMAP [6]). On the other hand, if the low-temperature and
high-temperature regimes are smoothly connected, pressure
gradients tend to wash out density inhomogeneities. Similarly,
in the absence of phase-transition induced non-equilibrium ef-
fects, the predicted initial-state density inhomogeneities [7, 8]
should be strongly damped.

Thus, we investigate the properties of an inhomogeneous
fireball at (chemical) decoupling. Note that if the scale of
these inhomogeneities is much smaller than the decoupling
volume then they can not be resolved individually, nor will
they give rise to large event-by-event fluctuations. Because of
the nonlinear dependence of the hadron densities on T and µB,
they should nevertheless reflect in the average abundances.

Our basic assumption is that as the fireball expands and
cools, at some stage the abundances of hadrons “freeze”,
keeping memory of the last instant of chemical equilibrium.
This stage is referred to as chemical freeze-out. By definition,
only processes that conserve particle number for each species
individually, or decays of unstable particles may occur later
on. The simplest model is to treat the gas of hadrons within the

grand canonical ensemble, assuming a homogeneous decou-
pling volume. The abundances are then determined by two pa-
rameters, the temperature T and the baryonic chemical poten-
tial µB; the chemical potential for strangeness is fixed by the
condition for overall strangeness neutrality. Fits of hadronic
ratios were performed extensively [9, 10] within this model,
sometimes also including a strangeness (γs) or light quark (γq)
suppression factor [11, 12] or interactions with the chiral con-
densate [13].

In [14] we analyzed the experimental data on relative abun-
dances of hadrons with respect to the presence of inhomo-
geneities on the decoupling surface. To that end we proposed
a very simple and rather schematic extension of the com-
mon grand canonical freeze-out model, i.e. a superposition
of such ensembles with different temperatures and baryon-
chemical potentials. Each ensemble is supposed to describe
the local freeze-out on the scale of the correlation length
∼ 1/T ∼ 1− 2 fm. Even if freeze-out occurs near the crit-
ical point, the correlation length of the chiral condensate is
bound from above by finite size and finite time effects, effec-
tively resulting in similar numbers [15]. On the other hand,
for small chemical potential, far from the region where the
σ-field is critical, the relevant scale might be set by the cor-
relation length for Polyakov loops, which is of comparable
magnitude [16]. Classical nucleation theory for strong first-
order phase transitions predicts even larger “bubbles” [17] but
is unlikely to apply to small, rapidly expanding systems en-
countered in heavy-ion collisions [5, 18]. Another (classical)
model for the formation of small droplets in rapidly expanding
QCD matter has been introduced in [19]. The entire decou-
pling surface contains many such “domains”, even if a cut on
mid-rapidity is performed. We therefore expect that the dis-
tributions of temperature and chemical potential are approxi-
mately Gaussian [20]. Besides simplicity, another goal of the
present analysis is to avoid reference to a particular dynami-
cal model for the formation or for the distribution of density
perturbations. In fact, we presently aim merely at checking
whether any statistically significant signal for the presence of
inhomogeneities is found in the data. If so, more sophisti-
cated dynamical models could be employed in the future to
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understand the evolution of inhomogeneities from their possi-
ble formation in a phase transition until decoupling.

Rate equations for nuclear fusion and dissociation
processes (and neutron diffusion) have been used for inhomo-
geneous big bang nucleosynthesis in the early universe [21].
Similarly, hadronic cascade models could be used for heavy-
ion reactions [22]. This would remove reference to the grand-
canonical ensemble and to a thin decoupling surface in space-
time. In fact, hadronic binary rescattering models do pre-
dict a rather thick freeze-out layer [22, 23], where matter
expands non-ideally. On the other hand, the steep drop of
multi-particle collision rates with temperature should narrow
the freeze-out again [24]. In either case, we do not expect
a strong energy dependence of the width of freeze-out (see
also [25]).

At chemical freeze-out, matter is in a state of expansion.
However, such flow effects do not affect the relative abun-
dances of the particles (in full phase space) if their densities
are homogeneous throughout the decoupling volume. The to-
tal number of particles of species i, integrated over a solid
angle of 4π, is given by an integral of the current Nµ

i = ρi uµ,
with uµ the four-velocity of the expanding fluid, over a given
freeze-out hypersurface σµ = (tfo,~x fo):

Ni =
∫

dσµNµ
i = ρi(T fo,µfo

B )
∫

uµdσµ . (1)

The second factor on the r.h.s. is nothing but the three-volume
V3 of the decoupling hypersurface as seen by the observer.
This volume is common to all species and drops out of mul-
tiplicity ratios: Ni/N j = ρfo

i /ρfo
j . It is clear that the argument

holds even when cuts in momentum space are performed, pro-
vided that the differential distributions of all particles do not
depend on that particular momentum-space variable (for ex-
ample, rapidity cuts for boost invariant expansion [26]).

When the intensive variables T and µB vary, then the in-
tegration measure (

∫
u · dσ)/V3 will, in general, depend on

the assumed distribution and amplitude of inhomogeneities,
as well as on the hydrodynamic flow profile etc. Nevertheless,
it is still the same for all particle species and so can be written
in the form

1
V3

∫
u ·dσ−→

∫
dT dµB P(T,µB) , (2)

with P(T,µB) some distribution for T and µB. For simplic-
ity, and for lack of an obvious motivation for assuming oth-
erwise, we shall take P(T,µB) to factorize into a distribution
for T , times one for µB. These distributions could, in prin-
ciple, be obtained from the real-time evolution of the phase
transition [4, 5].

II. THE MODEL

In [14] we introduced our model to analyze the available
data from heavy-ion collisions at CERN-SPS and BNL-RHIC.
There the hadron abundances are determined by four parame-
ters: the arithmetic means of the temperatures and chemical
potentials of all domains, T and µB, and the widths of their

Gaussian distributions, δT and δµB. Of course, the densities
of strange particles depend also on the strangeness-chemical
potential µS, which we determined in [14] by imposing local
strangeness neutrality. That means, the strange chemical po-
tential in each single domain was fixed by demanding zero net
strangeness there. However, the effect of independent fluctua-
tions of µS should also be looked at, in particular for collisions
at low and intermediate energies (

√
sNN

<∼15 GeV). This may
help for example to reproduce the Λ to p ratio, which was
found to be larger than one [28] and the K+/π+ enhancement
around

√
sNN = 7.6 GeV [29]. Allowing for such independent

fluctuations, the hadron abundances depend on six parame-
ters: the arithmetic means of the temperatures and chemical
potentials of all domains, T ,µB and µS, and the widths of their
Gaussian distributions, δT,δµB and δµS. They read:

ρi (T ,µB,µS,δT,δµB,δµS) =
∞∫

0

dT P(T ;T ,δT )

∞∫

−∞

dµB P(µB;µB,δµB)
∞∫

−∞

dµS P(µS;µS,δµS)×

ρi(T,µB,µS), (3)

with ρi(T,µB,µS) the actual “local” density of species i,
and with P(x;x,δx)∼ exp[−(x− x)2/2δx2] the distribution of
temperatures and chemical potentials within the decoupling
three-volume (the proportionality constants normalize the dis-
tributions over the intervals where they are defined). In ad-
dition, strangeness conservation enters now as a global con-
straint for the mean of the strange chemical potential µS:

fs = ∑
i

ρi (T ,µB,µS,δT,δµB,δµS)(ni
s−ni

s) = 0, (4)

with fs the net-strangeness, ni
s,n

i
s the number of strange and

anti-strange quarks of hadron species i, respectively. That
means, the global densities obtained for given values of tem-
perature and chemical potential parameters weighted with the
corresponding net number of strange quarks are summed and
demanded to vanish to guarantee strangeness neutrality. In the
limit δT , δµB,δµS → 0 the Gaussian distributions are replaced
by δ-functions and the conventional homogeneous freeze-out
scenario is recovered:

ρi (T ,µB,µS,0,0,0) = ρi(T ,µB,µS), (5)

and the corresponding strangeness neutrality condition fixing
µS. In other words, in that limit the average densities are
uniquely determined by the first moments of the distribution
functions P(T ;T ,δT ) and P(µB;µB,δµB). For the present in-
vestigation, we set the width of the distribution for the strange
chemical potential equal to zero, δµS = 0. Since eq.(4) only
ensures global strangeness neutrality, in this limit still finite
net strangeness values in individual domains will appear, in
contrast to our former analysis, where we fixed µS by fs = 0
locally. It is important to note that with setting δµS = 0 and the
global constraint eq. 4 for µS, the densities again are a func-
tion of four parameters: T ,µB,δT and δµB. Thus we will write
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all quantities again as a function of these four parameters only.
In the following we will investigate how the fits to the exper-
imentally measured particle abundances are influenced by the
different strangeness neutrality conditions [31].

For the present analysis we compute the densities ρi(T,µB)
in the ideal gas approximation, supplemented by an “excluded
volume” correction:

ρi(T,µB) =
ρid−gas

i (T,µB)

1+ vi ∑ j ρid−gas
j

. (6)

This schematic correction models repulsive interactions
among the hadrons at high densities. Here, vi denotes the vol-
ume occupied by a hadron of species i; we employ v = 4

3 πR0
3

with R0 = 0.3 fm for all species [27]. Therefore, for the ho-
mogeneous model the denominator in (6) drops out of mul-
tiplicity ratios. This is not the case for an inhomogeneous
decoupling surface, where the distributions of various species
differ. For all fits over the full solid angle, we fixed the isospin
chemical potential by equating the total charge in the initial
and final states; for the mid-rapidity fits at high energies, we
fixed µI = 0.

To illustrate the effect of inhomogeneities on the distrib-
utions of various hadrons within the decoupling volume we
introduce

Di(T ;T ,µB,δT,δµB) = P(T ;T ,δT )

×

∞∫
−∞

dµB P(µB;µB,δµB) ρi(T,µB)

ρi (T ,µB,δT,δµB)
, (7)

Di(µB;T ,µB,δT,δµB) = P(µB;µB,δµB)

×

∞∫
0

dT P(T ;T ,δT ) ρi(T,µB)

ρi (T ,µB,δT,δµB)
. (8)

Di(T ), for example, is the probability that a particle of type
i was emitted from a domain of temperature T . The main
contribution to the integrals in (3) is not from T and µB since
hot spots shine brighter than “voids”. Rather, they are dom-
inated by the stationary points of the distributions defined in
eqs. (7,8) above. Hence, the average emission temperature
〈T 〉i and baryon-chemical potential 〈µB〉i in general depend
on the particle species i, unless δT = δµB = 0. They can be
evaluated as

〈T 〉i =
∞∫

0

dT T Di(T ;T ,µB,δT,δµB) ,

〈µB〉i =
∞∫

−∞

dµB µB Di(µB;T ,µB,δT,δµB) . (9)

Physically, this means that for non-zero widths of the temper-
ature and chemical potential distributions the freeze-out vol-
ume is not perfectly “stirred”, in that the relative concentra-
tions of the particles vary.

III. DATA ANALYSIS

To determine the four parameters of the model we minimize

χ2 = ∑
i

(
rexp

i − rmodel
i

)2
/σ2

i (10)

in the space of T , µB, δT , and δµB. That is, we obtain least-
square estimates for the parameters, assuming that they are
independent. In (10), rexp

i and rmodel
i denote the experimen-

tally measured and the calculated particle ratios, respectively,
and σ2

i is set by the uncertainty of the measurement. Wherever
available, we sum systematic and statistical errors in quadra-
ture.

The data used in our analysis are the particle multiplici-
ties measured by the NA49 collaboration for central Pb+Pb
collisions at

√
sNN = 6.3, 7.6, 8.8, 12.3 and 17.3 GeV [29],

and those measured by STAR for central Au+Au collisions at
BNL-RHIC, ref. [30] (

√
sNN = 130 GeV, compiled in [32])

and ref. [33] (200 GeV). At RHIC energies, we analyze the
midrapidity data; at top SPS energy, both, midrapidity and 4π
data. At all other energies, we restrict ourselves to the 4π solid
angle data by NA49 in order to avoid biases arising from dif-
fering acceptance windows of various experiments. Further-
more, our checks showed that the fit results can depend some-
what on the actual selection of experimental ratios. Hence,
where possible, we have opted for the least bias by choosing
rexp

i = Nexp
i /Nexp

π , i.e. the multiplicity of species i relative to
that of pions. This represents the maximal set of independent
data points, as it is equivalent to fitting absolute multiplicities
with an additional overall three-volume parameter, Ni = V3ρi.

Specifically, at
√

sNN = 6.3, 7.6, and 12.3 GeV the multi-
plicities of π+, π−, K+, K−, B−B, Λ, Λ, and φ are available.
For the (in-)homogeneous model, this leaves five (three) de-
grees of freedom. At

√
sNN = 8.8 GeV, we can add the Ξ− and

Ω + Ω. The data sets for top SPS energies include yet a few
more species: p, p (only midrapidity), K0

S (only 4π), Ξ+ and
Ω, Ω separately. For RHIC-130, we fitted to the K+/K−, p/p,
Λ/Λ, Ξ+/Ξ−, Ω/Ω, K−/π−, K0

S /π−, p/π−, Λ/π−, K∗
0 /π−,

φ/π−, Ξ−/π− and Ω/π− ratios. Finally, at RHIC-200 the
K+/K−, p/p, Ω/Ω, K−/π−, p/π−, Λ/π−, Λ/π−, Ξ−/π−,
Ξ+/π−, Ω/π−, φ/K− and K∗

0 /K− ratios were used. The first
three ratios are close to unity and essentially just set the chem-
ical potentials to zero; they do not help to fix T , δT and δµB.

Where appropriate, feeding from strong and electromag-
netic decays has been included in rmodel

i by replacing ρi →
ρi + Bi j ρ j. The implicit sum over j 6= i runs over all unsta-
ble hadron species, with Bi j the branching ratio for the decay
j → i, which were taken from [34]. From all the resonances
listed by the Particle Data Group [34], mesons up to a mass of
1.5 GeV and baryons up to a mass of 2 GeV were included, re-
spectively. The finite widths of the resonances were not taken
into account, and unknown branching ratios were excluded
from the feeding. These details are irrelevant for the quali-
tative behavior of δT and δµB but do, of course, matter for
quantitative results.
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IV. RESULTS

√

sNN [GeV]

FIG. 1: (Color online) χ2/do f versus
√

sNN for the homogeneous
(δT = δµ = 0, squares) and the inhomogeneous fit (δT and δµ free
parameters, circles and triangles). Circles denote the case of local
strangeness neutrality, while triangles represent the global strange-
ness neutrality case. The lines are meant to guide the eye. Further-
more, the χ2/do f corresponding to the 95.4% confidence interval is
shown by the dotted line.

Fig. 1 shows the minimal χ2 per degree of freedom (taken
as the number of data points minus the number of parame-
ters) for the homogeneous approach and the inhomogeneous
approach with local or global strangeness neutrality, respec-
tively. Note that the χ2-values for the homogeneous model
are in general agreement with the analysis done in [9] and
other data from the literature [10, 11, 33]. As already shown
in [14] and in general accordance with the analysis done in
[9], for energies,

√
sNN ' 7.6−17.3 GeV, χ2/do f is consid-

erably smaller for the inhomogeneous freeze-out surface than
for the homogeneous case, which is far outside the 95.4%
confidence interval [35]. At

√
sNN = 6.3 GeV and at RHIC

energies, χ2/do f is similar for the inhomogeneous approach
with local strangeness neutrality and the homogenous model.
However, between

√
sNN = 6.3 and 12.3 GeV the χ2/do f

values for the inhomogeneous approach with local strange-
ness neutrality are rather large (between 2 and 4). In contrast,
the inhomogeneous model with global strangeness neutrality
gives χ2/do f ≈ 1 for

√
sNN = 6.3− 17.3 GeV. It is impor-

tant to note that this result is not due to introducing an addi-
tional parameter, but just due to allowing for domains of finite
strangeness with global strangeness neutrality! The calcula-
tions using global strangeness conservation for RHIC ener-
gies are under way, but due to the corresponding small baryon
chemical potentials at these high energies no considerable ef-
fect should be expected. Thus, the inhomogeneous model al-
lowing for domains of finite net strangeness gives a very sat-
isfactory description (χ2/do f ≈ 1) of the experimental data
for particle abundance ratios from lowest SPS energies up to
highest RHIC energies. However, at RHIC the homogeneous
approach already gives a good description of the data and the
inhomogeneous model does not provide a statistically signif-
icant improvement. Thus, the assumption of a nearly homo-

geneous decoupling surface can not be rejected there. On the
other hand, the considerable improvement of the description
of the data for

√
sNN ' 7.6−17.3 GeV indicates that at inter-

mediate and high SPS energies, the experimental data favor an
inhomogeneous freeze-out surface. For the SPS

√
sNN = 6.3

GeV data the situation is not clear: there is certainly a reduc-
tion of the χ2/do f in the inhomogeneous approach, but also
the homogeneous model gives a much better value than for
higher SPS energies. Here more experimental data are neces-
sary to clarify the picture. It is worth noting that in general,
the improvement due to the inhomogeneous decoupling sur-
face is not driven by one single species; rather, the inhomo-
geneous model describes nearly all multiplicities better than a
homogeneous decoupling surface [36].

To illustrate the significance of inhomogeneities differently,
we show contours of χ2/do f in the plane of δT , δµB in Figs.2,
3, and 4. Here, T and µB were allowed to vary freely such as
to minimize χ2 at each point. Fig. 2 shows that at RHIC en-
ergy, χ2 is very flat in both directions. This shows again that
with the present data points, a homogeneous freeze-out model
appears to be a reasonable approximation at high energies. In

FIG. 2: χ2/do f contours in the δT , δµB plane for top RHIC energy,
(
√

sNN = 200 GeV). The other two parameters (T , µB) are allowed
to vary freely. The χ2/do f minimum is indicated by the cross.

contrast, Fig. 3 shows that χ2 is relatively flat along the δµB di-
rection, while δT is determined more accurately and is clearly
non-zero. In general we find that in the approach with lo-
cal strangeness neutrality there is little correlation between δT
and δµB and that about the minimum, χ2 is rather flat in δµB
direction for all energies. Finally, Fig. 3 shows the contours
at SPS

√
sNN = 17.3 GeV for the case of global strangeness

neutrality. Now, the χ2 determines the δµB more accurately,
favoring relatively large finite values. For δT , again, values
different from zero are strongly favored, which, however, turn
out to be generally a little bit smaller than in the local fs = 0
case. The better description of the data and the better accu-
racy in determining the width of the µB-distribution can be ex-
plained as follows: If vanishing net strangeness is demanded
in each single domain, in regions with high baryon chemi-
cal potential the strange chemical potential has to be small to
guarantee fs = 0. Thus, the possible increased production of
strange particles in domains with high baryon chemical po-
tential is restricted and results in the shown flatness of the χ2



1018 Brazilian Journal of Physics, vol. 37, no. 3A, September, 2007

FIG. 3: Same as Fig. 2 for top SPS energy (
√

sNN = 17.3 GeV) with
local strangeness neutrality.

FIG. 4: Same as Fig. 2 for top SPS energy (
√

sNN = 17.3 GeV) with
global strangeness neutrality.

distribution in δµB direction. In contrast, if the net strange-
ness vanishes globally, in domains of high chemical potential
resulting from a large width δµB, a large number of strange
particles can be produced. Thus, the χ2 should be much more
sensitive to the value of δµB.

As already discussed above, an inhomogeneous freeze-out
surface or finite values for the width-parameters result in dif-
ferent mean emission temperatures and chemical potentials
for different particle species, c.f. eq. 9. These are shown
in Fig. 5 for the case of local strangeness neutrality and in
Fig. 6 for the case of global strangeness neutrality at selected
energies in the CERN-SPS range. For the cases shown, the
inhomogeneities determined from the fits to the particle abun-
dances are large. Note that the different values for these mean
emission temperatures and chemical potentials result from the
convolution of the distribution function for a given particle
species with the Gaussian probability distribution determined
by the four parameters T ,µB,δT,δµB. For both cases, the
effect of the inhomogeneities is evident. For example, anti-
protons are typically emitted from regions with lower baryon-
chemical potential than protons; also, heavy particles are con-
centrated in “hot spots” while light pions are distributed more
evenly throughout the decoupling volume etc. [37]. Figures 5
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FIG. 5: (Color online) Freeze-out temperatures 〈T 〉i and chem-
ical potentials 〈µB〉i of various particle species at

√
sNN =

8.8,12.3,17.3 GeV (corresponding to ELab = 40,80,158 GeV) for
local strangeness neutrality.
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FIG. 6: (Color online) Freeze-out temperatures 〈T 〉i and chem-
ical potentials 〈µB〉i of various particle species at

√
sNN =

8.8,12.3,17.3 GeV (corresponding to ELab = 40,80,158 GeV) for
global strangeness neutrality.

and 6 also show the differences in the resulting mean emission
temperatures and chemical potentials, depending on whether
local or global strangeness neutrality is adopted: In the case of
local strangeness neutrality, the emission chemical potentials
of baryons and the corresponding anti-baryons do differ much
less than in the case of globally vanishing net-strangeness.
For example the mean emission baryon chemical potential for
the Ω and the Ω are nearly identical for fs = 0 locally, while
they are widely separated for the global constraint. This re-
sults from the above discussed effect of the adjustment of the
strange chemical potential in the local case. There, µS is so
small (large negative value) in regions with large µB, that the
resulting chemical potential of Ω and Ω are similar. This is
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not the case anymore if the strange chemical potential is deter-
mined globally and constant for the different domains. Then,
the mean freeze-out points for the different particle species are
spread over a much wider range in the T − µB-plane. On the
other hand, the spread in temperature is somewhat larger in
the local case than for global strangeness neutrality, resulting
from the larger best fit values for the width parameters δT .

V. SUMMARY AND OUTLOOK

In summary, we have shown that inhomogeneities on the
freeze-out hypersurface do not average out but reflect in the
4π (or midrapidity), single-inclusive abundances of various
particle species. This is due to the non-linear dependence of
the hadron densities ρi(T,µB) on the local temperature and
baryon-chemical potential. Consequently, even the average ρi
probe higher moments of the T and µB distributions. In [14]
we showed that an inhomogeneous freeze-out model with lo-
cal strangeness conservation strongly improves the descrip-
tion of the data at medium and top SPS energies compared
to the homogeneous freeze-out. Here we showed that induc-
ing global strangeness neutrality, results, without adding an
additional parameter, in a further reduction of the χ2 at SPS
energies. With the resulting χ/do f ≈ 1 for the whole range
- from lowest SPS to highest RHIC energies. Furthermore,
while for local strangeness neutrality we observed a rather flat
χ2/do f in δµB direction, this is determined more accurately if
strangeness neutrality is ensured only globally. Rather in this
approach a high statistical significance for a finite width of
the distributions for temperature and baryon chemical poten-
tial at medium and high SPS energies is observed. In addition
we showed how in this region the mean emission temperature
and chemical potential vary for different particle species. Our
results also show that there are some characteristic differences
in the distribution of the resulting mean emission values, de-
pending on whether strangeness neutrality is fulfilled locally

or globally. Especially the separation in the mean emission
chemical potential between baryons and the corresponding
anti-baryons is strongly influenced by the adopted strangeness
neutrality condition.

Inhomogeneities could also affect the coalescence proba-
bilities of (anti-) nucleons to light (anti-) nuclei, which are
also sensitive to density perturbations [39]. Other signals,
such as two-particle correlations [8, 40], could also be ana-
lyzed in this regard. Future studies should shed more light on
whether these inhomogeneities can indeed be interpreted as
fingerprints of a first-order phase transition. Eventually, one
would want to establish more quantitative relations between
the amplitudes of the T , µB inhomogeneities and the proper-
ties of the phase transition, e.g. its latent heat and interface
tension.

Data from GSI-FAIR, the low energy program at RHIC and
and CERN-LHC will provide additional constraints for the
evolution of chemical freeze-out with energy.

To improve the quality of the statistical fits, more data on
hadron multiplicities would be helpful, in particular at the
lower end of the CERN-SPS energy spectrum and at RHIC.
This includes estimates of multiplicities of unstable reso-
nances (ρ, K∗, ω, ∆ ...) at chemical freeze-out [41]. Data
from GSI-FAIR and CERN-LHC will provide additional con-
straints for the evolution of chemical freeze-out with energy.
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[32] J. Cleymans, B. Kämpfer, M. Kaneta, S. Wheaton, and N. Xu,
Phys. Rev. C 71, 054901 (2005).

[33] O. Barannikova [STAR Collaboration], arXiv:nucl-
ex/0403014; J. Adams et al. [STAR Collaboration], arXiv:nucl-
ex/0501009; J. Adams et al. [STAR Collaboration], Phys. Rev.
Lett. 92, 112301 (2004) [arXiv:nucl-ex/0310004];

[34] S. Eidelman et al. [Particle Data Group Collaboration], Phys.
Lett. B 592, 1 (2004).

[35] For SPS
√

sNN = 17.3 GeV only the 4π fit is shown; restrict-
ing the homogeneous fit to the mid-rapidity data gives smaller
χ2/do f , but still significantly higher than in the inhomogeneous
approach. χ2 is smaller if other particle ratios are considered,
as for example Ξ/Λ,Ω/Ξ instead of Ξ/π,Ω/π [9] or if finite
widths of resonances are taken into account [12]. However, the
increase of χ2 at SPS energies is generic if Na49 4π-data are
fitted.

[36] D. Zschiesche, arXiv:nucl-th/0505054, Fig. 7.
[37] Note that the rather high temperatures of the hot spots from

which the heavy particles emerge might indicate the need for a
better treatment of interactions [13] than the simple excluded-
volume model employed here.

[38] E. V. Shuryak and M. A. Stephanov, Phys. Rev. C 63, 064903
(2001); M. Abdel-Aziz and S. Gavin, Phys. Rev. C 70, 034905
(2004).

[39] see e.g. eq. (30) in B. L. Ioffe, I. A. Shushpanov, and
K. N. Zyablyuk, Int. J. Mod. Phys. E 13, 1157 (2004);

[40] H. Heiselberg and A. D. Jackson, arXiv:nucl-th/9809013;
S. J. Lindanbaum, R. S. Longacre, and M. Kramer, arXiv:nucl-
th/0304082; W. N. Zhang, S. X. Li, C. Y. Wong, and M. J. Efaaf,
Phys. Rev. C 71, 064908 (2005).

[41] C. Markert, J. Phys. G 31, S169 (2005).
[42] C. Beck, Phys. Rev. Lett. 87, 180601 (2001); C. Beck and E.

G. D. Cohen, Physica A 322, 267 (2003); H. Touchette and
C. Beck, Phys. Rev. E 71, 016131 (2005).


