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Anomalous Diffusion of Pions at RHIC
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2Instituto de Fı́sica Teórica - UNESP,
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After pointing out the difference between normal and anomalous diffusion, we consider a hadron resonance
cascade (HRC) model simulation for particle emission at RHIC and point out that rescattering in an expanding
hadron resonance gas leads to a heavy tail in the source distribution. The results are compared to recent PHENIX
measurements of the tail of the particle emitting source in Au+Au collisions at RHIC. In this context, we show
how can one distinguish experimentally the anomalous diffusion of hadrons from a second order QCD phase
transition.
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“ It does not make any difference
how beautiful your guess is.
It does not make any difference
how smart you are,
who made the guess, or what his name is -
if it disagrees with experiment, it is wrong.”

/R.P. Feynman/

I. INTRODUCTION

Various new techniques are being developed in a vibrant
and inspiring, sometimes challenging and puzzling sub-field,
named recently by Lednicky [1] as correlation femtoscopy.
A series of inspiring and stimulating recent reviews [2–6] re-
connected femtoscopy to the search of new phases of QCD
as well as other new, sometimes unexpected, sometimes puz-
zling expectations and observations. One of these new ex-
perimental results has been a recent PHENIX measurement
of source images in Au+Au collisions at

√
sNN = 200 GeV

that found evidence for a non-Gaussian structure and a heavy
(larger than Gaussian) tail in the source distribution for pions
[7]. This points to an interesting new direction, going beyond
investigating only the means and the variances of the source
distributions on the scales of femtometers.

Resonance decays are known to be able to produce long,
non-Gaussian tails, because some of the resonances have large
decay times as compared to the characteristic 4-5 fm/c source
sizes extracted from interferometric measurements in Au+Au
collisions at RHIC. In fact, a smaller and smaller fraction of
resonances have larger and larger life-times, and this effect
was considered first by Białas [8] who argued that even a
cut power-law correlation functions may appear, due to the
fact that the decay times of pion producing resonances have a
broad probability distribution. Another possible conventional
source for such a heavy tail of the source of pions might be
the elastic rescattering of the produced hadrons: as the hadron
gas expands, the system becomes cooler and more and more

diluted, hence the mean free path becomes larger and larger.
In many hydrodynamical calculations, an idealized freeze-out
process is assumed, when the mean free path suddenly jumps
from 0 (the hydrodynamic limit) to infinity (the freeze-out
limit). More realistically, the mean free path diverges to in-
finity in a finite time interval, and rescattering in a time de-
pendent mean free path system is known to lead to new phe-
nomena, which has been studied in great detail under the name
of anomalous diffusion in other branches of physics. One of
the experimentally observed characteristics of such an anom-
alous diffusion pattern was the appearance of approximately
power-law shaped tails in the coordinate space distributions,
which is to be contrasted to the Gaussian, strongly decay-
ing tails observed in normal diffusion or in Brownian motion.
We shall explore the phenomena of anomalous diffusion in
the context of heavy ion physics, first pointing out its gen-
eral mathematical properties and its relations to Lévy source
distributions, following the review of Klafter and Metzler on
anomalous diffusion [9]. Then we shall explore anomalous
diffusion of pions, kaons and protons in Au+Au collisions at√

sNN = 200 GeV colliding energies using the simplest pos-
sible tool, namely the conventional Hadronic Resonance Cas-
cade (HRC) model of Tom Humanic [10]. First we compare
the results of this HRC simulation with PHENIX data. Then
we investigate the sensitivity of the characteristics of the sim-
ulation for various experimentally available controls, like the
selection of the centrality class of the events or the selection
of a transverse momentum region of the pair. Finally we sum-
marize and conclude. As a starting point, let us consider a
simplified version of the presentation in ref. [9], to review
the equations of normal and anomalous diffusions in the same
framework, based on a master equation approach.

II. NORMAL DIFFUSION

Normal diffusion corresponds to a physical process when
one investigates the motion of a test particle in a medium,
which has some grid like structure with fixed (say, ∆x) lattice



M. Csanád, T. Csörgő, and M. Nagy 1003

constant, (equidistant cells) and jumps (of a fixed frequency)
are allowed to nearest neighboring cells. Let us for simplic-
ity consider a one dimensional, normal diffusion process in
the framework of master equation approach. The time is de-
noted by t. A test particle is initially located at a given cell,
denoted by j = 0. Different cells are indexed by the inte-
ger j ∈ Z. The probability distribution of finding the particle
in cell j at time t is denoted by Wj(t). (Note that Wj(t) can
be considered as analogous to the particle emission function
S(x, t), that we frequently encounter in particle interferome-
try and femtoscopy.) Suppose that particles may jump from
the given cell to its nearest neighbors, randomly up and down,
at certain regular but small time intervals ∆t. The continuum
limit means ∆t → 0, ∆x→ 0 in such a way that the mean free
path (and also the mean collision time) remains constant.

In this situation, the following master equation drives the
time evolution in this material:

Wj(t +∆t) =
1
2

Wj−1(t)+
1
2

Wj+1(t). (1)

We rewrite this discretized form to a continuous form by in-
troducing the continuous coordinate variable x. We assume
that the ∆x step size is infinitesimally small compared to the
overall length-scale of the medium, and that the time inter-
val between the subsequent jumps is small as compared to the
time duration corresponding to the observation of the diffu-
sion process. These assumptions yield the following leading
order Taylor expansions:

Wj(t +∆t) = Wj(t)+∆t
∂Wj

∂t
+O(∆t2), (2)

Wj±1(t) = W (x, t)±∆x
∂W
∂x

+
(∆x)2

2
∂2W
∂x2 +O(∆x3), (3)

and these expressions can be combined to derive the contin-
uum form of the diffusion equation

∂W
∂t

= K1
∂2

∂x2 W (x, t). (4)

All properties of this matter are characterized by the diffu-
sion constant K1 = lim∆x→0,∆t→0

∆x2

2∆t , which corresponds to
the mean squared displacement per unit time.

The above (normal) diffusion equation can be solved easily
by introducing the Fourier-transform

W (k, t) =
∫

dxexp(ikx)W (x, t), (5)

that leads to the momentum-space diffusion equation

∂W
∂t

=−K1k2W (k, t). (6)

The solution of this equation is a Gaussian function of k that
can be converted back to the coordinate-space distribution to
yield the solution of the normal diffusion equation:

W (x, t) =
1√

4πK1t
exp

(
− x2

4K1t

)
, (7)

corresponding to normal or Gaussian diffusion of test parti-
cles. The initial condition corresponding to this solution is
indeed

W0(x)≡ lim
t→0

W (x, t) = δ(x) , (8)

corresponding to a localized package inserted in a material
with homogeneous, time independent properties. Hence in a
homogeneous and time independent medium, the diffusion of
point-like initial source yields a Gaussian source density dis-
tribution, and the mean square of this Gaussian, R2 = 2K1t
increases linearly with increasing time. This behavior will
be contrasted to the more general case, when both the jump
lengths and the jump frequencies have a continuous probabil-
ity distribution.

III. ANOMALOUS DIFFUSION

We again follow Metzler and Klafter in deriving anomalous
diffusion from the so-called continuous time random walk
models. Suppose that the jump length and jump time have
the probability distribution ψ(x, t). Then the jump length dis-
tribution λ(x) and the waiting time or jump time distribution
w(t) reads as

λ(x) =
∫ ∞

0
ψ(x, t)dt, (9)

w(t) =
∫ ∞

−∞
ψ(x, t)dx. (10)

Suppose that an external force F(x) also influences the motion
of the test particles. These considerations lead to the general-
ized or anomalous diffusion equation, which is a kind of a
generalized Fokker-Planck equation for the phase-space dis-
tribution, W (x,v, t):

∂W
∂t

+ v
∂W
∂x

+
F(x)

m
∂W
∂v

= ηα′0D1−α′
t LFPW, (11)

which contains fractional derivatives and other subtleties that
go well beyond the scope of this presentation. For the detailed
definition and explanation of this fractional Fokker-Planck
equation we refer to [9]. What is important, however, is that
if the waiting time distribution has a Poissonian shape, the ex-
act solution of this fractional Fokker-Planck equation has a
simple form in the momentum space representation:

W (k, t) = exp(−tKα|k|α). (12)

This form is the well known characteristic function (Fourier-
transform) of Lévy stable source distributions [11–14]. Here
the parameter α stands for the Lévy index of stability, in
general 0 < α ≤ 2 for Lévy stable source distributions,
and parameter K is an anomalous diffusion constant, K =
lim∆x→0,∆t→0

∆x2

2∆t2/α .
Note that Lévy stable distributions were introduced to par-

ticle interferometry studies recently in ref. [15], based on gen-
eral, mathematical arguments like generalized central limit
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theorems. Anomalous diffusion is a specific example of a
physical process that under certain conditions detailed in [9]
satisfies such generalized central limit theorems: one more
rescattering in the diffusion process does not change the lim-
iting behavior of the source distribution.

IV. LÉVY STABLE LAWS AND ANOMALOUS DIFFUSION

The edification from the previous section is that rescatter-
ing in a system with a time dependent mean free path under
certain conditions (e.g. Poissonian waiting time distributions)
leads to a random Lévy walk (or anomalous diffusion), instead
of Brownian motion (or normal, Gaussian diffusion). In the
case of anomalous diffusion or Lévy walks, the scale parame-
ter grows with time as Rα ∝ t, in contrast to normal diffusion,
that corresponds to the α = 2, R2 ∝ t special case.

The difference between normal and anomalous diffusion is
illustrated in Fig. 1, reproduced from ref. [9].

FIG. 1: Simple illustration of the qualitative properties of normal
diffusion (bottom) and anomalous diffusion (top). In the latter case,
large jumps separate various more local parts of the trajectory. The
size of the covered region is larger in the case of the anomalous diffu-
sion than in the case of the Gaussian, normal diffusion. From ref. [9].

Although the mean displacement or the variance of these
distributions might diverge, one additional step in the anom-
alous diffusion does not change the limiting behavior of the
process.

It is also interesting to note that the tail of anomalous dif-
fusions has a power-law structure in coordinate space, S(r) ∝
r−(d+α) for r À R, where d is the number of spatial dimen-
sions (d = 3 in our world), and α is the same Lévy index of
stability as before. This asymptotics is yet another important
property of the Lévy stable source distributions.

Nature often violates Gaussian universality, mirrored in
experimental results which do not follow Gaussian predic-
tions [9]. The evidence for non-Gaussian behavior in mul-
tivariate and univariate source distributions has been observed
recently also in high energy heavy ion collisions. In fact,
the first observation of a non-Gaussian correlation function
in Au+Au collisions at RHIC has been made by the STAR
collaboration that utilized an Edgeworth expansion [16] and
quantified the deviation from the Gaussian structure of the
particle emitting source in terms of non-vanishing fourth order
cumulant moments of the squared Fourier-transformed source
distribution. More recently, the PHENIX Collaboration has
applied the imaging method of Brown and Danielewicz [17]
to reconstruct the two-particle relative coordinate distribu-
tion [7]. In this paper, PHENIX observed a clear deviation
from a Gaussian structure, and pointed to the appearance of a
heavy tail in the two-particle relative coordinate distribution.
In the subsequent part of this manuscript, we investigate if
these PHENIX source function data can be reproduced with
the help of Monte-Carlo models that incorporate the concept
of anomalous diffusion and that are able to describe the more
standard observable like single particle spectra and the three
dimensional Gaussian fit parameters, Rside, Rout and Rlong of
the measured two-pion correlation functions in high energy
heavy ion collisions.

V. MONTE-CARLO SIMULATIONS OF ANOMALOUS
DIFFUSION OF PIONS

Heavy ion collisions produce thousands of particles in a sin-
gle high energy nucleus-nucleus collision. The bulk of the
particle production, i.e. the momentum distribution and the
correlation patterns of 99 % of the particles are best described
by hydrodynamical, or hydrodynamically inspired models,
see ref. [3] for a recent review. Now we are interested in
the tails of particle production, which might indicate a de-
viation from the hydrodynamical behavior. Hence our atten-
tion is turned to Monte-Carlo (MC) simulations. Two Monte-
Carlo models, the Hadronic (or Humanic) Resonance Cascade
Model [18], (HRC) and the AMPT model of Zhang, Ko, Li
and Lin [19] have also demonstrated [10, 20, 21] their ability
to describe single particle spectra, elliptic flow, and HBT cor-
relation measurements in Au+Au collisions with

√
sNN = 130

and 200 GeV at RHIC.

A. Selection criteria - comparison with data

The selection of the MC model was based on the follow-
ing criteria. We looked for a conventional hadronic cascade
model that describes single particle spectra, elliptic flow data,
and HBT data (without any puzzles), hence yields a good de-
scription of the hadronic final state, i.e. it yields an acceptable
model of S(r).

It also has to be well documented and easy to use, has to
work at CERN SPS as well as at RHIC energies, contain the
most important short and long lived resonances e.g. ω, η and
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FIG. 2: Pion pt distributions for l = 1 and l = 5, from ref. [10]. The
insensitivity of the transverse momentum distribution to the number
of subdivisions indicates that the scaling properties of the transport
equations are satisfied by the HRC code. Similar subdivision tests
are satisfied by the HRC code for the elliptic flow as a function of
the transverse momentum v2(pt), the elliptic flow as a function of
the longitudinal angular variable η as v2(η), see ref. [10] for further
details.

η′ (hence can be used as a realistic model for halo that appears
from the decay products of these long-lived resonances). It is
important to require that the simulation takes into account the
rescattering among the hadrons due to possible development
of a power-law tail from the anomalous diffusion, discussed
in the earlier sections.

Finally we utilized the Hadronic Rescattering Model [18],
as it satisfied all the criteria listed above. We expect that
similar results are obtained with the AMPT model, but we
have not yet investigated the predictions of this code in detail.
The AMPT model is a multi-phase transport model, while the
HRC is a simpler hadronic resonance cascade. When look-
ing for new effects related to the anomalous diffusion in a
time dependent mean free path environment, we have opted
for the simplest possible choice - so that the results then can
be uniquely related to the hadronic final state effects.

B. Self-consistency criteria - subdivision test

The self-consistency check of subdivision invariance is
based on the invariance of the Boltzmann equation, the basis
of the Monte Carlo particle-scattering calculations, for a si-
multaneous decrease of the scattering cross sections by some
factor l, and an increase of the particle density by the same
factor of l[22]. As l becomes sufficiently large, non-causal
artifacts become insignificant. The HRC rescattering calcula-
tions have been tested by comparing pion observables for no-
subdivision, i.e. l = 1, with subdivision of l = 5. Descriptions
of how the observables are extracted from the rescattering cal-
culation are given elsewhere [20].
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FIG. 3: (Color online) Time evolution of an expanding ellipsoid with
Gaussian density profile and homogeneous temperature profile in
Buda-Lund type of exact solutions of non-relativistic hydrodynam-
ics. (X ,Y,Z) stand for the principal axis of this expanding ellipsoid,
after an initial acceleration, these scales evolve linearly with time
(top). The corresponding HBT radii, (Rx,Ry,Rz) approach a direc-
tion independent constant (below top). The expansion velocities of
the principal axis of the exploding ellipsoid, (Vx,Vy,Vz) tend to di-
rection dependent constants (above bottom panel) and similarly, the
slope parameters of the single particle spectra in the principal direc-
tions, (Tx,Ty,Tz) also tend to direction independent constants (bottom
panel). Based on ref. [27].
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FIG. 4: Time evolution of v2, HBT, and mT slope parameters from
HRC for RHIC Au+Au, from ref [10]. The HRC code shows the
same self-quenching properties as the Buda-Lund type of exact solu-
tions of non-relativistic hydrodynamics.

All calculations were carried out for an impact parameter of
8 fm, to simulate semi-central collisions, that result in signif-
icant elliptic flow. Such HRC results [10] reproduced reason-
ably well the RHIC data on the corresponding observables in
Au+Au collisions at

√
sNN = 200 GeV. Thus this HRC code

passed not only the test of reproducing the important global
observables, but also the subdivision test, which suggests that
there are no significant programming artifacts, or causality
violating terms in this Monte Carlo simulation code. Fig. 2
(taken from ref. [10]) shows a comparisons of the l = 1 and the
l = 5 cases utilizing the HRC model to describe the charge av-
eraged pion spectra. Similar plots were published for the HBT
radius parameters and the transverse momentum and pseudo-
rapidity η dependence of the elliptic flow. See ref. [10] for fur-
ther details and for the comparison plots with RHIC Au+Au
data.

C. Self-consistency criteria - comparison with exact
hydrodynamical results

Motivated by the success of the Buda-Lund parameteriza-
tion [23, 24] of the hadronic final state, a search started to
find parametric, but time dependent, exact solutions of hy-
drodynamics, that lead to Buda-Lund type of nearly Gaussian
freeze-out distributions. Surprisingly large classes of exact,
parametric solutions of hydrodynamics have been recently
found this way, both in the non-relativistic [25–27] as well
as in the relativistic [28–33] kinematic domain.

These generalized, Buda-Lund type parametric, hydrody-
namical calculations have a built-in self-quenching effect, as
analyzed in detail in ref. [27]. For example, all the HBT
radii stop to evolve in time, they approach a direction inde-
pendent constant, and expansion velocities tend to direction
dependent constants, although the system keeps on expanding
(via rescattering process or hydrodynamical evolution). El-
liptic flow also freezes out at the same time when the spec-
tra (slopes) stop to evolve in time. These general, qualitative
properties of exact parametric hydrodynamic solutions are il-
lustrated in Fig. 3. In ref. [27] we have shown that this self-
quenching is a general property of a large class of exact ana-
lytic hydrodynamic solutions, which is independent of the par-
ticular initial conditions - a beautiful exact result. This prop-
erty of the exact non-relativistic ellipsoidal hydrodynamic so-
lutions is beautifully reproduced in the Hadronic Resonance
Model, as shown on Fig. 4.

D. More than hydro - tails of particle production

As summarized above the HRC resonance cascade model
describes well the observables in heavy ion collisions at both
CERN SPS and at RHIC energies, and it passes the subdivi-
sion test, and yields such a time evolution of the observables,
which is similar to the analytically obtained, exact hydrody-
namical asymptotic behavior of these observables. So HRC
looks to be a reliable model for the production of the bulk
of the particles. In the subsequent part, we investigate if the
HRC model is able to describe also the tails of the particle
production in

√
sNN = 200 GeV Au+Au collisions.

It turns out that this conventional hadronic cascade model
HRC has a built-in adaptive bin size in the time direction,
hence there is no built-in cutoff time scale in the code. HRC
also contains the cascading of the most abundant hadrons: ρ,
∆, K∗, ω, η, η′, φ and Λ, but it neglects electrical charge.
Therefore we see that this HRC model implements rescatter-
ing in a time dependent mean free path system, and in the pre-
vious section we have shown that under certain conditions this
corresponds to a random Lévy walk and is signaled by power-
law tails in the source distribution. Let’s see whether the HRC
simulation results confirm such an expectation or not.

VI. DETAILED HRC SIMULATION RESULTS

We generated 48 events with b=4.45 fm and 5730 events
with 12.5 fm corresponding to the 0-20% and 50-90% cen-



M. Csanád, T. Csörgő, and M. Nagy 1007

trality classes of PHENIX events. The generated events have
average multiplicities of 3400 and 38 particles, respectively.
The mean impact parameter values suiting the two centralities
were determined from a Glauber calculation as in ref. [34].

We made cuts on the data sample similar to the ones in the
PHENIX imaging paper [7]:

• 0-20% and 0.2 GeV/c < pt < 0.36 GeV/c,

• 0-20% and 0.48 GeV/c < pt < 0.6 GeV/c,

• 40-90% and 0.2 GeV/c < pt < 0.4 GeV/c,

in addition to the PHENIX geometry cut of −0.5 < y < 0.5.
The resulting plots are shown in Figs. 5-22. The complete

source function is decomposed to different components, i.e.
the S(r) distributions created from pairs with both pions being

• primordial or decay products of resonances that have a
lifetime less than 20 fm/c; this means here direct pions
ρ, ∆, K∗ decay products, referred to as core, or c pions;

• decay products of an ω

• decay products of resonances that have a lifetime
greater than 25 fm/c; in HRC: Λ, Φ, η, η′, referred
to as halo or h pions.

One of the pions in a pair is from one above category, and the
other may be from another one: so in this study we distinguish
(c,c), (c,ω), (c,h), (ω,ω), (ω,h) and (h,h) type of possible
combinations.

A. HRC simulations and PHENIX data

In this subsection we compare the HRC model calculations
with experimental data from [7]. The kinematic cuts corre-
spond to Figs. 1a,b and Fig.2 of ref. [7].

The PHENIX imaged S(r) source distribution coincides
with the HRC simulation result, and both are describable with
a power-law tail, in the kinematic region of 0-20% centrality
and 0.2 GeV/c < pt < 0.36 GeV/c, for pion pairs, as indi-
cated in Fig. 5. On this log-log plot, the tail of S(r) is approx-
imately linear, so it can well be called a heavy tail. Clearly a
further refinement of the experimental resolution could reveal
more details on the structure of this tail behavior, but a power-
law approximation is not inconsistent with the currently avail-
able data.

In HRC, this power-law tail is due to rescattering because
of the adaptive time-scale, corresponding to anomalous diffu-
sion. This results in Levy distributions, in contrast to Gaussian
distributions, which clearly fail to reproduce the tails of the
particle production. The Lévy index of stability, α, can be
determined approximately from fits to the tails of these S(r)
source functions: as for Lévy sources S(r) ∝ r−(d+α) in d spa-
tial dimensions. In the HRC simulations, as well as in the case
of S(r) reconstructed by PHENIX, d = 3. From Fig. 5, the
HRC simulations and PHENIX data both indicate a Lévy in-
dex of stability of α≈ 1.15±0.1, which is consistent with the
direct Lévy fits to PHENIX preliminary Coulomb corrected
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FIG. 5: (Color online) Pions for 0-20% centrality and 0.2 GeV/c <
pt < 0.36 GeV/c, with the various components of the source. On
the length scales less than 50 fm, core-core pairs are the most abun-
dant ones in the present situation. The next to largest contribution is
from the (c,ω) pairs, however, their contribution of is very small as
compared to the core-core pairs in the experimentally resolvable re-
gion, all the other contributions are negligible. A comparison of the
full HRC simulation result (open diamonds) with PHENIX data [7]
(filled circles, S(r)exp) indicates that HRC model simulations are in
a good agreement with data in this kinematic range. Solid black line
shows the best Gaussian fit to S(r) in the 0 fm < r < 15 fm region,
which misses the tail region clearly.

correlation functions in a similar kinematic region, as pre-
sented in ref. [35].

This is a great success of the HRC model, as it seems that
it has implemented the key effect, the anomalous diffusion,
reasonably well to the simulation.

Let us investigate in greater detail if HRC can describe
more subtle features of the PHENIX data. In Fig. 6, we show
a comparison with data in a similarly soft domain but in the
more peripheral centrality class.

Within errors, the HRC simulations again reproduce the
PHENIX measured S(r) source functions, even if the exper-
imental statistics does not allow for a comparison in the inter-
esting region of r > 20 fm. The HRC simulations, which have
better statistics than the experimental data, indicate a power-
law tail with similar exponent as in the case of more central
collisions. From the comparison with the previous figure it
follows that the HRC model describes the centrality depen-
dence of the heavy tail in this soft kt region in an acceptable
manner. This is yet another feature of the HRC model which
deserves appreciation.

Let us now investigate how well a HRC simulation can
describe the transverse momentum dependence of the rela-
tive coordinate distributions of pion pairs. Such a compar-
ison is shown in Fig. 7. In the 0-20% centrality and 0.48
GeV/c < pt < 0.60 GeV/c kinematic selection, the HRC
model simulations are in a disagreement with PHENIX data.
So the HRC model does not describe the observed transverse
momentum dependence of the PHENIX imaged source distri-
bution in the case of nearly central collisions. Although the
achievements of this model are really impressive, in this kine-
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source resolved. A comparison with PHENIX data [7] (filled circles,
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with facts in this kinematic range, too, although within errors, sys-
tematic deviations between the simulation results and PHENIX data
can be observed in the r > 20 fm region.
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FIG. 7: (Color online) Same as the previous figures, but for a 0-20%
centrality and 0.48 GeV/c < pt < 0.60 GeV/c kinematic selection.
HRC simulations are shown with the various components of the HRC
source resolved. The HRC model simulations are in a disagreement
with PHENIX data in this kinematic range.

matic region the model could be improved or fine-tuned. In
fact it seems that rescattering effects are too large as compared
to data with increasing transverse momentum.

In the subsequent parts, we explore the HRC model predic-
tions in greater detail. We focus our attention to the tails of
particle production, and try to identify within the limitations
of this model calculation what kind of experimental control
is available for changing the exponent (or, on a log-log plot,
the slope parameter) of the tails of particle emission in the
HRC simulations. This is motivated by the recent predictions
in ref. [36] that suggested the existence of a power-law tail
in the coordinate space distribution at the critical end point of
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FIG. 8: (Color online) Source distribution of HRC simulated pion
pairs with 0.2 GeV/c < pt < 0.4 GeV/c for various centrality
classes.

the line of first order phase transitions in QCD. At this critical
point the phase transition is of second order, and the Bose-
Einstein correlation function has a Lévy form, with the Lévy
index of stability coinciding with the correlation exponent η
that is one of the critical exponents, and its value is universal,
depending only on the universality class of the second order
phase transition. Hence in a second order QCD phase transi-
tion the Lévy index of stability or the power-law exponent of
the tails of the particle production becomes independent of the
momentum range, centrality selection, and the particle type.
However, in the case of anomalous diffusion of hadrons the
rescattering might well be sensitive to the centrality that drives
multiplicity and particle densities, the momentum range that
also influences how many particles take part in the rescattering
process and also the particle type, as the number of rescatter-
ings is expected to depend on the particle cross sections.

B. Centrality dependence of the HRC source

The centrality dependence of the HRC simulated source
distributions of pions with various pair transverse momenta
is shown in Figs. 8-13. The centrality dependence of the tails
of particle emissions is found to be surprisingly small, as on
the log-log plots the tails corresponding to various centrality
selections in Figs. 8-13 are found to be parallel. The cen-
trality selection, however, sensitively influences the region of
bulk particle production, corresponding to the change of the
scale parameters or the effective source sizes in the small r
region. The slope of the tails in this simulation, however, is
independent of centrality for pions at low or higher transverse
momentum, Figs. 8-9, as well as for low or higher momentum
kaons, Figs. 10-11, and for protons, Figs. 12-13. Although in
the case of the proton sources statistical limitations prevent us
from reaching a firm conclusion, it seems that the power-law
exponent of the tails of particle emission is rather insensitive
to the centrality selection, regardless of particle type and pair
momentum selection, so centrality is not a sensitive control
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FIG. 9: (Color online) Source distribution of HRC simulated pion
pairs with 0.5 GeV/c < pt < 1.0 GeV/c for various centrality
classes.
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FIG. 10: (Color online) Source distribution of kaon pairs with 0.2
GeV/c < pt < 0.4 GeV/c for various centrality classes.
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FIG. 11: (Color online) Source distribution of kaon pairs with 0.5
GeV/c < pt < 1.0 GeV/c for various centrality classes.
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FIG. 12: (Color online) Source distribution of proton pairs with 0.2
GeV/c < pt < 0.4 GeV/c for various centrality classes.
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FIG. 13: (Color online) Source distribution of proton pairs with 0.5
GeV/c < pt < 1.0 GeV/c for various centrality classes.

tool to separate heavy tails that arise due to anomalous dif-
fusion from heavy tails that appear due to the vicinity of a
second order QCD phase transition.

C. Transverse momentum dependence

Transverse momentum dependence of simulated source dis-
tributions in various centrality classes is shown in Figs. 14-
19. For nearly central collisions and pions, the increase of
the transverse momentum of the pair reduces the size of the
bulk production region, as was well known from earlier Bose-
Einstein correlation measurements and theoretical explana-
tions, see e.g. refs. [23, 24]. Being aware of the strong
transverse momentum dependences of the scale parameter R,
which is well shown by the HRC simulation, it is rather sur-
prising, that the shape parameter of the tail, the Lévy index of
stability α is remarkably insensitive to the selected transverse
momentum regions, which follows from the fact that on the
log-log plot the simulated S(r) tails are parallel to one another,



1010 Brazilian Journal of Physics, vol. 37, no. 3A, September, 2007

r[fm]
10

S
(r

)

-310

-210

-110

1

Source function sradius
Entries  99951
Mean    16.33
RMS     8.065

Pions, 0-20%

:0.2-0.36Tp

:0.36-0.48Tp

:0.480-0.6Tp

Source function

FIG. 14: (Color online) Source distribution of pion pairs with 0-20%
centrality, for various pt ranges.
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FIG. 15: (Color online) Source distribution of pion pairs with 40-
80% centrality, for various pt ranges.
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FIG. 16: (Color online) Source distribution of kaon pairs with 0-20%
centrality, for various pt ranges.
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FIG. 17: (Color online) Source distribution of kaon pairs with 40-
80% centrality, for various pt ranges.
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FIG. 18: (Color online) Source distribution of proton pairs with 0-
20% centrality, for various pt ranges.

see Fig. 14. The same effect is shown in Fig. 15, in the case of
peripheral collisions. For kaons, the evolution of the source
function is less apparent in the same transverse momentum
regions, this is due to the fact that the effective radius parame-
ters, the scales in analytic calculations like of refs. [23, 24],
are found to be predominantly depending on the transverse
mass, mt =

√
m2 + p2

t of the particles. The same variation
in the transverse momentum pt leads to a larger variation in
mt for pions, as compared to that of kaons, due to the larger
value of the kaon mass: mπ ≈ 140 MeV, while mK ≈ 494 MeV.
This explains why Figs. 16 and 17 show remarkably small
variations of the kaon emitting source with increasing values
of the transverse momenta of kaons. In the case of protons,
one would expect even smaller variations with increasing mo-
mentum, however, in this case the Monte Carlo simulations
indicate an increase of the effective source size with increas-
ing momentum. Even in the case of protons the dependence
of the power-law exponent on the transverse momentum is
negligible. Thus the transverse momentum dependence of the
power-law exponent α is negligible in each considered case.
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FIG. 19: (Color online) Source distribution of proton pairs with 40-
80% centrality, for various pt ranges.
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FIG. 20: (Color online) Source distribution of pion, kaon and proton
pairs with 0.2 GeV/c < pt < 0.4 GeV/c and 0-10% centrality.

D. Particle type dependence

Particle type dependence of simulated source distributions
in various centrality classes and with a pair transverse momen-
tum of 0.2 GeV/c < pt < 0.4 GeV/c is shown in Figs. 14-19.
These source distributions all have an approximate power-law
tail, as expected in the case of an anomalous diffusion effect.
However, the power-law exponents have rather different val-
ues for different particle types. This is well understandable as
the total inelastic cross sections of these particles are rather
different. Protons have the largest cross sections, pions the
second largest, and kaons the smallest. Hence the protons
have the shortest mean free path, the pions the second shortest,
and the kaons have the largest mean free path at any given den-
sities. This implies that the heaviest tail develops for kaons,
the second heaviest tail for pions, and the proton source dis-
tribution is closest to the Gaussian distribution. However, it
is rather difficult to make such a simple picture given that the
HRC simulation includes a parameterized form of the strongly
momentum dependent cross sections, when available, it uses
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FIG. 21: (Color online) Source distribution of pion, kaon and proton
pairs with 0.2 GeV/c < pt < 0.4 GeV/c and 30-50% centrality.
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FIG. 22: (Color online) Source distribution of pion, kaon and proton
pairs with 0.2 GeV/c < pt < 0.4 GeV/c and 50-80% centrality.

Particle Data Group tables [37], although not the most recent
version of these tables [38]. Whenever PDG data were not
available, the HRC model utilized theoretical results on the to-
tal cross sections from Prakash, Venugopalan and Welke [39].

VII. CONCLUSIONS AND SUMMARY

A power-law tail of the relative coordinate distribution S(r)
appears in HRC model simulations for Au+Au collisions at
RHIC energies. The simulation reproduces an important fea-
ture of recent PHENIX experimental data on heavy tails, i.e.
it yields a power-law tail with an exponent, or Lévy index of
stability of α ≈ 1.3± 0.1. Detailed simulation results indi-
cate that this exponent (as well as the tails of the S(r) relative
coordinate distribution) depends strongly on the particle cross
sections or particle type, while for a given particle type it is re-
markably insensitive to centrality and momentum selections,
which implies insensitivity to the actual number of collisions.
The exponent value is rather different from α≈ 0.5 predicted
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for the second order QCD phase transition in ref. [36]. Also,
at a second order QCD phase transition, the exponents are de-
termined from universality class arguments, so in the case of
a second order phase transition, no particle type dependence
is expected. Hence measuring the tails of particle production
for protons and kaons seems to be a promising method to dis-
tinguish between a second order QCD phase transition and
anomalous diffusion.

The Lévy distribution is called stable because the convolu-
tion of two such distribution is also a Lévy distribution. In
addition, the generalized central limit theorem says that the
convolution of many (in the limiting case infinitely many) el-
ementary processes with the same (but arbitrary) probabil-
ity distribution is a Lévy stable distribution. So it is nat-
ural, although still surprising that Lévy stable, power-law
tailed source distributions appear in the HRC model simula-
tions. (The rescattering can be considered as such elementary
process.)

The extraction of the precise values of the power-law expo-
nents, or the Lévy index of stability, with reliable experimen-
tal statistical and systematic errors is an important future task
that allows experimental characterization of anomalous dif-

fusion or second order QCD phase transitions with a simple
number. Measuring the transverse momentum, centrality, and
particle type dependence of this exponent tells a lot about the
production mechanism of particles in high energy heavy ion
collisions. In particular, measuring the Lévy index of stability
for pions, kaons, and protons can serve as a promising exper-
imental control possibility on the origin of the heavy tailed
distribution.
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[25] T. Csörgő, Acta Phys. Polon. B 37, 483 (2006) [arXiv:hep-

ph/0111139].
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