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Two Electrons in Vertically Coupled One-Dimensional Rings
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A problem of two electrons spatially separated in vertically coupled one-dimensional rings is solved exactly
by using the numerical trigonometric sweep method. The change of the level-ordering and the crossover of the
curves of the energy levels as a functions of the rings radii, the separation between rings and the magnetic field,
applied along the axis, are found and discussed. As the distance between rings tends to zero our results are in
an excellent agreement with those obtained previously for the single two-electron one-dimensional ring.
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I. INTRODUCTION

The rapid progress in crystal growth and fabrication meth-
ods have made possible to generate a new kind of nanometer-
size semiconductor heterostructures with controlled thickness
and relatively sharp interfaces. In the last several years,
there has been a considerable interest in quasi-zero dimen-
sional self-assembled quantum dots (QDs), formed through
the Stranki-Krastanow growth mode by deposition a material
on the substrate with different lattice parameter [1]. This in-
terest is related to potential technological application of QDs
in optoelectronic devices [1-2], as well as to their character of
novel quantum systems in which new physics and analogies
with atomic clusters, atoms, molecules, may be found. The
QDs shapes are not well known yet, nevertheless, structural
studies suggest that commonly the quantum dots look like
lenses, pyramids or disks [3]. Recently, Lorke and co-workers
have reported the fabrication of InGaAs QDs with a ring-like
geometry [4]. This finding has stimulated some theoretical
investigations about one- and two-particle spectra in quantum
rings (QRs) which have been done in order to establish the pe-
culiarities related to this morphology [5]. The realistic geome-
try of two-electron InGaAs QR is a structure with larger outer
radius (∼400-500nm), narrower width (∼20-40nm) and very
small height (∼2-4nm). Due to strong confinement in vertical
direction a two-dimensional model is commonly considered in
order to analyze the QRs electronic properties. Nevertheless,
one-dimensional model may also be consider as appropriated
in framework of the adiabatic approximation [5] which allows
one to decouple the rapid radial motion from the slow angular
motion.

Exact energy levels of two-electron systems in 1D QRs
have been obtained and the size effect on the interaction ener-
gies in the limit of a narrow-width nanoring has been studied
in reference [6]. A few two-particle exactly solvable prob-
lems are known and therefore the exact solution found out
in reference [6] is interesting not only from a physical point
of view but also from a mathematical point of view. In this
work we propose an other exactly solvable model in which
two vertically coupled concentric 1D rings contain each one
only one electron. The fabrication of similar stacked arrays of
InAs self-assembled QDs with vertical alignment have been
reported recently [7]. These systems are technologically im-

portant, because they allow us to improve the performance of
the optical devices taking advantage provided by the coupling
effect between QRs. In this context, we consider relevant to
use the exactly solvable model to explore the new physics
bound up with the coupled QRs in order to understand effects
related to coupling between rings on the two-electron energy
spectrum.

II. THEORY

We consider a model of two coaxial, identical and paral-
lel one-dimensional rings, every each with only one electron.
Besides, we suppose that the external homogeneous magnetic
field B = B ẑ is applied along the rings axis. Being R the rings
radius and d the spatial separation between them along the Z-
direction, we introduce dimensionless parameter β = d/R. In
order to compare our results with those from Ref. 6 in the limit
caseβ → 0, as rings merge and form only one ring, we use
both the same notations and the units that have been used in
this reference. The units used below for the length, the energy
and the magnetic field strength are the effective Bohr radius,
a0∗ = ~2ε

/
m∗ e2, the effective Rydberg Ry∗ = m∗ e4

/
2~2ε2

and the first Landau level energy γ = eB~
/

2m∗cRy∗, respec-
tively.

The normalized dimensionless two-electron Hamiltonian
(H̃ = HR2):

H̃ =
2

∑
i=1

[
− ∂2

∂ϕ2
i
− iγR2 ∂

∂ϕi

]
+

γ2R4

2
+U(ϕ1−ϕ2) (1)

U(ϕ1−ϕ2) = 2R

/√
4sen2(

ϕ1−ϕ2

2
)+β2 (2)

Eigenvalues of the Hamiltonian (1) corresponding to the
normalized two-electron energies, Ẽ (energies E multiplied
by the squared radius of ring, Ẽ = ER2) can be found ex-
actly by using center-of-mass, θ = (ϕ1 +ϕ2)

/
2 and relative,

ϕ = ϕ1 − ϕ2 coordinates. In these coordinates, the Hamil-
tonian (1) can be separated into center-of-mass, H̃c and rela-
tive, H̃r terms:
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H̃ = H̃c + H̃r + γ2R4
/

2; H̃c =− 1
2

d2

dθ2 − iγR2 d
dθ ;

H̃r =−2 d2

dϕ2 +U(ϕ)
(3)

This separability allows us to write two-particle normal-
ized energy in the form Ẽ = Ẽc + Ẽr + γ2R4

/
2, where Ẽc and

Ẽr are eigenvalues of the operators H̃c and H̃r, respectively.
The eigenvalues of the operator H̃c are given by: Ẽc(M) =
0.5 M2 + γMR2 with center-of-mass angular momentum M =
0,±1,±2, . . ., whereas the eigenvalues of the operator H̃r
should be found by solving the one–dimensional wave equa-
tion:

−2
d2 fms (ϕ)

dϕ2 +U(ϕ) fms (ϕ) = Ẽr (m,s) fms (ϕ) (4)

in the region of [−2π,2π] with periodic boundary condi-
tions fms (0) = (−1)m fms (2π). The quantum number m =
0,±1,±2, . . . defines the two-electron relative angular mo-
mentum and s = ± the eigenfunction parity. The even so-
lutions (s = +) correspond to singlet states and the odd solu-
tions (s =−) correspond to triplet states. The electronic spec-
trum of the two-electron system will then be given by energies
Ẽ (M,m,s) labelled by three quantum numbersM,m,s. In our
numerical work we use the trigonometric sweep method [8]
in order to solve the eigenvalue problem (4) with the periodic
boundary condition asserted above.

III. RESULTS

We have performed numerical calculations of two-electron
energies Ẽ (M,m,±) as a function of the rings radius R for dif-
ferent values of β. The results are presented in Fig.1 and Table
I. Here and below we use the short notation about quantum
number and spin, i.e. a,b,c, etc. in the order of increasing en-
ergy value under very strong confinement condition (R→ 0)as
the rings merge (β→ 0).

Complete correspondence between short notation and set of
the quantum numbers (M,m,s) is given in Table I. In the same
place we compare our results for very small ratio β = 0.001
with those obtained previously for two electrons in a single
ring in Ref. 6. One can observe an excellent concordance
between results obtained for two different rings radii.

One can observe in Fig.1 a remarkable evolution of the
energies dependencies on the ring radius with increasing of
the separation between rings, as the ratio β varies from small
value 0,001 (upper curves) to large one 10 (lower curves).
To understand this evolution one should compare the contri-
butions which give the kinetic and Coulomb energies in the
Hamiltonian (1). There is a strong competition between these
two terms. As the ring radius is very small or the distance
between rings is very large the contribution of the Coulomb
energy becomes depreciable and the exact eigenvalues of the
Hamiltonian (1) correspond to normalized energies of two un-
coupled rigid rotors given by the formula:

FIG. 1: Normalized total energies Ẽ(M,m,s) of two electrons ver-
sus radius R in vertically coupled QRs with different ratios of the
distance between rings-to-radius,β 0.001, 1 and 10. Solid lines are
singlet states and dotted lines are triplet states.

Ẽ (M,m,s) = 0.5(M2 +m2) (5)

It is seen from Fig. 1 that the energies fulfilled this re-
lation for R → 0and for all values of β both for singlet and
triplet states. As the rings radii increases the contribution of
the Coulomb energy grows and one can observe intersections
of higher levels with same or different spin induced by the
electron-electron interaction. The number of the intersections
substantially decreases with increasing the ratio β and when
the value of βis very large the curves of the energies depen-
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TABLE I: Exact energy levels Ẽ (M,m,s) of two electrons in verti-
cally coupled rings with β = 0.001 (our results) and in single ring
(from Ref. 6).

Energy notation R = 1a0∗ R = 4a0∗
Short no-
tation

Full nota-
tion

Our
results

Ref. 6 Our
results

Ref.6

a Ẽ (0,0,0) 1.72 1.73 5.18 5.18
b Ẽ (1,1,1) 2.23 2.23 5.68 5.68
c Ẽ (0,2,1) 3.61 3.62 7.92 7.92
d Ẽ (2,0,0) 3.72 3.73 7.18 7.18
e Ẽ (1,1,0) 4.06 4.12 8.41 8.42
f Ẽ (2,2,1) 5.62 5.62 9.92 9.92
g Ẽ (0,2,0) 6.22 6.23 11.40 11.40
h Ẽ (3,1,1) 6.33 6.38 9.68 9.68
i Ẽ (1,3,1) 6.88 6.88 11.90 11.90
j Ẽ (3,1,0) 8.06 8.11 12.41 12.41
k Ẽ (2,2,0) 8.22 8.38 13.40 13.40
l Ẽ (0,4,1) 10.08 10.08 15.71 15.71
m Ẽ (4,0,0) 9.72 9.73 13.18 13.18
n Ẽ (1,3,0) 10.24 10.57 16.19 16.21
o Ẽ (3,3,1) 10.88 10.88 15.90 15.90
p Ẽ (4,2,1) 11.62 11.62 15.92 15.92

dencies on the ring radius become almost horizontal and the
levels turn into degenerated with respect to spin orientations.

Similar dependencies of the two electron energies on the
distance between vertically coupled one-dimensional rings are
presented in Fig. 2 for ring radii 1a0∗ and 5a0∗. One can ob-
serve that the spectrum of the system substantially transforms
to one, typical for a pair of uncoupled rigid rotors described
by the relation (5). Transformation of the energy spectrum
from one common for a system with a strong Coulomb inter-
action (as the distance between rings is small) to another usual
for a system of the independent rigid rotors (as the distance
between rings is large) provides the intersections between dif-
ferent curves observed in Fig.2.

The dependence of some normalize energies Ẽ (±M,m,s)
with |M| ≤ 2 on the magnetic field strength for the ring radii
R = 1a0∗, and separation between rings, d = 0.1a0∗, is shown
in Fig. 3. One can see that the presence of the magnetic field
provides the splitting of the energy levels whose angular mo-
mentum M has different signs. Larger magnetic field strength
more significant is the splitting induced by the paramagnetic
term in the Hamiltonian (3).

The behaviour of these curves is controlled by the strong
competition between the paramagnetic and diamagnetic terms
in the Hamiltonian (3). The contribution of the paramagnetic
term depends on the magnetic field strength is linear whereas
this dependence of the diamagnetic term is quadratic. There-
fore, as the magnetic field strength is small the contribution of
the paramagnetic term is predominant and for large magnetic
field the diamagnetic term becomes more significant. For this
reason, at the beginning of the curves they look like quasi-
linear with a positive slope (M ≥ 0) or negative slope (M < 0)

FIG. 2: Normalized total energies Ẽ(M,m,s) of two electrons versus
distance d between vertically coupled rings with two different radii,
R = 1a0∗ (upper curves) and R = 5a0∗ (lower curves).

adopting parabolic-like shape for large magnetic fields. Addi-
tionally, we can note that the lowest level energy dependence
on the magnetic field strength display an oscillatory behaviour
with period γ = 1.0. For magnetic field strength less than 0.5
the ground state energy corresponds to the Ẽ (0,0,0) singlet
level. As the magnetic field strength becomes greater than
0.5 the ground state is transformed in Ẽ (−1,1,1) triplet level.
Within the interval of the magnetic field (1 < γ < 1.5) this
level is remained as the ground state. Further, as the magnetic
field exceeds the value 1.5 the ground state is transformed in
Ẽ (−2,0,0) singlet level, etc. This oscillatory behaviour is
remained for different values of the rings radius and the sep-
aration between them. It is evident that the quantum number
M of the ground state level raises with increasing of the mag-
netic field strength and the positions of minima in the curves
of the magnetic oscillation corresponds to γ = M

/
R2 and the

oscillation period is equal to 1
/

R2. Magnetic oscillations not
suffer any changes as the ring radii are modified. It is due to
the fact that the Coulomb interaction between two electrons in
1D rings is responsible of the quantum size effects.

In conclusion, we consider a new exactly solvable two-
electron model, which describes the energy spectrum of two
vertically coupled one-dimensional rings. The energy levels
dependencies on the rings radii, the separation between rings
and the strength of the magnetic field applied parallel to the
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FIG. 3: Normalized energies Ẽ(±M,m,s) versus magnetic field
strength γ for two electrons in vertically coupled rings of the radii
R = 1a0∗ and separation between them d = 0.1a0∗.

axis are analyzed. It is shown that in the limit case, when
the separation between rings tends to zero, our results are in
an excellent concordance with those obtained previously for
one-dimensional ring by using a different method.
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