
922 Brazilian Journal of Physics, vol. 36, no. 3B, September, 2006

Effect of the Dot-Dot Interaction Strength on the Conductance of Side-Connected Quantum Dots
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The conductance of two interacting dots connected to leads is studied. The configuration is such that one
dot is embedded into the leads while the other is tunneling-coupled only to the first dot. The effect of the
tunneling interaction strength on the conductance is discussed. As the two dot levels cross the Fermi level the
low temperature conductance of the system cancels out, due to interference effects. This cancellation persists
over a range of gate potential that depends upon the interaction strength: the greater the interaction the larger
the range of gate potential where the current vanishes.
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I. INTRODUCTION

Since the first observation of the Kondo effect in a single
quantum dot[1] several single and double quantum dot devices
have been studied theoretically[2] and experimentally[3]. In
the last years interest in interacting double-quantum-dot sys-
tems has been renewed due to their potential applications to
quantum computing[4]. The strength of the interaction be-
tween the two quantum dots determines the character of the
electronic states and the nature of the transport through them.
In the limit of weak tunneling interaction the electrons are lo-
calized on the individual dots while in the strong limit the de-
localized electronic charge is no longer quantized. The trans-
port properties depend also on the topology of the double-dot
system[5]. For the case of the two dots aligned with the leads,
in the weak coupling limit the interaction of each dot with
the conduction electrons of the nearby lead gives rise to the
Kondo in both dots. In the opposite limit, the strong inter-
dot tunneling interaction together with the intra-dot Coulomb
repulsion result in an anti-parallel alignment of the two dot
spins and the Kondo effect is suppressed. By increasing the
tunneling interaction the dot system goes continuously from
the Kondo regime to an antiferromagnetic state of the dots.
Another system of two-interacting dots in the side-connected
configuration has special interest since it permits the control
of the current along the leads by changing the state of charge
of the side-connected dot. The conductance of this system has
been studied as a function of the gate potentials applied to the
dots, using the embedded cluster method[5] and the numerical
renormalization group technique[6]. In these two works the
T=0 dependence of the conductance on the gate potential ap-
plied to the dots present different behaviors. In this paper we
use the equation of motion method to analyze this system. We
discuss, in particular, the dependence of the conduction upon
the gate voltage as the dot-dot tunneling interaction strength
is increased. The temperature dependence of the conduction
is also obtained. In order to make the method more tractable
we restrict our calculation to the case of infinite Coulomb re-
pulsion U.

II. THEORY

An Anderson two-impurity first neighbor tight binding
Hamiltonian represents the system. Naming QD1 the inserted

dot and QD2 the side-connected one, the total Hamiltonian
reads,

H = ∑
i=1,2

σ

(
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)
niσ + t12 ∑

σ
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1σc2σ+ c+
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(1)

The first two terms represent the Hamiltonian of the double-
dot with dot energy levels Vi (i = 1,2), intra-dot Coulomb in-
teraction Ui and the inter-dot hopping interaction t12. The third
term describes the coupling of QD1 to the right and left con-
tacts through the hopping interaction tR and tL, respectively,
that we assume to be independent of the conduction electron
wave vector k. The last term describes the conduction elec-
trons of the contacts with energy εk for both left and right
contacts, whereas c+

krσ and ckrσ are, respectively, the creation
and annihilation operators for the conduction electrons in con-
tact r (r = L,R), with wave vector k, and spin σ.

The Green functions for the system are obtained by the
equation of motion method in a decoupling scheme that incor-
porates the phenomena associated to the Kondo effect. This
approximation permits the study of the temperature depen-
dence of the properties of the system. Although it is reliable
for T < TK , the limit T=0 is not adequately treated, as dis-
cussed below. Frequency dependent equations for the Green
functions related to the two dots, G11, G22 and G12, must be
solved. The equation for the Green function at QD1, is given
by:

(ω− ε1)Gσ
11 = 1+ tS ∑

kr
〈〈ckrσ;d†

1σ〉〉+ t12〈〈d†
2σd†

1σ〉〉

+U〈〈d1σ̄;d†
1σ〉〉 (2)

where Gσ
11 =<< d1σ;d†

1σ >>, d†
1(d1) is the creation (annihi-

lation) operator for electrons in QD1 and the interaction of
this dot with the two leads has been assumed to be equal,
ts = tR = tL. Similar equations can be written for the other
Green functions. These functions are expressed in terms of
higher order Green functions, constituting an infinite chain
that has to be truncated at some point. Keeping only terms
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proportional to t2
12 and t2

s , and considering a very strong intra-
dot Coulomb interaction U we arrive, after some manipula-
tions, at the following expressions for G11, G22 and G12:

Gσ
11 =

(1−〈n1σ̄〉)(ω− ε2)− t12〈d†
1σ̄d2σ̄〉
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(3)
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(5)

where εi (i=1,2) is the gate potential at QDi and nkrσ̄ is the
occupation number for electrons with wave vector k and spin
σ at the left (r = L) and right (r = R) contacts.

Notice that the QD1 and QD2 occupation numbers, 〈n1〉
and 〈n2〉 in Eqs. (3) and (4), are obtained by the imaginary
part of the G11 and G22, respectively, so that the solution has
to be obtained self-consistently. Moreover, G11 and G22 de-
pend also on the average value 〈d†

1d2〉 that is obtained by the
imaginary part of the Green function G12. Therefore a self-
consistent calculation involving the three Green functions si-
multaneoulsy has to be done.

At finite temperature the conductance G and the charge oc-
cupation ni at QDi are calculated self-consistently, using the
following expressions:

G =
2e2

h
t4
s

Z ∞

−∞
|Gσ

11|2ρ2(ω)
∂ f (ω)

∂ω
dω (6)

and

niσ =−1
π

Z ∞

−∞
Im(Gσ

ii) f (ω)dω (7)

where ρ(ω) is the lead density of states that we consider con-
stant, a good approximation for states near the Fermi level,
and f (ω) is the Fermi distribution function.

III. RESULTS

The Fermi level is taken at εF = 0 and the interaction
of QD1 with the right and left contacts is considered equal,
tR = tL = ts. All energies are in units of Γ = t2

s /W , where W is
the lead bandwidth. For simplicity we restrict our analysis to
the case of identical dots, V1 = V2 = V . As can be concluded
from a detailed inspection of the previous equations for the
Green functions, at T = 0 the discontinuity of the Fermi distri-
bution function creates a logarithmic singularity at the Fermi
level that is an artifact of the decoupling procedure adopted to
calculate the Green Functions. The problem is solved by in-
creasing the temperature above a characteristic value Tm that
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FIG. 1: Conductance in units of 2e2/h as a function of the gate
potential at the dots V = V1 = V2 for the dot-dot interaction t12 =
0,0.2,1.2,2.2 and 4.4; low T (continuous lines) and high T (dotted
lines).

eliminates the logarithm singularity. This is not a serious re-
striction to study the Kondo regime because at a particular
value of the gate potential the Kondo temperature TK satisfies
the condition TK > T m. However, as we would like to study
the evolution of the system as a function of the gate potential
for a fixed value of the temperature, we have to adopt the more
restrictive condition for T m that corresponds to the situation
when the system is entering into the Kondo regime (V1 ∼ Γ).
This implies that, as the gate potential and, consequently, the
Kondo temperature is reduced, the system is driven out of the
Kondo regime since TK < Tm. Our results for the conduc-
tance shown below reflect this fact. Anyhow, this represents,
to a large extent, the real situation as measurements are always
done at finite temperatures.

In Figs. 1 and 2 we display the conductance and the dot
charges as a function of V, for different values of the inter-
action strength t12. Let’s first discuss the conductance re-
sults, where the continuous lines correspond to low tempera-
ture (TL = 2×10−4)) and the dashed ones to high temperature
(TH = 2×10−1). Fig.1(a), for t12 = 0, represents the one-dot
conductance. As the gate potential decreases from positive
values and passes through the Fermi level, QD1 approaches
the resonance condition and enters in the Kondo regime per-
mitting the electrons to go along the system. As V is further
diminished the current diminishes because the Kondo reso-
nance disappears since, at these values of gate potential, the
Kondo temperature TK is smaller than Tm, as discussed above.
The result for high T reproduces the well known Coulomb
blockade peak. Note that, since we are not at T = 0 the low
T one-dot conductance does not reach the maximum value
2e2/h.

In the rest of the Fig. 1 the conductance for increasing inter-
dot interaction t12 is depicted. In all cases by decreasing the
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FIG. 2: Charge at QD2 (continuous lines) and QD1 (dotted lines) as
a function of the gate potential at the dots V = V1 = V2 for low T and
t12 = 0,1.2 and 2.2.

gate potential the conduction increases as soon as charge be-
gins to enter into the embedded dot, offering a path for the
electrons to flow along the system. As the gate potential is
further reduced, the side-connected dot gets abruptly charged
and interferes with the partially charged embedded dot re-
sulting in the cancellation of the conductance. This is due
to the existence of two paths for the electrons to go through
the double-dot system. The conductance peak presents a Fano
anti-resonance shape [7]. For high temperature (dotted lines)
this phenomenon is restricted to the resonance condition al-
though smeared out due to thermal effects. Although the ori-
gin of the cancellation of the current in both cases is the same,
the shape of the G×V curves differ due to the fact that, at low
T, the two dots are in the Kondo state. This has been demon-
strated by the analysis of the low T spectral density that shows
Kondo peaks related to the two dots that disappear as the tem-

perature increases. These results will be discussed in more
detail elsewhere.

The range of gate potential where the current vanishes gets
more extended as the interaction increases, as shown in Figs.1
(c),(d) and (e). This is expected since the energy spacing be-
tween the peaks is approximately proportional to t12. Cur-
rent cancellation at the Fermi level has also been obtained for
this same system in a calculation using the embedded cluster
method[5].

The charges at each quantum dot, displayed in Fig. 2, cor-
respond to low temperature, TL. The high T charge behavior
does not differ much from the low T and is not shown. For
disconnected dots, (Fig. 2(a)), charge enters continuously into
QD1 and abruptly into QD2, at the Fermi level, as expected
since this dot is isolated from the contacts. When the dots are
weakly connected, the QD2 charge reaches the value of one
electron going through two jumps, at the values of gate po-
tential such that the current begins to flow along the system.
In this situation QD2 interacts weakly with the lead conduct-
ing electrons. As the dot-dot interaction increases the charge
jumps get smoother. In this case the states of the double-dot
are a combination of the two dot sates, and the charging of two
dots are is similar (Fig. 2c). In any situation QD1 charge in-
creases continuously since it is directly connected to the lead
conduction electrons.

IV. CONCLUSIONS

We have studied the conductance of a double quantum dot
device in which one of the dots is embedded into conducting
leads while the other is connected only to the first dot through
a tunneling interaction. The zero temperature conductance of
the system vanishes at gate potential values around the Fermi
level. This is due to interference effects caused by the possi-
bility of the electrons to go through the dots using two paths.
The range of gate potential values for which the current van-
ishes increases with the tunneling dot-dot interaction strength.
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