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Effects of Effective Mass Discontinuity on the Conductance of Three-Dimensional Quantum Wires
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We calculate the conductance of three-dimensional semiconductor quantum wires considering different effec-
tive masses in the contacts and in the channel. We show that, with respect to the case with equal masses in the
channel and in the contacts, the amplitude of the conductance oscillations increases if the electron effective mass
in the channel is larger and decreases if it is smaller than in the contacts. Effects on the density of probability
are also shown. These effects of the effective mass discontinuity are explained in terms of kinetic confinement
and transmission coefficient modulation.
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I. INTRODUCTION

Some years ago, intense efforts were devoted to the un-
derstanding of the effective mass discontinuity effects on the
electronic properties of semiconductor systems. A good ex-
ample is the so called kinetic confinement. When a semicon-
ductor layer is grown between two others of a different mate-
rial with a zero conduction band offset, there is no potential
well to confine the electrons in the central layer. On the other
hand, a kinetic energy variation is brought about by the ef-
fective mass discontinuity and another kind of confinement
can take place, namely, the kinetic confinement. It occurs
when the heaviest effective mass is in the central layer, giv-
ing rise to a kinetic energy reduction related to the transverse
free motion. This kind of phenomenon was firstly exploited
by Sasaki [1] in a proposal for an effective mass superlattice.
After that, Kubisa and Zawadzki [2] investigated the effects of
external magnetic fields on a ’kinetic well’. Since then, it has
been investigated from the theoretical [3, 4] and experimental
[5, 6] points of view. More recently, this interest was renewed
through proposals for spintronic devices that employ different
materials for contacts and channel [7, 8].

In this work, effects of the effective mass discontinuity are
considered in a quantum wire system. We calculated the con-
ductance for different ratios between the electronic mass in
the contacts and in the channel. It is shown that this dis-
continuity determines the conductance oscillation amplitude.
It also affects the electronic density of probability inside the
channel and we employed a simple one-dimensional model to
discuss the transmission coefficient dependence on the mass
ratio. The conductance calculation is analogous to that per-
formed in a previous work [9] where we analyzed the effects
of the system dimensionality.

II. MODEL

We consider a three-dimensional hard wall channel, or
quantum wire, that connects the source and drain regions (see
the inset in Fig. 1). The mode matching technique is employed
to calculate the quantum ballistic conductance in the effective
mass and envelope function frameworks. We use a basis set

FIG. 1: Conductance as a function of Fermi energy for a 100 nm long
quantum wire with a 10x20 nm2 transverse section area. Three values
for rm (mc/mw) are considered: 0.8 (dashed line), 1.0 (full line) and
1.2 (thick line).Inset: schematic representation of the system. The
quantum wire is the central structure that connects the contacts. The
axes orientation is also indicated.

with infinite quantum well solutions for the confined dimen-
sions and plane waves for the propagating states. For more
details, see our previous work [9] where the wave functions
are presented and the calculation method is detailed.

Here, we take into account the difference between elec-
tronic effective masses in the quantum wire (mw) and in the
contacts (mc), whose ratio is given by rm (rm = mc/mw). In
this work, we fix mw = 0.067 (GaAs) and change mc through
rm.

We would like to stress that in our system there is no ki-
netic energy reduction related to the transverse free motion.
On the contrary, in a quantum wire, the transverse dynamics
is quantized and the effective mass variation mainly affects
the longitudinal motion through the probability flux continu-
ity and energy conservation.
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FIG. 2: Density of probability inside the quantum wire for the system
considered in Fig. 1. The same rm values and correspondent lines are
used. The Fermi energy is 88.7 meV.

FIG. 3: Transmission coefficient as a function of Fermi energy for the
one-dimensional analogue of the system considered on Fig. 1. The
same rm values and correspondent lines are used. Inset: schematic
representation of the one-dimensional system. L corresponds to the
quantum wire length and E0 corresponds to the conductance thresh-
old energy.

III. RESULTS AND DISCUSSION

In Fig. 1, we show the conductance as a function of the
electronic Fermi energy for a 100 nm long quantum wire with
a 10x20 nm2 transverse section area. We consider three values

for rm, namely, 0.8 (dashed line), 1.0 (full line) and 1.2 (thick
line). As one can see, the conductance oscillation amplitude
goes with the inverse of rm. In other words, one can say that
the conductance oscillations are reinforced when mw > mc.
This effect is analogous to the one observed in our previous
work [9] where narrow quantum wires and their correspon-
dent strong confinement also increased the conductance oscil-
lation amplitude. The difference is that, here, the electronic
confinement is not controlled by the wire width, but by the ef-
fective mass difference. Following this analogy, we may con-
clude that the effective mass discontinuity represents an extra
electron scattering mechanism at the entrance and exit of the
quantum wire.

At the same time, it is important to notice that the conduc-
tance oscillations and plateaus are present even when rm is
greater than 1. This means that the qualitative aspects of the
quantum wire conductance are preserved in this case.

In order to clarify the effects of effective mass variation on
the electronic properties of the quantum wire, in Fig. 2, we
show the density of probability as a function of the longitudi-
nal quantum wire coordinate for the previous wire dimensions
and three rm values. We used the same legend of Fig. 1 and
88.7 meV for the Fermi energy, which corresponds to a con-
ductance peak. It is shown that the charge localization is more
pronounced for the least rm value, namely 0.8 (dashed line).
This can be understood as a kind of charge confinement due to
mass discontinuity when mw is greater than mc. It is important
to notice that the conductance threshold is not affected by rm
due to the constant mw value. Moreover, the oscillatory be-
havior of the density of probability is weakened but preserved
when rm is greater than 1.

The quantum wire can be thought as a Fabry-Pérot like os-
cillator [9], what give us an alternative approach to explain
the rm influence on the wire conductance. By using a simple
one-dimensional model, an analytical expression for the trans-
mission coefficient with explicit dependence on the rm factor
can be obtained which shows the origins of the oscillation am-
plitude variation. This model is schematically represented on
the inset of Fig. 3, where L corresponds to the quantum wire
length. The system is divided into three regions. I and III
represent the contacts and II corresponds to the wire itself. In
this last region, there is an energy barrier, E0, that represents
the conductance threshold. We considered plane waves in the
three regions and imposed wave function and probability flux
continuity at the interfaces. The energy conservation was also
considered and the expression for the transmission probability
is written as:

|T |2 =
(2.rm.KI .KII)2

sin2(KII .L).(r2
m.K2

II +K2
I )2 + cos2(KII .L).(2.rm.KI .KII)2

(1)

where Kn represents the linear momentum in region n. In Fig. 3, we show this transmission coefficient as a func-
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tion of the Fermi energy for a system equivalent to that one
considered on Fig. 1, what means L = 100 nm and E0 = 70.15
meV. As expected, it reproduces the conductance dependence
on rm. This approach allows us to say that the effective mass
variation has a significant effect on the transmission and re-
flection coefficients of the system. rm values lower than 1
(mw > mc) reinforce these coefficients oscillations.

IV. CONCLUSIONS

We showed that the conductance of semiconductor quan-
tum wires is strongly affected by the effective mass disconti-
nuity when the contacts and the channel are made of different
materials. We employed the mode matching technique in the
effective mass and envelope function frameworks to calculate

the conductance in the ballistic regime. Our results show that
the conductance oscillations amplitude is increased when the
electronic mass in the wire is greater than that in the contacts.
The same behavior is observed for the density of probability
and the transmission coefficient, which was obtained through
a simplified one-dimensional model.

We hope that our results may help to understand future ex-
perimental data on transport properties of systems composed
by different materials.
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