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Generalized Manna Sandpile Model with Height Restrictions
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Sandpile models with conserved number of particles (also called fixed energy sandpiles) may undergo phase
transitions between active and absorbing states. We generalize the Manna sandpile model with fixed number
of particles, introducing a parameter −1≤ λ≤ 1 related to the toppling of particles from active sites to its first
neighbors. In particular, we discuss a model with height restrictions, allowing for at most two particles on a site.
Sites with double occupancy are active, and their particles may be transfered to first neighbor sites, if the height
restriction do allow the change. For λ = 0 each one of the two particles is independently assigned to one of the
two first neighbors and the original stochastic sandpile model is recovered. For λ = 1 exactly one particle will
be placed on each first neighbor and thus a deterministic (BTW) sandpile model is obtained. When λ =−1 two
particles are moved to one of the first neighbors, and this implies that the density of active sites is conserved in
the evolution of the system, and no phase transition is observed. Through simulations of the stationary state, we
estimate the critical density of particles and the critical exponents as functions of λ.
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I. INTRODUCTION

Problems related to phase transitions between active and
absorbing states have attracted much interest in recent years
[1]. Although these transitions occur away from thermody-
namic equilibrium, since the presence of absorbing states pre-
vents detailed balance to be satisfied in the dynamical evo-
lution, the theoretical framework developed for equilibrium
phase transition may in fact be applied to these systems, and
concepts such as scaling and universality are relevant for non-
equilibrium phase transitions as well. It is then of interest to
identify the universality classes in these systems. Many of the
stochastic models with absorbing states which show a phase
transition belong to the directed percolation (DP) universal-
ity class [2], including the much studied contact process (CP)
[3]. The so called DP conjecture [4], confirmed so far through
many examples, stated originally that models with a scalar or-
der parameter exhibiting phase transitions between an active
state to a single absorbing state and without additional conser-
vation laws should belong to this universality class. However
it seems that models with multiple or even infinite absorb-
ing states (without simmetries connecting them) are also in-
cluded in this class [5, 6].In models for sandpiles the number
of particles is conserved and an infinite number of absorb-
ing states is present, and thus they are potential candidates to
belong to a non-DP universality class. Careful simulations of
the unrestricted Manna sandpile model [7] and the model with
height restrictions [8] lead to exponents at variance with the
DP value.

The Manna sandpile model was originally proposed as a
stochastic model for SOC, with slow addition of sand and
avalanches which lead to abrupt loss of sand [9]. The scal-
ing behavior in the SOC regime was later recognized to be
associated to an absorbing state phase transition in the corre-
sponding model without addition or loss of particles (grains
of sand), the so called fixed energy sandpiles (FES) [10]. In
this model, a d-dimensional lattice of size Ld is occupied by N
particles. A configuration of the lattice is specified fixing the

number of particles zi at each site i, where zi may be any non-
negative integer number. Sites with zi ≥ 2 are active, and an
active site may loose two particles to its first neighbors, with a
unitary toppling rate. The two particles move to randomly and
independently chosen sites among the first neighbors of site i.
Any state in which no site has two or more particles is an ab-
sorbing state, and in the thermodynamic limit the number of
absorbing states is infinite, as long as the density of particle
ζ = N/Ld is smaller than unity. Numerical simulations [7] in
fact show that this model in one dimension undergoes a con-
tinuous phase transition at a critical density ζc = 0.9488 with
critical exponents which are different from the DP values.

In this paper we study a variation of the original model
where the occupancy numbers are restricted to zi ≤ 2. Each
move of a particle is accepted only if this constraint is not vi-
olated at the destination site. This additional restriction in the
allowed configurations leads to simplifications in mean-field
calculations and in simulations. Numerical simulations for
the one-dimensional restricted model lead to a slightly lower
critical density ζc = 0.92965, while the exponents are com-
patible with the ones found for the unrestricted model [8]. We
generalize this restricted model by introducing a parameter
whose value is related to the choice of the destination sites of
the two toppling particles. The restricted Manna model corre-
sponds to λ = 0 and a model where exactly one particle is sent
to each first neighbor of the active site (in one dimension) is
recovered for λ = 1. We call this latter case the BTW model,
since it corresponds to the original Bak, Tang and Wiesenfeld
model [11] with conserved number of particles. In particular,
we are interested in investigating the phase transition in the
model as the parameter λ is changed.

In the section II we define the model in more details. The
numerical simulations which were performed are described in
section III, as well as the results they furnished. Conclusions
may be found in section IV.
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II. DEFINITION OF THE MODEL

We consider N particles located on the L sites of a one-
dimensional lattice with periodic boundary conditions in such
a way that each site i is occupied by zi = 0,1 or 2 particles.
Sites with two particles are active and the control parameter
of the model is the density of particles ζ = N/L. The update
of the configuration is started by randomly choosing one of
the NA active site of the lattice. The following updates of the
configuration may then occur:

1. With a probability (1+λ)/2 each first neighbor receives
exactly one of the particles from the active site, as may
be seen in Fig. 1.

P= (1+λ)/2

FIG. 1: The two particles of the active sites are moved to different
first neighbor sites.

If one of the first neighbors is active, the particle which
was chosen to be sent to this site remains on the original
site. If both first neighbor sites are active, no particle
movement occurs. This assures that the restriction on
the occupancy numbers is always satisfied.

2. With a probability (1−λ)/2, one of the two first neigh-
bors is chosen with probability 1/2 and both particles
are moved to this site. If the destination site is already
occupied by one particle, only one of the particles orig-
inating from the active site is moved. If the destination
site is active, no movement is done. An example of such
a transition is shown in Fig. 2.

P= (1−λ)/4

FIG. 2: Both particles from the active site are moved to the same first
neighbor site.

One iteration as described above corresponds to a time in-
crement of 1/NA. After each iteration, the list of active sites
is updated. In the restricted model the density of particles
obeys ζ ≤ 2, and when ζ = 2 an additional absorbing state is
reached. In the unrestricted model there is no such upper limit
for ζ and no spurious absorbing state with unitary density of
active sites exists. However, since the phase transition in the
models occurs at particle densities below unity, this details do
not bother us here. The fact that the restriction on the occu-
pancy numbers implies a reduction of only about 2% in the
critical density of the model reveals that for the unrestricted
model in the supercritical region close to the phase transition

the fraction of sites with occupancy larger than 2 should be
very small.

The parameter λ is restricted to the interval [−1,1]. In the
upper limit of this interval, the toppling of particles is deter-
ministic and the model corresponds to a BTW sandpile with
conserved number of particles. In the lower limit the number
of active sites is a conserved quantity in the time evolution
of the model, with active sites diffusing on the lattice. The
conservation of the number of active sites in this limit is a
consequence of the occupancy numbers restriction and does
not happen in the unrestricted model.

III. SIMULATIONS AND RESULTS

We realized simulations to find the critical properties of the
one-dimensional model with height restrictions. The initial
condition, for a given value of λ and ζ = N/L, is a uniform and
uncorrelated distribution of the N particles on the L sites of the
lattice, respecting the restrictions. We studied lattice sizes L
between 100 and 2000, performing Nr repetitions with times
up to tmax for a certain range of densities and each value of λ.
In our simulations tmax was in the interval [4× 104,2× 107]
and Nr = 2000. Since in finite systems with absorbing states
the only stationary states are the absorbing states themselves,
to study the transition we are interested in the quasi-stationary
states of the model. Usually, the simulational determination of
this state is hindered by the presence of the absorbing states,
since considerable fluctuations will be found in the quantities
estimated in the simulations, particularly for particle densities
close to the critical value. To avoid these drawbacks and in-
crease the precision of the estimates of the stationary state we
used the prescription for simulation of quasi-stationary states
proposed recently by de Oliveira and Dickman [12].

In the simulations, the time evolution of the density of ac-
tive sites ρa is obtained, one example being shown in Fig. 3.
A stationary value of this density may then be estimated for
given values of ζ and λ calculating the mean value of the last
2000 points in such simulations.

For each value of the lattice size L, realizing simulations
for a range of particle densities ζ, we obtain curves for the
order parameter such as the one depicted in Fig. 4. It should
be mentioned that for each lattice size the particle density may
assume only a discrete set of values, but it seems reasonable
to interpolate between those values, assuming that ρa varies
continuously with ζ.

The estimated values of the order parameter as a function
of the particle density ζ may then be analyzed considering the
following scaling relations:

ρa(ζc,L) ∼ L−β/ν⊥ , (1)

ρa(ζ) ∼ (ζ−ζc)β. (2)

Here ρa(ζ) denotes the thermodynamic limit L → ∞ of
ρa(ζ,L). These scaling relations provide estimates for the
critical exponents β and ν⊥, as well as for the critical parti-
cle density ζc. To estimate the critical particle density and
the order parameter exponent β we proceed as follows: for a
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FIG. 3: Example of a simulation of the time evolution of the density
of active sites. In this case L = 100, λ = 0, and ζ = 0.92.
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FIG. 4: Estimated values of the order parameter ρa as a function of
the particle density ζ, obtained for L = 2000 and λ = 0. The dashed
line is a guide for the eye.

given value of L we choose a critical value ζ(L)
c which maxi-

mizes the correlation in a linear approximation for the func-
tion lnρa = b+β(L) ln[ζ−ζ(L)

c ], with ζ > ζ(L)
c . Once obtaining

estimates for β(L) and ζ(L)
c for different values of L, they may

be extrapolated to the limit L → ∞. The ratio β/ν⊥ may be
estimated directly through the relation lnρa = c + β/ν⊥ lnL,
using values for ρa at the estimated critical particle density.

Using the procedure described above, we obtained esti-
mates for the case λ = 0, as may be seen in Fig. 5. We then
realized that the estimates for β may be improved excluding
the smaller sizes in the extrapolation to the thermodynamic
limit. A better result for the ratio β/ν⊥ is found if we apply
the scaling correction proposed in [12] for the simulation of
the quasi-stationary state of the contact process. It seems that
the algorithm proposed in this reference for simulations of the

quasi-stationary state and used in our work implies a scaling
correction which is characteristic of the model. With these
corrections, our estimates are very close to the ones in refer-
ence [8]. The extrapolations with the scaling correction may
be seen in Fig. 6.
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FIG. 5: Extrapolation without the scaling correction for λ = 0. The
estimates are: ζc = 0.92996, β/ν⊥ = 0.2832 and β = 0.42608.
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FIG. 6: Extrapolations with the scaling correction for λ = 0. Cor-
rected values for the estimates: ζc = 0.92996, β/ν⊥ = 0.247 and
β = 0.41275.

Repeating this strategy for different values of λ, we finally
may obtain the phase diagram of the model, as well as study
the values of the estimates for the critical exponents as func-
tions of this parameter. In Fig. 7 the phase diagram is shown.
Besides the points for the critical line which emerge from the
simulations, the result of a 2-site mean field approximation
for the model may also be seen in the figure. Details of these
calculations will be given elsewhere. The curve which results
from the mean-field calculations is always below the results
of the simulations, confirming that when the correlations are
ignored the size of the active region in the phase diagram is
overestimated. As λ approaches the limiting value -1, the re-
sults of the simulations get closer to the ones in the mean-field
approximation, which leads to ζc = 1/2 in this limit, even in
a one-site approximation. This seems to be reasonable, since
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in this limit the evolution of the model is dominated by the
diffusion of active sites, and this leads to a mean-field like be-
havior. This argument applies only in the limit of λ slightly
above -1, since as already noticed above when λ = −1, ρa(t)
is constant and no phase transition is observed.
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FIG. 7: Phase diagram of the Manna model with height restriction
parametrized by λ.

In Fig. 8 we notice that the estimates for the critical ex-
ponents show a rather strong dependence of the parameter λ,
which may be due to a crossover between universality classes
in the limits λ→−1, where mean-field behavior is expected,
and λ → 1, the conservative BTW model. In this latter limit,
our simulations indicate a first-order transition at ζ = 1, as
may be seen in Fig. 9.
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FIG. 8: Estimates for the critical exponents β e β/ν⊥ as functions of
the parameter λ.

IV. CONCLUSION

We studied a generalization of the one-dimensional Manna
model with height restrictions and conservation of the number
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FIG. 9: Estimates for the order parameter for L = 500, with λ = 1,
indicating a first order transition.

of particles, with the inclusion of a parameter λ which is re-
lated to the two toppling processes which occur in the model.
When λ = −1 no transition is found between an active and
an absorbing state, and a diffusive dynamics of active sites is
found. In the other extreme λ = 1 the model corresponds to
a conservative BTW sandpile, and our results indicate a dis-
continuous transition as obtained by Dickman et al in [7]. We
believe that the observed variations in the critical exponents
may be due to crossover effects in the two limiting cases of
the model.

It is necessary to extend our simulations to values of λ
which are closer to both limits, in order to find out if the
exponents approach limiting values. In particular, it would
be interesting to find out if mean-field exponents are found
as λ → −1. The exponent ration ν‖/ν⊥ should also be es-
timated through additional simulations, as well as the ratio
m = 〈ρ2

a〉/ρ2
a, whose value at ζ = ζc is also universal. We

believe the phase transition in the model to be discontinuous
only at λ = 1, but the data we have collected so far do not al-
low us to discard the possibility that a tricritical point exists
for some value of λ between 0 and 1.

We are presently trying to answer these questions, so that
the critical behavior of this model, which does not belong to
the DP universality class, may be better known.
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