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Lattice Gas with Nearest-Neighbor Exclusion in a Shear-Like Field
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We present Monte Carlo simulations of the lattice gas with nearest-neighbor exclusion and Kawasaki (hop-
ping) dynamics (hard square lattice gas), under the influence of a nonuniform drive, on the square lattice. The
drive, which favors motion along the +x axis and inhibits motion in the opposite direction, varies linearly in the y
direction. Our lattice has rigid walls at the end points in the y direction and periodic boundaries along the drive.
We find that this model has transition to a sublattice-ordered phase at a density of about 0.298, lower than in
equilibrium (ρc ' 0.37), but somewhat higher than in the uniformly driven case at maximal bias (ρc ' 0.272).
For smaller global densities (ρ ≤ 0.33), the ordering occurs with particle accumulation in the low-drive re-
gion. Above this density we observe a surprising reversal in the density profile, with particles migrating to the
high-drive region.
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I. INTRODUCTION

The lattice gas with nearest-neighbor exclusion (NNE) is
the infinite repulsion limit of the ordinary repulsive lattice gas.
Here, particles are forbidden to occupy the same or neighbor-
ing sites. Its equilibrium version, in the square lattice, has a
continuous order-disorder phase transition at the critical den-
sity ρc ≈ 0.37 [1–5] which belongs to the Ising universality
class. This model is also known as the hard square lattice gas.
The square lattice, like other bipartite lattices, may be divided
into two sublattices, A and B, such that the neighbors of all
sites in A belong to B and vice-versa. For densities above ρc
the two sublattices have unequal densities.

More recently, nonequilibrium versions of the NNE model
were studied [6, 7]. It was found [6] that the critical den-
sity varies with drive intensity: the higher the drive, the lower
the critical density. The transition is continuous for low bias
but becomes first order if the bias strength is ≥ 0.75. Above
the transition density, the system separates into regions of low
and high local density, with the high-density region essentially
frozen. Szolnoki and Szabó [7] extended the dynamics to in-
clude next-nearest-neighbor (diagonal) hops, and observed a
similar variation of the critical density with drive strength, but
with a homogeneous stationary state. Continuous phase tran-
sitions in this version of the model fall in the Ising class, as
the equilibrium case. These driven lattice gases are known as
driven diffusive models (DDS) [8, 9].

Here we consider a hard-core DDS with nearest-neighbor
hopping dynamics, in which the drive is nonuniform. Specif-
ically, the probability for a particle at y to attempt a jump to
the right (x→ x+1) is given by:

Pr(y) =
1
4

(
1+

y−1
L−1

)
, (1)

for y = 1, 2,...,L, on a square lattice of L2 sites (a jump to the
left occurs with probability Pl(y) = 1/2−Pr(y)). Jumps in the
±y direction occur with probability 1/4. We present numerical
results from Monte Carlo (MC) simulations of the model.

Our main objective is to obtain the critical properties of the
model. To determine the critical density, we study the behav-

ior of the order parameter and the stationary current as func-
tions of global density. Of particular interest are the current
and the density profiles as functions of y which show how
the system organizes under the influence of the drive. In the
following section (II) we detail the model and simulation pro-
cedure. In Section III, we present numerical results and dis-
cussions. Final considerations are reserved for section IV.

II. SIMULATIONS

We consider a square lattice of length L (L2 sites) with N
particles (N < L2/2). (Most of our studies use L = 100.)
The initial configuration is prepared via random sequential
adsorption (RSA) [10, 11] of particles, always respecting the
excluded-volume condition. The dynamics consists of ran-
dom selection of particles and assignment of a new (trial) po-
sition at one of the nearest neighbor sites with the probabil-
ities introduced above. If the trial position does not violate
the exclusion constraint, the move is accepted. Each MC time
unit corresponds to N attempted moves. We perform averages
over 106 MC time units in the stationary state. Twenty values
of the density ρ = N/L2, ranging from ρ = 0.01 to ρ = 0.37
are studied.

III. RESULTS

The order parameter is defined as the difference in sublat-
tice occupancies per particle,

〈φ〉=
〈|NA−NB|〉

N
, (2)

where NA(B) is the number of particles in sublattice A(B) and
〈〉 indicates an average over realizations. The stationary cur-
rent is defined as the difference between the number of jumps
along the drive less the number contrary to it, per site and unit
time.

In Fig. 1 we show the average value of the order parameter
and, in the inset, its corresponding fluctuation. The rapid rise
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in the order parameter and the associated maximum in its vari-
ance signal a continuous transition to an ordered phase. The
data suggest a critical density of ρc = 0.298, although a pre-
cise determination will require studies of larger systems. In
any case, it is clear that the critical density is lower than that
for the equilibrium transition [2]. The apparently continuous
transition in the presence of a nonuniform drive is likely to be
due the fact that the system does not order all at once.
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FIG. 1: Order parameter (circles) versus overall density, L = 100.
The inset shows its variance. The peak in

〈
∆φ2〉 is around ρ = 0.298.

In Fig. 2, we show the stationary current for several sys-
tem sizes. This quantity displays the same behavior as in the
uniformly driven case: it increases at small densities (reflect-
ing the increasing number of carriers) and decreases for larger
densities (due to the reduction in available space for move-
ment). The maximum value of 〈 j(t)〉 falls at roughly in the
same density as in the uniform drive case [6]. Interestingly,
the phase transition near ρ = 0.298 is associated with a plateau
in the current (see inset of fig. 2).
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FIG. 2: Average stationary current versus density for L = 100, 90,
80 and 70. The inset shows a detail of the plateau region around the
critical density, ρc = 0.298.

The order parameter and the stationary current present
strong fluctuations for densities above ρ = 0.32. The evolution
of these quantities typically displays sudden jumps between
the ordered and the disordered state, a fact already observed in
the uniformly driven case. In these cases, the relaxation time
to the stationary state is on the order of 107 MC steps. When
the global density approaches the maximal value we studied
here, this slow relaxation is suppressed due to the quick for-
mation of a jammed region in the high-field portion of the
lattice (see below the results for the profiles and the configu-
ration snapshots). The drive provokes formation of organized
structures while their thermal motion provides a mechanism
for breaking such clusters. We will see that such behavior
may find a parallel in actual physical systems.

Of interest is how the system organizes as the global den-
sity increases. To understand this, we determine the stationary
density and current profiles, ρ(y) and j(y), respectively. These
quantities are shown in Figs. 3 and 4.
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FIG. 3: Stationary density profile ρ(y) for various global densities.
The curves for the three denser states are shifted upwards by 0.15,
0.1 and 0.05, respectively. Inset: same quantity for densities 0.33,
0.34, and 0.35 (from top to bottom). The first two curves are shifted
upwards by 0.1 and 0.05.

Particles concentrate first, as the global density increases,
in the low field region (this concentration is observed at den-
sities as low as 0.20). This is surprising given the finding that
a strong drive favors order [6]. On this basis one might ex-
pect particles to concentrate first in the high-drive region. In
fact just the opposite occurs: for a global densities ρ ≤ 0.32,
the density profile ρ(y) (Fig. 3) is highly skewed to the re-
gion around y = 1. Note that the local density is ≥ 0.37
in this region (for ρ between 0.30 and 0.32), that is, greater
than or equal to ρc in equilibrium. The density profile decays
monotonically with increasing y (except for small density os-
cillations induced by the wall at y = 1). For ρ = 0.33, the local
density instead increases with y, reaching a peak near y = 47,
after which it decays in an approximately linear fashion until
y = L.

The density profiles show that particles tend to accumulate
in the layers in contact with the rigid walls (y = 1 and y = L).
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This accumulation is due to excluded volume effects [12] that
entropically favor enhanced densities at rigid surfaces. The ef-
fect of this accumulation shows up in the current profile (Fig.
4), as a sharp peak at y = L.
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FIG. 4: Stationary current profile j(y) for global densities as indi-
cated. The data for ρ = 0.32, 0.31 and 0.30 data are shifted upwards
by 0.025, 0.0125 and 0.005 respectively. Inset: average stationary
current for densities (top to bottom): 0.35, 0.34 and 0.33. The top
curve is shifted upwards by 0.007, the second one, by 0.003.

The observations made in the density profiles have re-
flections at the current profiles (Fig. 4). The current is
much smaller in the small-y region (low-bias) and increases
monotonically with y. It clearly shows that ordering occurs in
the low-drive region for densities between 0.30 and 0.32, as
described above. Note also that the current in the high-drive
region is close to zero for ρ ≥ 0.35, signaling a greater accu-
mulation of particles in this part of the lattice.

A possible explanation for the surprising reversal of the
density and current profiles with increasing global density is
related to the formation of a jammed region, as observed in
the uniformly driven system [6]. We term a region “jammed”
when all particles in this region have their movement severely
reduced due to aggregation induced by the field, leading to a
vanishing diffusion coefficient and mobility. When the global
density is too low for such a region to form, particles tend to
collect in the low-drive region because a strong drive tends
to destroy the local correlations needed for particles to pack
to high density, even if such packing does not result in long-
range order. The depletion of the high-drive region appears to
be the reason for the plateau in the current observed around
ρ = 0.30 in Fig. 2. Fig. 3 shows that as the global density
increases, the local density in the high-drive region remains
nearly constant, so the global current hardly varies, since its
main contribution comes from particles in the high-field re-
gion.

When, on the other hand, the global density is sufficiently
high, an irreversible accumulation of particles happens in the
high-field region, so that the low-drive region has fewer par-
ticles than at lower global densities, for which there is no
jammed region.

We may now identify two factors leading to the continuous
variation of the order parameter with density shown in Fig.
1. One reason is that ordering begins in the low-bias region.
Studies of the uniformly driven system show that the transition
is continuous under a weak bias [6]. The second reason is
that the width of the ordered region grows continuously with
increasing density.

To illustrate these ideas, we show in Fig. 5 a configura-
tion for ρ = 0.31 and L = 100. As expected, the low-drive
region is very dense and contains few mobile particles. In
the uniformly driven system (at maximum bias) one observes,
at this density, formation of “herringbone” pattern of diagonal
stripes, pointing along the drive, with particles in this structure
essentially frozen. In the present case the low-drive region is
highly ordered, with almost all particles in the same sublattice,
but there is no sign of the herringbone pattern. The high-drive
region is disordered, permitting the high currents and lower
densities reported above. Several clusters of particles exist in
the high-drive region, but they are not large enough to cause
jamming.
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FIG. 5: Particle configuration at density ρ = 0.31, after 106 MC steps
(system size L = 100). Open and filled symbols represent particles in
different sublattices. The drive is directed to the right and increases
in the vertical direction.

We show in fig. 6 a typical configuration at global density
ρ = 0.35. Evidently the long diagonal line of particles at the
upper right is associated with jamming in the high-drive re-
gion. The empty triangular region implies a decrease in the
local density with increasing y. Particles are not free to enter
this region since all particles along the diagonal edge are im-
mobile. These observations are supported by the the density
and current profiles (Figs. 3 and 4). The density is roughly
constant in the middle portion of the lattice and begins to
decrease near y = 78, where the empty triangular region be-
gins. The current is only appreciably different from zero in
the lower portion of the lattice, as signalled in Fig. 6 by the
presence of particles both sublattices. The diagonal edges ob-
served in configurations at this density (always in the high-
drive region), are extremely long-lived structures, since only
the particle at the tip of the line can move without violating the
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exclusion constraint. In this configuration, such particles are
blocked by others, providing a virtually infinite lifetime to this
structure. The large number of voids in the high-bias region
of fig. 6 results from the formation of the jammed structure
during the early stages of the dynamics (confirmed by the his-
togram of displacements in y during thermalization, not shown
here, [13]).

0 20 40 60 80 1000

20

40

60

80

100

FIG. 6: Particle configuration at density ρ = 0.35, after 106 steps
(L = 100).

To study correlations between the particles, we determine
the radial distribution function, g(r) in the high- and low-
drive regions (Fig. 7). This function is proportional to the
probability of finding a pair of particles separated by a dis-
tance r, and is normalized so that g → 1 as r → ∞. For pur-
poses of determining g(r), the low-drive region is taken as
the strip 6 ≤ y ≤ 14, while the high-drive region comprises
86≤ y≤ 94.
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FIG. 7: Radial distribution function for the high- and low-drive re-
gions, for densities ρ = 0.31 and ρ = 0.35. The error bars are the
same size or smaller than the symbols.

The g(r) curves for global density ρ = 0.31 show that the
high- and low-drive structures are markedly different. In the

low-bias region the peaks are much larger due to the sublattice
ordering associated with packing of particles (as evidenced by
the configuration in Fig. 5), and is compatible with the exis-
tence of long-range order. The high-drive region shows little
structure; the oscillations in g(r) decay rapidly with distance.
The picture for ρ = 0.35 is quite different. The sharpness of
the peaks in the curve for ρ = 0.35 in the high-bias region re-
flects the very different sublattice densities, as does the fact
that g ' 0 for r = 3,

√
13 and

√
17. The radial distribution

function in the low-drive region, for this density, exhibits less
structure, indicating the more equal sublattice occupancies.

A final question is whether all the observed ordering is
somehow induced by the rigid walls. We studied a system
with periodic boundaries in y direction and a symmetric drive
profile and found essentially the same results for the current
and density profiles [13].

IV. CONCLUSIONS

We studied a lattice gas with nearest-neighbor exclusion
driven by a nonuniform, shear-like drive, on the square lat-
tice, under nearest-neighbor hopping dynamics. The problem
is of interest as an example of the surprising behavior to be
found in a simple nonequilibrium system. We find that the
model undergoes a continuous order-disorder transition at a
critical density of about ρc = 0.298. This is unlike the uni-
formly driven model, in which the transition is discontinuous
for a bias ≥ 0.75. The stationary current follows roughly the
same trends as in the uniformly driven case, but exhibits a
plateau in the neighborhood of the phase transition.

Our results show that this transition is due to the concentra-
tion of particles at the low-bias region, for global densities be-
tween ρ = 0.30 and 0.32. Remarkably, the nonuniform drive
induces a highly nonuniform density profile, expelling parti-
cles from the high-bias region. The effect is sufficiently strong
to induce sublattice ordering in the low-bias region. Thus the
drive favors a class of configurations that, on the basis of en-
tropy maximization, are extremely unlikely. Note that at these
densities there is no jamming, i.e., the system is ergodic. Mi-
gration of particles to the low-bias region appears to derive
from the destruction of short-range correlations (required for
efficient packing), by the drive.

For higher densities, we observe a completely inverted pic-
ture, with formation of jammed structures in the high-drive
region, while particles outside this region remain mobile. The
jammed region is characterized by a dense (ρ≥ 0.37) strip of
particles; at higher global densities this region displays long
diagonal chains of particles associated with voids. Other vari-
ants of the model, with different drive geometries [14] show
similar effects.

The parallel between our lattice gas and real systems is built
by the observation of the slow relaxation at high densities.
Our particles have (infinite) repulsive interactions and thermal
motion (provided by the Monte Carlo algorithm). A thermal
system composed of particles that have highly repulsive in-
teractions, albeit not infinite ones, is a colloidal suspension.
In fact, the experiments of Bertrand et al. [15] show a simi-
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lar effect to the slow relaxation observed here. They studied
suspensions at several densities under the influence of shear.
The suspension presents shear-thickening at intermediate den-
sities, where a small vibration drives the system back to a fluid
state. At higher densities, after shear is applied, the suspen-
sion forms a paste, becoming trapped in this jammed state.
In our case, thermal motion, or vibration, is always present,
as well as shear, so we do not observe the breakdown of the
jammed state at intermediary densities, but a slow relaxation
towards a denser state. In a granular system, which is, by
definition, athermal, effects analogous to those of thermal ag-
itation can be produced by shaking. This raises the possibility
that the behavior identified in the sheared lattice gas might

also be observed in a sheared packing if, besides the shear
drive, continuous shaking were applied to the grains. This
suggests that the model studied here can be extended to study
the dynamics of certain complex fluids, a subject we intend to
explore in future work.
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