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The chaotic low energy region (chaotic sea) of the Fermi-Ulam accelerator model is discussed within a scaling
framework near the integrable to non-integrable transition. Scaling results for the average quantities (velocity,
roughness, energy etc.) of the simplified version of the model are reviewed and it is shown that, for small
oscillation amplitude of the moving wall, they can be described by scaling functions with the same characteristic
exponents. New numerical results for the complete model are presented. The chaotic sea is also characterized
by its Lyapunov exponents.
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I. INTRODUCTION

The Fermi accelerator model is a one-dimensional system
originally proposed by Fermi in 1949 [1] to study cosmic
rays. It provides a mechanism through which a charged par-
ticle can be accelerated by collision with a time-dependent
magnetic field. Since then, different versions of this model
have been proposed and studied by several authors. One of
them is the so called Fermi-Ulam model (FUM), which con-
sists of a bouncing ball confined between a fixed rigid wall
and a periodically moving one[2, 3]. For high energies there
is a set of invariant spanning curves[3, 4] that limit the en-
ergy gain of the particle (i.e. absence of Fermi acceleration).
Pustil’nikov [5] subsequently proposed another version, the
so-called bouncer. It consists of a particle falling in a constant
gravitational field, onto a vertically moving plate. Depending
on the initial conditions and control parameters, this system
does yield Fermi acceleration (unlimited energy gain) [6]. Re-
cently a hybrid model incorporating features of both the FUM
and the bouncer [7] was studied, as was also the FUM sub-
ject to dissipation [8–10]. Quantum versions of both kind of
models have also been considered [11–15]. Note that these
one-dimensional classical systems allow direct comparison of
theoretical results with experimental ones [16, 17] and that
the formalism used in their characterization can immediately
be extended to the billiards [18, 19] as well to time-dependent
potential well problems[20–24].

In the FUM, the moving wall represents an external time-
dependent forcing. Without it, the system is integrable; it
is the time-dependent perturbation that causes it to be non-
integrable. Although integrable and ergodic dynamical sys-

tems are reasonably well understood, quantitative descrip-
tions of non-integrable systems have yet to be achieved. In
particular, we still lack a deep understanding of how time-
dependent perturbations affect the dynamics of Hamiltonian
systems. Thus it is of interest to study such perturbations in
simple systems.

The FUM may be described in terms of a two dimensional
measure-preserving map. We review briefly the principal
characteristics of this representation . Of particular note is
a set of invariant spanning curves in the phase space at high
energies [3, 4]. In contrast, the low energy regime is charac-
terized by a chaotic sea icluding a set of KAM islands. This
region is bounded by the first invariant spanning curve. As
noted, when the amplitude of the moving wall is zero the sys-
tem is integrable: as soon as the amplitude differs from zero,
an integrable-chaotic transition occurs with the appearance of
a chaotic sea [25]. This transition implies that average quanti-
ties of the so called simplified Fermi-Ulam model (SFUM) are
described by scaling functions [26] when the collision num-
ber is an independent variable [27]. Finally, chaotic regions
limited by two invariant spanning curves are observed at in-
termediate energies.

In this work, we are interested in the chaotic sea (the lowest
chaotic region) of the FUM, within the scaling regime. There-
fore, the oscillation amplitude of the moving wall must be
small given that the transition actually occurs for zero am-
plitude. We review previous results[25, 27], bringing them
within a unified, simpler, and detailed description in order to
gain a better understanding of the integrable-chaotic transi-
tion. Furthermore, we present some new results concerning
this transition in the complete FUM.
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This work is organized as follows. In Sec. II we present
the complete and simplified versions of the FUM. We obtain,
step by step, the two-dimensional maps of both versions, and
we discuss also some aspects of the phase space. The scaling
description appears in Sec. III: (i) first we discuss the phase
space in terms of rescaled velocities; (ii) we present our nu-
merical results for the Lyapunov exponents characterizing the
chaotic sea; (iii) we describe briefly the scaling hypothesis;
and (iv) define the average quantities of interest. Finally, we
present our numerical results for the simplified and complete
models.

II. THE ONE-DIMENSIONAL FERMI-ULAM MODEL

A. The complete model (FUM)

The one dimensional FUM describes the motion of a par-
ticle of mass m bouncing between two parallel horizontal
rigid walls in the absence of gravity. One of them is fixed
at the origin (X = 0) and the other moves periodically in
time. The position of the oscillating wall is given by XW (t ′) =
X0 + ε′ cos(wt ′+φ0) , where X0 is the equilibrium position, ε′
is the amplitude of oscillation, t ′ is the time, w is a frequency
and φ0 is the initial phase. We perform scale changes (a) in
time t = wt ′ and (b) in length (xW = XW /X0). With these
choices the position of the oscillating wall can be written in
terms of dimensionless quantities as

xW (t) = 1+ εcos(t +φ0) . (1)

Note that the only parameter of the system is ε = ε′/X0 and
that the velocities are also rescaled (v = X0wv′).

The particle moves freely between impacts and collides
elastically with the walls. At collisions with the fixed wall,
the particle only reverses its velocity. On the other hand, the
particle exchanges energy and momentum with the moving
wall at each collision. We therefore choose to describe the
evolution of the system through the impacts with the moving
wall. The coordinates of the two-dimensional map are chosen
as (a) the velocity of the particle just after a collision with the
oscillating wall, and (b) the phase of the wall at the instant of
the impact. Note that these coordinates are related to the usual
canonical pair (energy, time).

We now construct the map. Consider the situation just after
a collision with the moving wall. In order to define the instant
of the next collision with this wall, it is useful to distinguish
between two different cases:

• case 1: The particle undergoes a collision with the fixed
wall before hitting the oscillating wall again.

• case 2: The particle has successive impacts with the
moving wall.

In the first case, the particle leaves the moving wall at time
t0 = 0 from the point x(0) = xW (0) = 1+εcosφ0 with velocity
~v0 = −v0~i (Observe that we have chosen v0 to be positive in
the direction of the inner normal of the oscillating wall.). It

hits the fixed wall, rebounds with velocity ~vb = v0~i and then
hits again the oscillating wall at time t1 given (implicitly) by:

v0 t1− (1+ εcosφ0) = 1+ εcos(t1 +φ0) (2)

The velocity ~v1 = −v1~i of the particle after the new im-
pact with the oscillating wall can be easily found, perform-
ing the calculations in a referential frame in which the wall
is instantaneously at rest. In this frame the velocity of the
particle just before the collision is ~v′b = ~vb − ~vW (t1), where
~vW = −εsin(t1 + φ0)~i is the moving wall velocity. After the
collision we have that ~v′a = −~v′b. Since ~va = ~v′b + ~vW (t1) we
obtain that ~v1 = 2 ~vW (t1)−~vb =−[

2εsin(t1 +φ0)+ v0
]
~i .

In the second case, the time t1 for the second collision with
the oscillating wall is determined by

1+ εcosφ0− v0t1 = 1+ εcos(t1 +φ0) (3)

and the velocity after the impact is given by ~v1 = 2 ~vW (t1)+
v0~i.

Note that Eqs. (2) and (3) can have more than one solution
and that t1 is given by the smallest positive solution.

We will describe the system by the map T (vn,φn) =
(vn+1,φn+1), where the phase of the moving wall at the nth
impact φn is defined as φn = tn +φ0 mod 2π. The map can be
written as

T :
{

vn+1 =±vn +2εsinφn+1 ,
φn+1 = φn +∆tn+1 mod 2π ,

. (4)

where ∆tn+1 = tn+1− tn is given by the smallest positive solu-
tion of

vn ∆tn+1− (1+ εcosφn) =±(1+ εcos(∆tn+1 +φn)) (5)

The plus sign in equations above corresponds to case 1 and
the minus sign to case 2. Note that Eq. (5) should be solved
numerically.

The tangent map DT |(vn,φn) = Jn (Jacobian matrix) is given
by

Jn =

( ∂vn+1
∂vn

∂vn+1
∂φn

∂φn+1
∂vn

∂φn+1
∂φn

)

Jn =

(
±1+2εcosφn+1

∂φn+1
∂vn

2εcosφn+1
∂φn+1

∂φn
∂φn+1

∂vn

∂φn+1
∂φn

)

where the right hand side was obtained from Eq. (4). Then,

detJn =±∂φn+1

∂φn
.

The partial derivatives of vn+1 and φn+1 with respect to φn
and vn are determined from Eqs. (4) and (5).
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We have then

j11 =
∂vn+1

∂vn
= ±1+2 j21 εcosφn+1 , (6)

j12 =
∂vn+1

∂φn
= 2 j22 εcosφn+1 ,

j21 =
∂φn+1

∂vn
= − ±∆tn+1

vn+1− εsinφn+1
,

j22 =
∂φn+1

∂φn
= ± vn− εsinφn

vn+1− εsinφn+1
,

where the plus and minus signs refer to cases 1 and 2, respec-
tively.

Thus the map has an invariant measure, namely (v −
εsinφ)dvdφ. If ε = 0 the measure is the usual canonical form
dE dt.

FIG. 1: Phase space with the rescaled velocity for (a)-(b) the com-
plete and (c)-(d) the simplified models. The values of the control pa-
rameter are: (a) and (c)ε = 1×10−3; (b) and (d)ε = 1×10−4. Note
that the positions of the first invariant spanning curves are given by
v∗/2

√
ε≈ 1.

B. The simplified model (SFUM)

Lieberman and Lichtenberg [2] introduced a simplified ver-
sion of the Fermi accelerator. Now, we will suppose that the
oscillating wall keeps a fixed position xW = 1 but that, when
the particle suffers a collision with it, the particle exchanges
momentum and energy as if the wall were moving. This sim-
plification carries the huge advantage of allowing us to speed
up our numerical simulations very substantially as compared
with those for the full model. It is valid when vn >> ε. Note

that case 2 of the preceding subsection is impossible and the
travel time between two impacts with the “oscillating wall” is
simply given by 2/vn, instead of Eq. (5).

Incorporating this simplification into the model, the map
can be written as

TS :

{
vn+1 =

∣∣∣vn−2εsin(φn+1)
∣∣∣

φn+1 = φn + 2
vn

mod 2π
. (7)

The modulus in the equation of the velocity was introduced
artificially in order to prevent the particle leaving the region
between the walls.

The coefficients of the Jacobian of the simplified map can
be derived easily. Now, we have that detJ =±1, implying that
the SFUM is area preserving.

C. The phase space

It is well known that the energy in the FUM is bounded
[4] because there are invariant spanning curves at sufficiently
high energy (velocity). It is also known [2] that the map may
have periodic orbits of low energy and thus KAM-like islands
may be observed. Figs. 1 (a) and (b), show the typical phase
space of the complete model, obtained by numerical iteration
of Eq. (4).

The high energy region appears to be very well ordered and
the low region seems to exhibit chaotic behavior. Note that
there exists a first invariant spanning curve separating two re-
gions that have different features: (a) the region above this
curve is locally chaotic and structured by the existence of in-
variant spanning curves at high energy; and (b) below this
curve the region (low energy) is globally chaotic, with KAM
islands surrounded by an apparently ergodic sea.

The phase space of the SFUM, obtained by numerical itera-
tion of Eq. (7), is shown in Fig. 1 (c) and (d). The structure of
its phase space is essentially the same as that of the complete
model.

III. SCALING ANALYSIS

A. Rescaling of the phase space

We consider first the SFUM. A naive estimation of the po-
sition of the lowest spanning curve may be obtained by trans-
forming, locally, the simplified map into the Standard map by
means of the coordinate change In = 2

v∗ +2 v∗−vn
v∗2 , where v∗ is a

typical velocity characterizing the region of interest, followed
by a linearization around this value. We obtain the Standard
map equations

In+1 = In−Ke f f sinφn+1

φn+1 = φn + In ,

with an effective control parameter Ke f f = 4ε
v∗2 . Note that the

Standard map undergoes a transition between local and global
chaos when K = Kc ≈ 0.972. In Table I we list the values
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of Ke f f related to the first (lowest) invariant spanning curve.
For each ε the lowest value of Ke f f corresponds to the max-
imum value of the velocity on the spanning curve, and the
highest corresponds to the minimum. Note also that Ke f f has
the same order of magnitude, independent of ε. Moreover,
both maximum and minimum values of Ke f f seem to converge
to Kc ≈ 0.972 when ε decreases.

ε (a) Ke f f (b) Ke f f

1×10−2 0.77 - 0.94 0.76 - 0.94

5×10−3 0.69 - 0.74 0.69 - 0.76

1×10−3 0.84 - 0.92 0.84 - 0.92

5×10−4 0.86 - 0.92 0.86 - 0.92

1×10−4 0.95 - 0.97 0.95 - 0.97

5×10−5 0.91 - 0.93 0.91 - 0.93

1×10−5 0.96 - 0.97 0.96 - 0.97

TABLE I: Characterization of the first invariant spanning curve for
the (a) simplified and (b) complete models. Ke f f = 4ε/v∗2 is the
effective control parameter. The lowest (highest) value of Ke f f cor-
responds to the maximum (minimum) value of the velocity on the
spanning curve.

The position of first invariant spanning curve of the FUM
can be estimated as before. The values of Ke f f for different
values of ε are also given in Table I. Note that these values are
basically the same as the ones obtained for each value of ε of
the simplified version.

It seems that the overall characteristics of the phase space
are almost independent of ε if the velocities are rescaled by
2
√

ε, as can be seen in Fig. 1 for both models.
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FIG. 2: The positive Lyapunov exponent for the low energy region
of the SFUM with ε = 1× 10−4 and different initial conditions. It
converges to the average value λ = 1.70(2).

B. Lyapunov exponents of the chaotic sea

Let us now characterize the chaotic region below the first
spanning curve, for both models. This region still contains

islands with invariant curves surrounding stable periodic or-
bits but, outside these islands, we observe an apparently er-
godic component. In our numerical simulations, the orbit of
any initial condition outside the islands densely fills the same
chaotic region. Moreover, as we will see, Lyapunov expo-
nents for each of these initial conditions have the same value
within the error bars. We will thus evaluate numerically the
Lyapunov exponent λ associated with this ergodic component.
We choose an initial condition in the chaotic sea. Then, we
use the exact form of the tangent map J ( Eq. (6) for the FUM
) and the triangularization algorithm as proposed in [28] to
evaluate

λ j = lim
N→∞

1
N

N

∑
n=1

ln |Λn
j | , j = 1,2 .

Here, Λn
j are the eigenvalues of DT N = ∏N

n=1 Jn, the product
of the Jacobians of the map evaluated along the orbit.

We numerically estimate the positive Lyapunov exponent
associated with the low energy region bellow the lowest span-
ning curve of the simplified model. For each value of ε, we
have chosen different initial conditions in the chaotic sea. A
typical run is shown in Fig. 2 for ε = 1×10−4 and 10 different
initial conditions. The positive Lyapunov exponent reaches a
steady regime for each orbit and all runs seem converge to an
average value.

Fig. 3 shows the average value of the positive Lyapunov
exponent for different values of ε. Note that the Lyapunov
exponent barely seems to depend on ε, since it changed only
17% in five decades of ε.

1e-06 1e-05 0.0001 0.001 0.01 0.1
ε

1.38

1.48

1.57

1.68

1.77

λ

FIG. 3: Log-linear plot of the positive Lyapunov exponent as func-
tion of ε for the low energy region of the SFUM.

The same procedure is applied to the FUM. The resulting
positive exponents for different values of ε have a similar be-
havior to the SFUM. Indeed, in four decades of ε, the exponent
changed also only by 17%. However, for the same value of ε,
the positive exponent of the complete model is roughly half
the value of the exponent of the simplified model. This dis-
crepancy could be related to more refined differences between
the models.

The renormalization of the phase space, discussed in the
previous subsection, is not only qualitative. The scaling fac-
tor is related to the existence of an effective parameter Ke f f ∝
4ε/v2. The high velocity regions correspond to small Ke f f and
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thus are well organized and close to being integrable. Low en-
ergy regions are associated to large Ke f f and thus associated
with chaos. Well-organized and chaotic regions are present in
each phase space, independently of ε up to a size scaling fac-
tor. The transition occurs in the first invariant spanning curve
when Ke f f ≈ Kc ≈ 0.972. Moreover, even though we have
studied a one parameter model which is completely integrable
for ε = 0, one cannot say that it becomes more chaotic by in-
creasing ε since the Lyapunov exponent is almost independent
of ε.

C. Scaling functions

The results of the previous section suggest that the chaotic
sea can be described by rescaled variables. It means that
scaling functions are an appropriate framework. Consider
ω(n,ε,v0) as a quantity, like velocity or energy, averaged over
the initial phase φ0, and depending on the iteration number
n, the amplitude ε and the initial velocity v0. The averaged
quantity is a generalized homogeneous function [26], if for all
values of the scaling factor l, the relation

ω(n,ε,v0) = lω(lan, lbε, lcv0) (8)

is valid. Here, a, b and c are the scaling dimensions and lan,
lbε and lcv0 are the so called scaled variables.

First, let us consider v0 ≈ 0, a simpler situation in which
we have to deal with only two variables. In order to dis-
cuss the scaling behavior, we choose l = n−1/a. Then,
we have that ω(n,ε,0) = n−1/aω(1,n−b/aε,0) . The func-
tion ω(1,n−b/aε,0) can be written in terms of variable n as
ω(1,n−b/aε,0) = g(n/nx), where the characteristic iteration
number nx is given by

nx ∝ εa/b . (9)

Note that there are two regimes: (a) small n (n << nx) and (b)
large n (n >> nx).

In order to describe both regimes, we must know the be-
havior of g (or ω(1,n−b/aε,0)) for n << nx and for n >> nx.
Consider first n << nx. Usually we have that g ≈ constant,
implying that ω ∝ n−1/a. However the general behavior is
g ∝ n−by/aεy, with the former case being obtained when y = 0.
Therefore, we can write that

ω(n,ε,0) ∝ n−
1+yb

a εy (10)

for n << nx.
For large n we expect ω to be idependent of n and to reach

an asymptotic value. If the behavior of g in this regime is
g ∝ n−by′/aεy′ , we must have that y′ =−1/b, in order to reach
such asymptotic value. For n >> nx, we therefore have the
following relationship

ω(n,ε,0) ∝ ε−
1
b . (11)

It is less straightforward to discuss the case v0 6= 0. Again
choosing l = n−1/a, Eq. (8) can be written as

ω(n,ε,v0) = n−1/aω(1,n−b/aε,n−c/av0) . (12)

Note that we have now two characteristic iteration numbers.
For very large n, we expect that ω reaches an asymptotic value
independently of the initial velocity, in such way that Eq. (11)
remains valid. On the other hand, the behavior for small n can
be very different of that described by Eq. (10).

We can relate the exponents c and b as follows. The initial
velocity must be below the first spanning curve, implying that
v0,max ∼ v∗. But Ke f f = 4ε/v∗ is a quasi-invariant (Ke f f ≈
Kc ≈ 0.972). We can thus rewrite the effective parameter in
terms of scaled variables Ke f f ∝ lb−2c(ε/v0,max), and assume
the invariability (b−2c = 0) to obtain that c = b

2 .

D. The average quantities

We will investigate the evolution of the velocity averaged
in M initial phases, namely

V (n,ε,v0) =
1
M

M

∑
j=1

vn, j , (13)

where j refers to a sample of the ensemble. In this ensemble
we can also define the averaged dimensionless energy (E =
2 Energy/mX2

0 w2):

E(n,ε,v0) =
1
M

M

∑
j=1

v2
n, j . (14)

We are also interested in another kind of average. We
first consider the average of velocity and the square veloc-
ity over the orbit generated from one initial phase φ0 namely
V (n) = 1

n ∑n
i=0 vi , and V 2(n) = 1

n ∑n
i=0 v2

i . Then we consider
an ensemble of M different initial phases:

< V > (n,ε,v0) =
1
M

M

∑
j=1

Vj(n) , (15)

< E > (n,ε,v0) =
1
M

M

∑
j=1

V 2
j (n) . (16)

Finally, let us to introduce the roughness, namely

ω(n,ε,v0) =
1
M

M

∑
j=1

√
< V 2

j > (n)−< Vj >2 (n) . (17)

It is worth mentioning that the roughness is an extension of
the formalism used to characterize rough surfaces[29].

E. Results for the simplified model

The behavior of the roughness is illustrated in Fig. 4(a)
for two values of the parameter ε, when the initial velocity is
near zero. We can see that it grows for small iteration number
n and then saturates at large n. The change between the two
regimes is characterized by a crossover iteration number nx.
Note that different values of ε generate different behaviors for
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FIG. 4: (a) Log-log plot of the roughness ω as a function of the
iteration number n; It is also shown a best fit for short n. (b) Behav-
ior of ω/ε as a function of n in a log-log plot. (c) Collapse of the
curves from (a) onto a universal curve. Both curves obtained from
the SFUM were derived from an ensemble average of 104 different
initial phases and always with the same initial velocity v0 ≈ 0.

short n. This indicates that the exponent y, defined in Eq.
(10), is non-zero. In fact, the transformation ω/ε coalesces
the two curves, as shown in Fig. 4(b). Therefore we have that
y = 1.0(1). Moreover, for ε = 1×10−4 and n << nx a best fit
is shown in Fig. 4 (a) and it furnishes that ω(n,ε,0) ∝ nβε ,
with the growth exponent β = 0.5000(2). Other fits always
furnish values for β around 0.5. After averaging over different
values of the control parameter ε in the range ε∈ [10−4,10−1],
we then obtain β = 0.496(6). Then, we can conjecture that
β = 1/2 and relate it to exponents a and b by Eq. (10). We
obtain that − 1+b

a = 1/2.
From Fig. 4(a), we can also infer : (i) that for n À nx, the

roughness reaches a saturation regime that is describable as
ωsat(ε) ∝ εα , where α is the so called roughening exponent
[29]; and (ii) that the crossover iteration number nx marking
the approach to saturation is nx(ε,v0) ∝ εz , where z is called
the dynamical exponent.

The exponent α is obtained in the asymptotic limit of large
iteration number, and it is independent of the initial velocity.
Fig. 5(a) illustrates an attempt to characterize this exponent
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FIG. 5: (a) Log-log plot of ωsat against the control parameter ε for
the SFUM. (b) The crossover iteration number nx as a function of ε
in a log-log plot.
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FIG. 6: The average velocity V as a function of n for different values
of ε and v0 in log-log plots. (a) The original iteration number series
for the SFUM ; (b) Collapse of the data onto a universal curve for
v0 ≈ 0 and v0 6= 0.

using the extrapolated saturation roughness. Extrapolation is
required because, even after 103nx iterations, the roughness
has still not quite reached saturation. From a power law fit,
we obtain α = 0.512(3) ≈ 1/2. Note that this is our worst
average value because we have included data for large ε. This
best fit value approaches 1/2 as long we consider only small
ε. Using Eq. (11) we obtain −1/b = 1/2. Since − 1+b

a = 1/2,
we have that 1/a = 1/2. Therefore we have determined all
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FIG. 7: (a) Behavior of the average energy < E > as a function of
the iteration number n in a log-log plot; It is also shown a best fit for
short n. (b) Behavior of < E > /ε2 as a function of n. Both curves,
obtained from the FUM, were averaged first over the orbit and then
in an ensemble of 2×103 different initial phases and always with the
same initial velocity v0 ≈ 0.

scaling dimensions, namely a = 2, b =−2 and c = b/2 =−1.
From Eq. (9), we obtain the dynamical exponent z = a/b =
−1. This exponent can also be found numerically. Fig. 5(b)
shows the behavior of the crossover iteration number nx as
function of the control parameter ε. The power law fit gives
us that z =−1.01(2), in good accord with the previous scaling
result. Since the fit is clearly worse for large values of the
parameter ε, we conclude that z =−1 for ε small enough.

The scaling for v0 ≈ 0 is demonstrated in Fig. 4, where two
curves for the roughness in (a) are collapsed onto the univer-
sal curve seen in (c) when we normalize the quantities with the
exponents a = 2 and b = −2. Note that we have two curves
characterized by ε1 = 1×10−4 and ε2 = 1×10−3. Using Eq.
(8), we obtain the scaling factor l = (ε2/ε1)1/b and the ap-
propiate renormalizations of the iteration number n1 = l−an2
and roughness ω1 = lω2.

Let us now discuss the scaling when v0 6= 0. This case is
better illustrated by the average velocity (see Fig. 6). Note
that there are two characteristic iteration numbers, namely
n′x ∝ 1/ε and n′′x ∝ v2

0/ε2. Since the maximum initial veloc-
ity inside the chaotic sea is v0,max ≈ 2ε1/2, the second scale
has a maximum value of (n′′x ∼ 4n′x). So two different kinds of
behavior may occur, for n′′x < n′x or n′′x ∼ n′x. When v0 = 10−6,
we have n′′x ≈ 0 and we can see in Fig. 6(a) that the curves for
ε = 10−4 and ε = 10−3 show only two regimes: (i) a growth
in power law for n ¿ n′x and (ii) the saturation regime for
nÀ n′x. When v0 = 10−3 and ε = 10−4 we have that n′′x < n′x
and we can see for such curve in Fig. 6(a) three regimes: (i) for
n ¿ n′′x , the average velocity is basically constant; (ii) when
n′′x < n < n′x, the curve grows and begin to follow the curve of
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FIG. 8: The average energy < E > as a function of the iteration num-
ber n for different values of ε and v0 in log-log plots. (a) The original
iteration number series. (b) Collapse of the data onto universal curves
for v0 ≈ 0 and v0 6= 0. All curves were obtained from an ensemble of
2×103 initial phases of the FUM.

v0 = 10−6 and same ε; (iii) for nÀ n′x we have the saturation
regime. It is shown in Fig 6(b) that the collapse of the curves
holds for v0 ≈ 0 and v0 6= 0, implying that the inferred scaling
form V (n,ε,v0) with exponents a = 2, b = −2 and c = −1 is
also correct.

We have also studied numerically the average energies
E(n,ε,v0) and < E > (n,ε,v0). They have a similar scaling
behavior. Since E ∼V 2, the exponents characterizing the en-
ergy α′, β′ and y′ can be written in terms of those related to
the average velocity and roughness as α′ = 2α, β′ = 2β and
y′ = 2y. Then, using Eqs. (10) and (11) it is easy to show that
the scaling dimensions of average energies are a′ = a/2 = 1,
b′ = b/2 =−1 and c′ = c/2 =−1/2. These relationships were
confirmed numerically.

F. Results for the complete model

The scaling dimensions of the complete model are the same
as those obtained for the SFUM. To illustrate this fact, let us
discuss the behavior of the energy < E >, first averaged over
the orbit and then in the initial phase φ0.

Fig. 7(a) shows the behavior of < E > as a function of n
for v0 = 10−6 and two values of the parameter ε. A best fit for
ε = 1×10−4 characterizes the initial growth with an exponent
β′ = 1.03(1). Since < E >∝ ε2, as shown in Fig. 7(b), we
have that y′ = 2.0. A plot of the saturation value of < E > as
a function of ε furnishes an exponent α′ = 1.05(3). Therefore
we can conjecture that α′ = β′ = 1 and y′ = 2. Using Eqs. (10)
and (11) we finally obtain that a′ = 1, b′ =−1 and c′ =−1/2.

In Fig. 8(a) we have curves of < E > as functions of n for
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two values of ε and different initial velocities. Using the ex-
ponents just discussed we obtain the collapse shown in Fig.
8(b). For v0 ≈ 0 we can see that after an initial transient the
scaling regime is established and the two curves collapse very
well onto a universal one. When v0 6= 0 we have also the scal-
ing behavior. The other quantities (E, ω and V ) have similar
scaling laws.

Finally, let us summarize our results for the Fermi-Ulam
model. We characterized the chaotic region below the first
invariant spanning curve (chaotic sea) in the transition from

integrable (ε = 0) to non-integrable (ε 6= 0). All results are
valid for small oscillation amplitude ε. The average quanti-
ties can be described by scaling functions with characteristic
exponents. Since the positive Lyapunov exponent is almost in-
dependent of ε, we cannot say that the system becomes more
chaotic by increasing ε.
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