
690 BrazilianJournalof Physics, vol. 36, no. 3A, September, 2006

Determination of Prediction Intervals for a Future Number of Failures: A
Statistical and Monte Carlo Approach

Fortunato S. de Menezes, Mário J. Ferrua Vivanco,
Departamento de Ciências Exatas, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil

and Luiz C. Sampaio
Centro Brasileiro de Pesquisas Fı́sicas, Rua Dr. Xavier Sigaud, 150, 22290-180, Rio de Janeiro, RJ, Brazil

Received on 7 September, 2005

In this work, we present a new procedure, called sub-sampling, to obtain data concerning time of failure
in trials without replacement, (NRT). With this data it is possible to determine the prediction interval (PI) for
the future number of failures. We also present an alternative way to evaluate the coverage probability of the
prediction interval (PI). The results presented show that the method proposed is reliable and can be useful for
the statistical analyses of quality control of processes.

Keywords: Sub-sampling; Weibull Distribution; Prediction Intervals; Coverage Probability; Monte Carlo Simulation

I. INTRODUCTION

A. Motivation

The determination of prediction intervals for random quan-
tities has been subject of great interest and intensive research
for a long time. Its importance is revealed when one addresses
the question: If in a system with N components, X quantities
failed in the time interval [0,Tc], how many components will
fail in a given future time belonging to the interval [Tc,Tw]? or,
even more, what is the prediction interval (PI) for the number
of components Y that it will fail in the time interval [Tc,Tw]?.
The prediction interval PI(100(1−α)%) in the time interval
[Tc,Tw] with the confidence level (1−α) is obtained from the
past data of number of components X which have failed in the
time interval [0,Tc]. We illustrate those questions clearly on
Fig. 1.

There are many systems in which the prediction of times of
failure of parts is critical, and the implications range from the
canonical damage to safety issues. Most of the work which
has been developed until now has considered only trials with
replacement, namely (RT), where the quantities tested are re-
placed in the sample.

Some authors Meeker and Escobar(1998) [5], Ros-
tum(1999) [10], Nelson(2000) [7] and Nordman and
Meeker(2002) [9] have already discussed this subject. In the
last paper, Nordman and Meeker were motivated by the prob-
lem of large heat exchangers, that transfer energy to cool down
the Nuclear power plants. Due to stress and corrosion the heat
exchangers crack over time. Such cracks are detected during
planned inspections and the heat exchangers are replaced, or
alternatively, isolated from the others. New tubes have to be
added then after a given time period, when the number of fail-
ures is above a critical value.

It is possible then to measure “ the time until the failure of a
component” (e.g., the crack or stress of heat exchangers). The
determination of such ”time until the failure of a component”
is of great importance to determine prediction intervals (PI).

Usually, the components are replaced in the sample once

they are tested, as long as they have passed in the test. In
other words, the components regarded as good according the
chosen test are put again the sample. In this way, the good
components continues in operation and have a chance to be
chosen again in a future time to check its performance and
decide whether or not it has failed.

However, there is a class of problems where the replace-
ment of good components is not relevant. Suppose we want
to acquire a lot ( or sample ) of components, with the previous
knowledge that the sample has a certain level of failed com-
ponents. Furthermore, we want to acquire the lot as long as
the percentage of failure in the sample is less than a given pre-
established value. In this work we have developed a method to
determine times of failure and, consequently, prediction inter-
vals (PI) when the experiments are such that the components
used for testing are not replaced in the original sample, even
though the result of components tested is negative (e.g., the
components tested do not fail). Such method is based upon
the measure of “time until the failure of a component” using a
new procedure called: sub-sampling.

FIG. 1: Ilustration of the number of components (Y ) to fail in the
time interval [Tc,Tw] given that X components failed in the previous
time interval [0,Tc] and prediction interval (PI).

We shall consider that Non Replacement Trials (NRT) (or
destructive experiments), as the name states, do not replace
each component after evaluation (or testing). Nevertheless,
we have to bear in mind that the number of components not
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replaced in the original sample is a very small fraction of the
sample, from where we want to predict something, such that
the system as a whole does not change significantly. This is
the key point in this procedure and here lies its importance in
the prediction intervals (PI).

In the section I.B we present the state of the art concerning
the prediction of the future number of failures of components,
and the following section I.C shows the purposes to be ful-
filled concerning the Non Replacement Trials (NRT) ( or de-
structive experiments ). In the section II the Methods are pre-
sented, with the sub-sampling strategy (section II.A), the the-
ory of prediction intervals (section II.B), the data generation
(section II.C) and coverage probability (section II.D). The re-
sults and discussion are presented in the section III, along with
the probability distribution which best fits the data generated
by the sub-sampling procedure (section III.A), the prediction
intervals for the problem posed (section III.B) and the alterna-
tive coverage probability (ACP) which shows that the method
proposed is reliable (section III.C). Finally, the conclusions
and the outlook are presented in section IV.

B. State of the art

Results of research about the prediction of random quan-
tities have enormous potential for application in engineering
and are, indeed, of fundamental importance.

A preliminary study was presented by Nelson(1972) [6].
He established methods to build confidence intervals and hy-
pothesis tests for two multinomial proportions. Although the
procedures in such work were applied in studies of consumers
preferences and election researches, this work was crucial to
develop another work published in the year 2000 [7], which
has a direct application in engineering.

Meeker and Escobar(1998) [5], developed a method to de-
termine the prediction limits (upper and lower) for the future
number of fails (Y ) in the time interval [Tc,Tw]. Such pro-
cedure is based upon the conditional binomial distribution of
Y given that X components have failed in the time interval
[0,Tc].

Rostum(1999) [10], developed statistical models to predict
the state of the pipelines in a network of water distribution.
Starting from the historical of the past failures in a network of
water supply it was possible to predict the future number of
failures in each network. These predictions were then used to
make decisions about maintenance of the water network. In
other words, with his work it may be possible to answer about
the following question: Shall we repair points of failure in the
network (or sub-network) of water supply, or shall we change
an entire pipeline in a given sub-network ?.

Nelson(2000) [7] has established three procedures for the
prediction intervals of the number of tubes to fail in compo-
nents of heat exchangers, namely (I) the procedure of ratio of
probabilities, (II) the procedure of ratio of probabilities sim-
plified and (III) the likelihood ratio procedure.

Nordman and Meeker(2002) [9], evaluated the coverage
probability for each one of the procedures proposed by Nel-
son(2000) [7], concluding that the more appropriate is the

likelihood ratio procedure.
Two aspects must be emphasized in relation to the studies

made by Nelson(1972) [6], Nelson(2000) [7] and Nordman
and Meeker(2002) [9]:

1. The distribution considered for the variable time until
the failure of a component is the Weibull distribution.

2. The tests that evaluate whether or not a tube is deterio-
rated do replace the tube when it is failed.

By contrast, in Agricultural Sciences, particularly in the
area of quality control of seeds, we find in the literature some
authors Ellis(1984) [1], who suggested the time until a seed
has failed follows a Normal distribution. Furthermore, the
usual experiments which evaluate whether or not a seed is
failed are such that the sub-samples tested are not replaced
in the system, Marcos Filho(1987) [4].

Methods to determine the time of failure of a component
(and its respective probability distribution) and the prediction
interval (PI) of the future number of failures, for experiments
in which the components are not replaced in the original sam-
ple – as the ones done on seeds, were not found in the litera-
ture. This research provides a contribution to fill this lack.

C. Purposes

Considering that exist a problematic for Non Replacement
Trials (NRT) (e.g., destructive trials), this work has the fol-
lowing objectives:

1. Establish a sampling procedure which allows to obtain
data for the variable: ”time until the failure of a compo-
nent”.

2. Determine the probability distribution for the variable:
”time until the failure of a component”.

3. Determine the prediction interval for the future number
of failures.

4. Determine the Coverage Probability (CP) of the predic-
tion interval (PI).

II. METHODS

Companies that manufacture fuses (a protection device for
safeguarding electric circuits) and the shop dealers, quite of-
ten face with the problem for the choice of lots which they
intend to acquire. The procedure presented in this section will
be related with the problem of the quality control of fuses,
where the tests applied to know whether or not a fuse is dete-
riorated, are such that the fuses tested are not replaced in the
sample which they came from, even though some of the fuses
are good (or have passed in the quality test).

As we are dealing with Non Replacement Trials (NRT),
we will evaluate group of fuses rather than one fuse itself. In
this work, such group of fuses will be called SUB-SAMPLES.
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Therefore, the goal of this research will be evaluate the vi-
ability of acquiring a large lot of fuses, starting from the pre-
diction of the number of sub-samples of fuses failed in a given
time interval (a random quantity). In other words, we start
from the test of a small sub-sample of fuses which were taken
from a larger sample. With the result which comes up from the
test, we can predict what it will be the number of sub-samples
of fuses that it will fail in a future time interval, thereafter the
previous time interval where the test was performed.

The prediction will be made regarding the information ob-
tained on the number of sub-samples of fuses which were
deteriorated in a time window interval ( [0,Tc] ) between the
starting of collection of sub-samples tested ( unit of time T = 0
) until a certain given censured time (T = Tc ), which is pre-
established. The study requires the following steps:

(i) the determination of time until a sub-sample of fuses
is regarded as deteriorated,

(ii) the determination of a probabilistic distribution of
time until the deterioration,

(iii) the determination of the prediction interval ( PI ) for
the future number of sub-samples to deteriorate and,

(iv) the evaluation of the coverage probability of such
prediction interval.

We shall notice that although the procedure to be explained
will be applied for the case of fuses, the method proposed
can be applied to any problem in which the sub-samples
of components tested are not replaced in the larger sample
from where they came from.

A. Sub-sampling method

As the tests to determine whether or not a fuse is deteri-
orated are Non Replacement Trials (NRT), it is not possible
to apply directly the methods proposed by the authors men-
tioned in the section I B, especially when we wish to know
the data related to ”time until the deterioration of a fuse (or
sub-sample of fuses)” (and its respective probability distribu-
tion). To overcome this problem the following method, called
SUB-SAMPLING, is proposed (see Fig. 2 )

Let us suppose that from a population of N fuses which
are packed for sale (illustrated in Fig. 2), we pick up M sam-
ples, where each one of them contains n fuses each. From
each one of these M samples, we pick randomly and system-
atically, sub-samples of size n1. In other words, we now have
M sub-samples. In each one of these M sub-samples we apply
the quality test to check the performance of the fuse. Such
test is applied in a sub-sample of size n1 ( taken from the sam-
ple of size n ) to determine the percentage of deteriorated fuses
(pdet). If the percentage of the deteriorated fuses ( pdet ) in a
given sub-sample of size (n1) is greater or equal than a given
value pC (e.g., pdet ≥ pC ), which is pre-established, then the
whole sub-sample of size n is regarded as deteriorated and
we register the time in which the test was performed. From

Fig. 2 we can also see that a sub-sample regarded deterio-
rated (e.g., when pdet in a given sub-sample of size n1 has the
value pdet ≥ pC ) implies to stop of picking more sub-samples
of size n1 from the respective sample. In other words, the fail-
ure of a given sub-sample of size n1 implies the failure of
the respective sample. A sub-sample regarded not deteri-
orated (e.g., when pdet in a given sub-sample of size n1 is
smaller than pC; pdet < pC ) implies in the selection of a new
sub-sample of size n1, from the sample left. From Fig. 2 it is
clear that the sample left now contains n− n1 components,
since the first n1 components which were evaluated in the time
unit (say t = 1) are set aside once pdet < pC. Therefore, we
apply the ”fuses quality test” on each new sub-sample of size
n1 and we check pdet in each new sub-sample of size n1. In
one hand, for those samples in which the sub-samples presents
pdet which DOES overcome the value pC we record the time
in which the test was applied and regarded the whole sample
as deteriorated for future tests ( for instance, the 2nd sam-
ple (column) for the time unit t = 2 on Fig. 2). On the other
hand, in those samples, in which the pdet DOES NOT over-
come pC, we continue to apply the sub-sampling and there-
after the ”fuses quality test”. The procedure continues until
the percentage of deterioration in the sub-sample overcomes
the value pC (where the time recorded for the correspondent
sample will be the time in which the test was applied and pro-
vided pdet ≥ pC; for instance, the 1st sample (column) at time
unit t = 3, see Fig. 2 ) or until we finish with the fuses in a
given sample (in such case, the time to be registered will be a
censor data).

In this way we can obtain a set of M data, correspondent to
the set of time units until the deterioration of each one of the M
samples (see Fig. 2), from which we will adjust a probability
distribution.

B. Prediction Intervals

Once the time until the deterioration of the sub-samples has
been obtained as well as its respective probability distribu-
tion, the following step will be to determine a prediction in-
terval (PI) for the ”number of deteriorated sub-samples, in
each pack, in a future time interval”. The Fig. 3 illustrates the
procedure:

Let us suppose that one package of fuses contains a total of
M samples. It is possible to show that the variables X , Y and
Z follows a Trinomial Distribution, such that X +Y +Z = M,
with the following probabilities,

• p = probability of occurrence of a failed sub-sample on
the time interval [0,Tc].

• q = probability of occurrence of a failed sub-sample on
the time interval [Tc,Tw].

• r = probability of occurrence of a failed sub-sample af-
ter Tw.

According to Nelson(2000) [7], the prediction interval (PI)
for the random variable Y (number of sub-samples to deteri-
orate in the time interval [Tc,Tw]), might be obtained through
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FIG. 2: Representation of the sub-sampling procedure.

the likelihood ratio procedure in the form described in the fol-
lowing:

For the unrestricted model the likelihood function
(multinomial) will be,

L(p,q;x,y) =
M!

x!y!(M− x− y)!
px qy (1− p−q)M−x−y (1)

where the maximum will be given by,

L∗(p,q;x,y) =
M!

x!y!(M− x− y)!

( x
M

)x

×
( y

M

)y
(

1− x+ y
M

)M−x−y

(2)

The values of p, q and r, in the restricted model, will de-
pend of the data distribution. For instance, the Weibull proba-
bility density has the following form,

f (t) =
(

β
η

)(
t
η

)β−1

exp(−(t/η)β) (3)
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FIG. 3: Illustration of the prediction interval ( PI(Y) ) for the time
interval [Tc,Tw].

with accumulated distribution function

F(T )≡
Z T

0
f (t) dt = 1− exp(−(T/η)β) (4)

In other words, if we suppose a Weibull distribution (see
Nelson (2000) [7]) with parameters η (scale parameter) and
β (shape parameter), for the random variable: time until the
deterioration of a sub-sample of fuses, then we have

p≡
Z Tc

0
f (t)dt = 1− exp(−(Tc/η)β) (5)

q≡
Z Tw

Tc

f (t)dt = exp(−(Tc/η)β)− exp(−(Tw/η)β) (6)

r ≡ 1− p−q = exp(−(Tw/η)β) (7)

Therefore, for a β known (in whatever way), the restricted
likelihood function to the Weibull distribution will be,

K(η;x,y) = C
(

1− e(−(Tc/η)β)
)x

×
(

e(−(Tc/η)β)− e(−(Tw/η)β)
)y

×
(

e(−(Tw/η)β)
)M−x−y

, (8)

with C given by, C = M!
x!y!(M−x−y)!

Since that the value of Y is unknown, in order to maximize
K(•) with respect to the scale parameter η, it is needed to run
all the values of Y between 0 and M−X . Each value of Y in
the interval [0,M−X ] will provide a value of η and, therefore,
a maximum value of K(•), that we will call K∗(•).

It is known that the statistics of likelihood ratio given by,

Q(x,y) =−2 | log(K∗(x,y))− log(L∗(x,y)) | (9)

distributes itself as a χ2
(1). Therefore, for any value of the

random variable Y , all the values of Q(X ,Y = y) generated,
will have identical distributions (χ2

(1gl)). So, it will be possible

to generate a prediction interval (PI) for Y considering the
following probability,

P( Q(x,y)≤ χ2
(1;α) ) = 1−α (10)

In other words, every value of Y which satisfies Q(x,y) ≤
χ2

(1−α) is contained in the prediction interval with a level of
confidence 100(1−α)%. Consequently, the lowest value of
Y (Yin f ) and the highest value of Y (Ysup) which satisfy Eq. 10
will be considered the lower and upper limits, respectively, of
the prediction interval ( PI = [Yin f ,Ysup] ).

C. Data generation

The data of the variable time until the deterioration of the
sub-samples were generated through Monte Carlo simulation,
following the procedure explained in the section II A. For this,
it was considered a pack with N = 120000 fuses which was di-
vided in M = 120 samples of size n = 1000. It was considered
the values of 1% and 6% for the initial percentages of deteri-
oration in each one of the M samples, since it is supposed that
in the beginning of the storage each pack of fuses contains a
large fraction of good fuses but it may contain a certain frac-
tion of failed fuses. The values of 1% and 6% correspond to
the fraction of failed fuses in each one of the M = 120 ini-
tial samples of size n = 1000. Afterwards, it was picked out
sub-samples of size n1 = 10, in each one of the M samples
(see Fig. 2). In the 1st sub-sampling, in each one of the M
sub-samples of size n1 it was made a counting of the num-
ber of failed fuses. In the case where the percentage of failed
fuses were pdet ≥ pC , where pC = 15% (for 1% and 6% of
initial deterioration of fuses ( pini

det ) in the sample of size M)
or pC = 50% (for pini

det = 6% ), the sub-sample was regarded
as failed and it was recorded the value 1 for the respective
sample (in other words, the respective sample has failed in the
time unit t = 1). On the other hand, if the percentage of failed
fuses is pdet < pC we would pass to the 2nd sub-sampling.
Regarding that the percentage of deteriorated fuses increases
with time (since we set aside sub-samples of size n1 which
contains good fuses and eventually few failed fuses) we have
to recalculate the percentage of good fuses, before the 2nd
sub-sampling. This new percentage ( 100p∗% ) of good fuses,
was obtained subtracting the number of good fuses in 1st sub-
sample discarded (of size n1), from the number of the good
fuses existent in the initial sample (of size n) and dividing
the result by the number of total fuses in the remained sample
(which in the case will be n−n1 = 990 fuses, see Fig. 2). Fol-
lowing this procedure, the percentage of deteriorated fuses in
the sample left (of size n−n1 ) will be (pdet = 100(1− p∗)%).
In other words, in the 2nd sub-sampling, the source sample
will now have n−n1 = 990 fuses, with 100p∗% of good fuses
and (pdet = 100(1− p∗)%) of deteriorated fuses. The 2nd
sub-sample of size n1 is taken (see Fig. 2) from the source
sample sample (of size n−n1 ), and the comparison between
pdet (evaluated from this sub-sample size of n1) and pC is
made.
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The procedure above was adopted in each sub-sampling un-
til a given sub-sample n1 has failed. The unit of time in which
the sub-sample has failed was regarded as the data for the vari-
able ”time until the deterioration of the sample” (the entire
column of Fig. 2). At the end of each simulation we end up
with a set of 120 data, one for each one of the M = 120 sam-
ples (or columns of Fig. 2). With this set of 120 data, we have
adjusted the probability distribution.

D. Coverage probability

Considering that, given X = x, the conditional distribution
of the random variable Y is binomial with the parameters(

M−X ,π = q
q+r

)
, M defined in the section II A and with q

and r defined in Eqs. (5)- (7); we have the value of π given by,

π = 1− exp[(Tc/η)β− (Tw/η)β] (11)

In the work of Nordman and Meeker(2002) [9] it was pre-
sented a suggestion given by Wayne Nelson in which the cov-
erage probability (CP) for the prediction interval (PI) with a
nominal level of confidence of 100(1−α)% may be deter-
mined by the average of the probabilities P(Yin f ≤Y ≤Ysup|X)
found for each value of X . In other words,

CP(PI(100(1−α)%)) = Ex [P(Yin f ≤ Y ≤ Ysup)] (12)

The expression showed on Eq. 12 is true and determine the
coverage probability. However, its value is computationally
difficulty to obtain for two reasons:

a) The procedure of maximization of Eq. 8 generates a
maximum likelihood estimation for the parameter η for
each value of Y . Therefore, as π depends on η (see
Eq. 11), we would have a value of π for each possible
value of Y .

b) The discrete values of Y that are found inside the pre-
diction interval PI(Y ) = [Yin f ,Ysup], determined accord-
ing to Eq. 10, are not necessarily contiguous. In other
words, the prediction interval PI(Y ) = [Yin f ,Ysup] may
be composed by sub-intervals not contiguous.

An alternative analysis to evaluate the coverage probabil-
ity is presented in this work. Such analysis is based upon the
counting of values of Y (obtained through simulation, accord-
ing the procedure presented in Section II A and II C) which are
inside the theoretical prediction interval PI(Y ) = [Yin f ,Ysup]
(which was obtained according the procedure showed in the
Section II B).

The percentage of values of Y which are inside the predic-
tion interval PI(Y ) = [Yin f ,Ysup] will be regarded as the alter-
native coverage probability (ACP).

The results of such analysis are presented in Section III C.

TABLE I: Values of β (shape parameter of Weibull distribution) ob-
tained from simulations with the number of samples M = 20000. pi
denotes initial percentage of deterioration in one sample; pC denotes
the maximum allowed deterioration in one sub-sample of size n1;
and β, the shape parameter of Weibull distribution. In all calcula-
tions n1 = 10.

Combination pi pC β
1 1% 15% 2.7785
2 6% 15% 1.7935
3 6% 50% 3.8542

III. RESULTS AND DISCUSSION

A. Probability distribution

According the procedures detailed in the Sections II A
and II C it was performed 6000 simulations for each pair of
combination (pi, pC) (where, pi, is the initial percentage of
deterioration and ,pC, the maximum acceptable percentage
of deterioration in each sub-sample of size n1) (See Table I).
Those simulations generate, each one, M = 120 data corre-
spondent to the variable: ”time until the failure of the sub-
sample”( or sample, as it was emphasize in the Section II A ).
With those data it was established a probabilistic distribution
which offers the best fitting.

From Eq. 4, and using the survival function ( S(T ) ) esti-
mated according to Kaplan and Meier (1958) [11],

S(T )≡ 1−F(T ) = exp(−(T/η)β) (13)

we can easily see that,

log(− log(S(T ))) = β log(
T
η

) (14)

Fig. 4 presents the illustration of 6 graphs which represents
6 data sets selected randomly among all the simulations per-
formed. These graphs clearly show that the data sets can be
adjusted by the Weibull distribution, what allows us to use the
methodology to estimate the prediction intervals presented in
the Section II B.

The linear tendency of the graphs observed in Fig. 4 demon-
strates that the Weibull distribution adjusts very well to the
variable ”time until the failure of the sub-samples of fuses” in
non replacement trials.

Considering now that the distribution which suits best to
the simulations performed is the Weibull distribution, it was
estimated (through simulation results) the shape parameter (β)
more suitable for each combination of (pi, pC).

We find out that for increasing values of M the shape para-
meter β stabilize as showed in Fig. 5. Following the sample
size used by Nordman and Meeker(2002) [9] and the result
presented in Fig. 5, we decided to use the values of β related
to the number of samples M = 20000. For each one of the
combinations of (pi, pC), the stable values of β are presented
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FIG. 4: Plots of the Weibull probabilities for the set of data of time until the failure of samples of fuses, for 6 simulations selected among the
6000 simulations. The horizontal axis represents log(Tf ) and the vertical axis represents log(−log(S(Tf ))), where S(Tf ) = 1−F(Tf ) is the
survival function estimated according the Kaplan-Meier (1958) method [11], for the time until the failure, Tf .

in Table 1. Such values will be used to determine the predic-
tion intervals.

The values of β (the shape parameter of the Weibull distri-
bution) used for each combination of (pi, pC) are presented in
Table I. Those values of β are used to determine the predic-
tion intervals (PI) for the number of samples M = 120. The
reason for using the values of β obtained for M = 20000 and
not the β values obtained for the number of samples M = 120,
is that we are looking for a stable value of β. This argument is

inspired on Physical arguments of Computational Physics
called finite size scaling (see for instance, Newman and Bak-
erma (1999) [8], Landau and Binder (2000) [2]). When we are
looking at some parameter that is obtained through Computer
simulation, we have to look at the value of the parameter for
a sample size such that the parameter does not changes for
increasing values of M. This is what is called the thermo-
dynamic limit, where the value of all parameters are stable.
As Fig. 5 shows, this happens for M ≥ 5000, what justify the
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FIG. 5: Plot of the shape parameter (β), as function of the number of
samples M.

choice made.
Another alternative to obtain approximate values of β is

through the determination of the confidence intervals optimal
conditioned, discussed by Mahdi (2003) [3].

B. Prediction Intervals

It was determined the prediction intervals for the random
variable Y : Future number of failures of samples in the time
interval [Tc,Tw] = [10,20] units of time, for each combination
(pi, pC), following the procedure detailed in the Section II B.
The nominal level of confidence 1−α used was 0.95 and the
number of samples was M = 120.

On Fig. 6 it is presented the prediction intervals (PI), ob-
tained as a function of the number of sub-samples failed (X)
in the time interval [0,Tc) = [0,10), for each set of values
presented on Table I, namely (pi = 1%, pC = 15%), (pi =
6%, pC = 15%) and (pi = 6%, pC = 50%).

We shall notice that in all 3 cases presented on Fig. 6, we
observe that as the number of fails X in the time interval
[0,Tc) = [0,10) increases, the width of the prediction inter-
val decreases. Such behavior is reasonable if we bear in mind
that as we have more information (the number of components
failed, X) in the initial time interval ([0,Tc)), the determination
of the prediction interval (PI), which depends on this previous
information, will be more precise, and therefore its width de-
creases. Following this reasoning we shall believe that for
values of X very close to zero provides prediction intervals
(PI) quite wide as shown on Fig. 6. Nevertheless, we shall
notice that the level ( 1−α ) for all the intervals is the same.
We believe that the points of discontinuity observed on Fig. 6
((a) at X = 80, (b) at X = 108 and (c) at X = 45) should nei-
ther be interpreted as prediction intervals of zero width, nor as
a pointed prediction of Y . As in the discontinuity points the

FIG. 6: Prediction interval for Y : future number samples failed in the
time interval [Tc,Tw] = [10,20] units of time, for a nominal level of
probability of 0.95.

prediction intervals do not offer any width, there would not be
any sense to evaluate the prediction intervals for those points.

C. Alternative Coverage probability

As it was mentioned in Section II D, we will present an
alternative method to evaluate the coverage probability (CP),
hereafter called ACP. Here we propose a simpler method, as
we judge, to confirm this. This method require 4 stages:

1. The generation, through Monte Carlo simulation, of
6000 data sets, according the procedure explained in
Section II A. Each data set contains M = 120 data
of time of failure for the M = 120 samples used (see
Fig. 2).

2. The recording, for each simulation in step (1), of X : the
number of samples failed in the time interval [0,Tc) =
[0,10). As we have used M = 120 samples, obviously
X ≤M.

3. Afterwards, according the theoretical procedure
showed on Section II B, the determination of the pre-
diction interval for Y : the future number of failures
in the time interval [Tc,Tw] = [10,20] for each possible
value of X ≤ M, regardless this value has (or has not)
appeared in the simulation results (step 2).

4. The recording, for each simulation in step (1), the num-
ber of failures Y ? which have occurred in the time win-
dow interval [Tc,Tw] = [10,20]. The Y ? is obtained in
the following way. Let be X1 the number of failures in
the time interval [0,Tc) = [0,10), and let be Y 1 the num-
ber of failures in the time interval [0,Tw] = [0,20]. Y ? is
given by Y ? = Y 1−X1 . Therefore, Y ? is the net num-
ber of failures in the time interval [Tc,Tw] = [10,20].
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5. The determination of the percentage (or fraction) of
values recorded in step (4) ( The Y ? values obtained
through simulation results), which are inside the respec-
tive theoretical prediction interval (PI) obtained in step
(3).

We can notice from Fig. 7, that in the 6000 simulations per-
formed for each combination (pi, pC ), we did not find neces-
sarily all the possible values of X with the value of ACP near
the nominal level (95%) or alternatively, 0.95. The reason
for that is that Monte Carlo simulations for each pair (pi, pC)
provide an interval of values of X that is finite and dependent
upon the values (pi, pC). This means that in the region where
the ACP is null we do not have data set and therefore we can-
not calculate properly the ACP. On the other hand, for each
value of X found in the Monte Carlo simulation, the number of
failures occurred in the time interval [Tc,Tw] = [10,20], is in-
side the respective theoretical prediction interval (PI) obtained
in the step 3 of this procedure and illustrated on Fig. 6. This
result is a good indicator of the reliability of the method.

FIG. 7: Alternative Coverage probability (ACP) for the prediction
interval PI(Y ): number of failures in the time interval [10,20] units
of time for each combination of values (pi, pC) showed on Table 1.

What Fig. 7 also shows is that for fixed pC (the maximum
allowed percentage of deterioration in each sub-sample of size
n1 = 10), the number of failures X increases for increasing
values of pi (the initial percentage of deterioration in the sam-
ple size n = 1000).

IV. CONCLUSIONS

In this work we have proposed a method called SUB-
SAMPLING, to obtain data of the time of failure in trials
without replacement, ( NRT ), through Monte Carlo simu-
lation. The data set obtained through this method has been
showed to be well adjusted by the Weibull distribution for the
data of time of failure. It was possible to obtain the prediction
interval for a future number of failures with the knowledge
only of the number of failures in the past time.

The results obtained with the alternative procedure to eval-
uate the coverage probability (ACP), indicate that the method,
suggested in this work, to determine the prediction intervals
in non replacement trials is reliable.

As a forthcoming work is the determination of the pair of
probabilities (pi, pC) from the histogram of frequencies of X
(i.e.,the number of failed components up to TC) by the simula-
tion data for a number of samples M. Then, through a single
real experiment in a single sample, we determine the num-
ber of failured components until TC (e.g., the value of XEXP
); with this date, and in association with the most probable
value of the number of failed components for the same TC
( X∗SIM ) from the simulation data for M samples ( which is
dependent on the simulated pair of probabilities (pi, pC) ), we
obtain through the matching of XEXP with X∗SIM the correspon-
dent pair of probabilities (pi, pC). This is a key point, as we
can determine from a single real experiment the value of XEXP
for a given TC and, with the complementary simulation data
through the most probable value of X∗SIM from the histogram
of frequency of X for M samples, the degree of deterioration
pi (for a given cut-off probability pC) for the single sample
where the real experiment was made.
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