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Quasi-Stationary Simulation: the Subcritical Contact Process
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We apply the recently devised quasi-stationary simulation method to study the lifetime and order parameter
of the contact process in the subcritical phase. This phase is not accessible to other methods because virtually
all realizations of the process fall into the absorbing state before the quasi-stationary regime is attained. With
relatively modest simulations, the method yields an estimate of the critical exponent ν|| with a precision of 0.5%.
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I. INTRODUCTION

Stochastic processes with an absorbing state arise fre-
quently in statistical physics [1, 2], epidemiology [3], and
related fields. Phase transitions to an absorbing state in spa-
tially extended systems, exemplified by the contact process
[4, 5], are currently of great interest in connection with self-
organized criticality [6], the transition to turbulence [7], and
issues of universality in nonequilibrium critical phenomena
[8–11].

Systems exhibiting a phase transition to an absorbing state
possess (for appropriate values of the control parameter), an
active (nonabsorbing) stationary state in the infinite-size limit.
But if the system size is finite, the process must eventually
end up in the absorbing state. The quasi-stationary (QS) dis-
tribution for such a system provides a wealth of information
about its behavior. (Since the only true stationary state for a
finite system is the absorbing one, simulations of “stationary”
properties of models with an absorbing state in fact study the
quasi-stationary regime.)

Conventional Monte Carlo methods entail a somewhat
complicated procedure for determining QS properties: many
independent realizations are performed (using the same ini-
tial configuration), and the mean φ(t) of some property (for
example the order parameter) is evaluated over the surviv-
ing realizations at time t. At short times times φ(t) exhibits
a transient as it relaxes toward the QS regime; at long times
it fluctuates wildly as the surviving sample decays. In the su-
percritical phase (where an infinite system survives forever)
one is normally able to identify an intermediate regime free
of transients and with limited fluctuations, which can be used
to estimate the QS value of φ. (Even in this case the method
requires careful scrutiny of the data and is not always free of
ambiguity [12].) Deep in the subcritical phase, however, con-
ventional simulations are impractical, as nearly all realizations
fall into the absorbing state before the quasi-stationary regime
is attained. (In other words, one no longer has a separation of
the time scales for relaxation to the QS state and for its sur-
vival. The effective potential governing the process no longer
possesses a local minimum away from the absorbing state.)

We recently devised a simulation method that yields quasi-
stationary properties directly [13]. We showed that the method
reproduces known scaling properties of the contact process
(CP); in [14] it was used to study the static correlation func-
tion of the model. In studies of the critical point, the QS sim-

ulation method requires an order of magnitude less computer
time than conventional simulations, to obtain results of com-
parable precision. Here we use the method to study the life-
time and the order parameter of the one-dimensional contact
process in the subcritical phase.

In the following section we review the method and define
the contact process. Then in Sec. III we present our results for
the lifetime of the CP on a ring, in the subcritical phase. We
summarize our findings in Sec. IV.

II. BACKGROUND

We begin by reviewing the definition of the quasi-stationary
distribution. Consider a continuous-time Markov process Xt
taking values n = 0,1,2, ...,S, with the state n=0 absorbing.
(In any realization of the process, if Xt = 0, then Xt ′ must be
zero for all subsequent times, t ′ > t.) The transition rates wm,n
(from state n to state m) are such that wm,0 = 0, ∀m > 0. Let
pn(t) denote the probability of state n at time t, given some
initial state X0. The survival probability Ps(t) = ∑n≥1 pn(t)
is the probability that the process has not become trapped in
the absorbing state up to time t. We suppose that as t → ∞
the pn, normalized by the survival probability Ps(t), attain a
time-independent form. The quasi-stationary distribution pn
is then defined via

pn = lim
t→∞

pn(t)
Ps(t)

, (n≥ 1), (1)

with p0 ≡ 0. The QS distribution is normalized so:

∑
n≥1

pn = 1. (2)

The basis for our simulation method is the observation [15]
that the QS distribution represents a stationary solution to the
equation,

dqn

dt
=−wnqn + rn + r0qn (n > 0) , (3)

where wn = ∑m wm,n is the total rate of transitions out of state
n, and rn = ∑m wn,mqm is the flux of probability into this state.
To see this, consider the master equation (Eq. (3) without the
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final term) in the QS regime. Substituting qn(t) = Ps(t)pn, and
noting that in the QS regime dPs/dt =−r0 =−Ps ∑m w0,m pm,
we see that the r.h.s. of Eq. (3) is identically zero if qn = pn
for n≥ 1. The final term in Eq. (3) represents a redistribution
of the probability r0 (transfered to the absorbing state in the
original master equation), to the nonabsorbing subspace. Each
nonabsorbing state receives a share equal to its probability.

Although Eq. (3) is not a master equation (it is nonlinear
in the probabilities qn), it does suggest a simulation scheme
for sampling the QS distribution. In a Monte Carlo simula-
tion one generates a set of realizations of a stochastic process.
In what follows we call a simulation of the original process Xt
(possessing an absorbing state) a conventional simulation. We
define a related process, X∗t , whose stationary probability dis-
tribution is the quasi-stationary distribution of Xt . (Note that
in order to have a nontrivial stationary distribution, X∗t cannot
possess an absorbing state.) The probability distribution of
X∗t is governed by Eq. (3), which implies that for n > 0 (i.e.,
away from the absorbing state), the evolution of X∗t is identi-
cal to that of Xt . (Since Eq. (3) holds for n > 0, the process
X∗t must begin in a non-absorbing state.) When Xt enters the
absorbing state, however, X∗t instead jumps to a nonabsorb-
ing one, and then resumes its “usual” evolution (i.e., with the
same transition probabilities as Xt ), until such time as another
visit to the absorbing state is imminent. The probability that
X∗t jumps to state j (when a visit to state 0 is imminent), is the
QS probability p j.

A subtlety associated with this procedure is that the QS dis-
tribution is needed to determine the evolution of X∗t when Xt
visits the absorbing state. Although one has no prior knowl-
edge of the QS distribution pn, one can, in a simulation, use
the history X∗s (0 < s ≤ t) up to time t, to estimate the pn.
(There is good evidence, after all, that the surviving sample
in a conventional simulation converges to the QS state af-
ter an initial transient.) In practice this is accomplished by
saving (and periodically updating) a sample n1,n2, ...,nM of
the states visited. As the evolution progresses, X∗s will visit
states according to the QS distribution. We therefore update
the sample {n1,n2, ...,nM} by occasionally replacing one of
these configurations with the current one. In this way the dis-
tribution for the process X∗t (and the sample drawn from it),
will converge to the QS distribution (i.e., the stationary solu-
tion of Eq. (3)) at long times. Summarizing, the simulation
process X∗t has the same dynamics as Xt , except that when a
transition to the absorbing state is imminent, X∗t is placed in
a nonabsorbing state, selected at random from a sample over
the history of the realization. In effect, the nonlinear term in
Eq. (3) is represented as a memory in the simulation.

A. The contact process

To explain how our method works in practice, we detail its
application to the contact process (CP) [4, 5, 8]. In the CP,
each site i of a lattice is either occupied (σi(t) = 1), or vacant
(σi(t) = 0). Transitions from σi = 1 to σi = 0 occur at a rate
of unity, independent of the neighboring sites. The reverse
transition is only possible if at least one neighbor is occupied:

the transition from σi = 0 to σi = 1 occurs at rate λr, where r
is the fraction of nearest neighbors of site i that are occupied;
thus the state σi = 0 for all i is absorbing. (λ is a control
parameter governing the rate of spread of activity.)

Although no exact results are available, the CP has been
studied intensively via series expansion and Monte Carlo sim-
ulation. The model has attracted much interest as a prototype
of a nonequilibrium critical point, a simple representative of
the directed percolation (DP) universality class. Since its scal-
ing properties have been discussed extensively [8–10] we re-
view them only briefly. The best estimate for the critical point
in one dimension is λc = 3.297848(20), as determined via
series analysis [16]. As the critical point is approached, the
correlation length ξ and correlation time τ diverge, following
ξ ∝ |∆|−ν⊥ and τ ∝ |∆|−ν|| , where ∆ = (λ−λc)/λc is the rela-
tive distance from the critical point. The order parameter (the
fraction of active sites), scales as ρ ∝ ∆β for ∆ > 0.

Two characteristic times, τC and τL, may be identified in
the contact process. The first is a relaxation time that gov-
erns the decay of temporal correlations in the stationary state:
C(t)≡ 〈ρ(t0)ρ(t0 +t)〉−ρ2 ∼ e−t/τc . The second is a lifetime,
determining the asymptotic decay of the survival probability
(starting from a spatially homogeneous initial condition) via
P(t) ∼ e−t/τL . The two characteristic times exhibit the same
scaling properties in the critical region. In the supercritical
or active phase (∆ > 0), the lifetime grows exponentially with
system size and ∆, while τC remains finite. Our interest here
is in the lifetime (denoted simply as τ) of the quasi-stationary
state. In the QS probability distribution there is a nonzero flux
of probability to the absorbing state,

r0 = w01 p1 (4)

where p1 is the QS probability of the configuration with ex-
actly one active site and w01 = 1 is the transition rate from this
configuration to the absorbing state; the QS lifetime τ = 1/r0.
(In QS simulations we take τ to be the mean time between
successive attempts to visit to the absorbing state.)

An important point in interpreting our simulation results
concerns the finite-size scaling (FSS) behavior of τ. Accord-
ing to the usual FSS hypothesis [17], finite-size corrections to
critical properties are functions of the ratio L/ξ, or, equiva-
lently, of the quantity ∆L1/ν⊥ . The lifetime is therefore ex-
pected to follow (in the subcritical phase, ∆ < 0),

τ(∆,L) = |∆|−ν||F (|∆|L1/ν⊥) (5)

where the scaling function F (x) ∝ xν|| for small x (so that τ
does not diverge in a finite system), while in the opposite limit
F →F0, a constant. The scaling hypothesis leads to the famil-
iar relation, τ(0,L)∼ Lν||/ν⊥ at the critical point, and suggests
that we attempt to collapse data for diverse system sizes by
plotting ∆ν||τ versus ∆∗ ≡ ∆L1/ν⊥ . For the order parameter the
expected finite-size scaling form is [8],

ρ(∆,L) = |∆|βR (L1/ν⊥∆) . (6)
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In the subcritical regime, the order parameter must decay to
zero ∝ L−1 as L → ∞, for any ∆ < 0, so that R (x) ∼ |x|−ν⊥

as x→−∞. On the other hand, for ∆ = 0 and L finite, ρ must
be nonzero and nonsingular, implying R (x)∼ x−β for x→ 0.
Thus ρ∼ |∆|β−ν⊥ for ∆ large and negative.

III. SIMULATION RESULTS

In the QS simulations we use a list of size M = 2 ×103 -
104, depending on the lattice size. The process is simulated
in 15 realizations, each of 5× 108 time steps. As is usual,
annihilation events are chosen with probability 1/(1+λ) and
creation with probability λ/(1+ λ). A site i is chosen from a
list of currently occupied sites, and, in the case of annihilation,
is vacated. In a creation event, a nearest-neighbor of site i is
selected at random and, if it is currently vacant, it becomes
occupied. The time increment associated with each event is
∆t = 1/Nocc, where Nocc is the number of occupied sites just
prior to the attempted transition [8].

In the initial phase of the evolution, the list of saved config-
urations is augmented whenever the time t increases by one,
until a list of M configurations has been accumulated. From
then on, we update the list (replacing a randomly selected en-
try with the current configuration), with a certain probability
prep, whenever t advances by one unit. A given configura-
tion therefore remains on the list for a mean time of M/prep.
(Values of prep in the range 10−3−10−4 are used.)

Figure 1 shows the QS lifetime τ as a function of ∆, for
lattice sizes L = 20, 40, 80,...,2560. For the larger system
sizes, power-law dependence on ∆ is evident, before the life-
time saturates (at very small values of |∆|), due, as anticipated,
to finite-size effects. In Fig. 2 these data are collapsed using
the known values of the DP exponents [18], ν⊥ = 1.09684(6)
and ν|| = 1.73383(3). The data collapse is quite good for the
larger system sizes. A least-squares fit to the data in the linear
portion of the graph (|∆| ≥ 0.02) yields a slope of -1.738(12),
in reasonable agreement with the accepted value for ν||. An
alternative method for analyzing the data is to estimate, for
each value of ∆, the infinite-size limiting value of the lifetime
by plotting τ(∆,L) versus 1/L (see Fig. 3). Plotting the re-
sulting estimates on log scales, we find a slope of -1.735(9),
again in good agreement with the standard value for the expo-
nent ν||.

We verified that the distribution pT of the lifetime (that is,
of the time interval between successive attempts to visit the
absorbing state) is exponential:

pT (t) =
e−t/τ

τ
(7)

This is as expected: in the quasi-stationary state the transition
rate to the absorbing state is time-independent.

Turning to the order parameter, we see from Eq. (6) that a
plot of ρ∗ ≡ |∆|−βρ versus ∆∗ should exhibit a data collapse.
The asymptotic behavior of the scaling function R implies
that ρ∗ ∝ (∆∗)−ν⊥ for large ∆∗. These scaling properties are
verified in Fig. 4. (We use the accepted value β = 0.2765.
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FIG. 1: QS survival time τ as a function of ∆, for lattice sizes L = 20,
40, 80,...,2560. The slope of the straight line is -1.74.
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FIG. 2: Data of Fig.1 plotted in terms of the scaling variables ∆∗ =
L1/ν⊥ |∆| and τ∗ = L−zτ, with z = ν||/ν⊥. The slope of the straight
line is -1.734.

While scaling of the order parameter in the subcritical regime
was verified in Ref [8], here we are able to extend the range
of ∆∗ by an order of magnitude, using the QS simulation tech-
nique.)

In Fig. 5 we show the probability distribution p(ρ) of the
order parameter in a large system (L = 2560) for three values
of ∆. As expected, the distribution broadens and shifts to-
ward larger values of ρ as λ approaches the critical value. The
probability distribution follows, to a good approximation, the
scaling form

p(ρ) =
1
〈ρ〉P (ρ/〈ρ〉) (8)

where 〈ρ〉 ≡ ρ(∆,L) is the mean value and P is a scaling func-
tion. This is verified (Fig. 6) by plotting p∗ = 〈ρ〉p(ρ) versus
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FIG. 3: QS survival time τ versus 1/L, for |∆| =
0.3,0.2,0.1,0.05,0.02,0.01,0.005,0.002,0.001,0.0005, from
bottom to top. Inset: infinite-size limiting estimates of the lifetime
as function of |∆|, plotted on log scales.
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FIG. 4: Scaled QS order parameter ρ∗ ≡ |∆|−βρ versus ∆∗ =
L1/ν⊥ |∆| for L = 320 (open squares), L = 1280 (diamonds) and
L = 2560 (filled squares). The slope of the straight line is -1.1097.

ρ/〈ρ〉. We see that the scaling function P attains its maximum
near ρ∗ = 0.6, and that it falls off rapidly as ρ∗→ 0. On the
other side of the maximum it exhibits a roughly exponential
tail.

IV. SUMMARY

We use the quasi-stationary simulation method to study the
lifetime and order parameter of the one-dimensional contact

process in the subcritical phase. Our results confirm the ex-
pected scaling properties of the lifetime of the quasi-stationary
state, and of the order parameter. The QS simulation method
is the first to allow such an analysis deep in the subcritical
regime. With a rather modest expenditure of computer time,
the approach yields an estimate of the critical exponent ν|| that
agrees with the accepted value to within uncertainty, with a
precision of about 0.5%. Analysis of quasi-stationary proper-
ties in the subcritical regime should therefore be a useful tool
in the study of absorbing-state phase transitions.
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FIG. 5: QS probability distribution of the order parameter in the sub-
critical regime, for L = 2560 and (left to right) λ/λc = 0.8, 0.9 and
0.95.
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FIG. 6: Scaling plot of the data shown in Fig. 5; λ/λc = 0.8
(squares), 0.9 (circles) and 0.95 (triangles).
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