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Critical Behavior of the Spin-3/2 Blume-Capel Model on a
Random Two-Dimensional Lattice
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We investigate the critical properties of the spin-3/2 Blume-Capel model in two dimensions on a random
lattice with quenched connectivity disorder. The disordered system is simulated by applying the cluster hybrid
Monte Carlo update algorithm and re-weighting techniques. We calculate the critical temperature as well as
the critical point exponents γ/ν, β/ν, α/ν, and ν. We find that, contrary of what happens to the spin-1/2 case,
this random system does not belong to the same universality class as the regular two-dimensional ferromagnetic
model.
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I. INTRODUCTION

Experimental studies of the critical behavior of real mate-
rials are often confronted with the influence of impurities and
inhomogeneities [1]. For a proper interpretation of the mea-
surements it is, therefore, important to develop a firm theoret-
ical understanding of the effect of such random perturbations.
In many situations the typical time scale of the thermal fluc-
tuations in the idealized “pure” systems is clearly separated
from the time scale of the impurity dynamics, such that to
a very good approximation the impurities can be treated as
quenched. The importance of the effect of quenched random
disorder on the critical behavior of a physical system can be
classified by the specific heat exponent of the pure system,
αpure. The criterion due to Harris [2] asserts that for αpure > 0
quenched random disorder is a relevant perturbation, leading
to a different critical behavior than in the pure case (which is
the case of the three-dimensional Ising model). In particular,
one expects [3] in the disordered system that ν≥ 2/D, where
ν is the correlation length exponent and D is the dimension of
the system. Assuming hyper-scaling to be valid, this implies
α = 2−Dν ≤ 0. On the other hand for αpure < 0 disorder
is irrelevant (as is the case of the three-dimensional Heisen-
berg model) and, in the marginal case αpure = 0, no prediction
can be made. For the case of (non-critical) first-order phase
transitions it is known that the influence of quenched random
disorder can lead to a softening of the transition [4]. Recently,
the predicted softening effect at first-order phase transitions
has been confirmed for 3D q-state Potts models with q ≥ 3
using Monte Carlo [5–7] and high temperature series expan-
sion [8] techniques. The overall picture is even better in two
dimensions (2D) where several models with αpure > 0 [9–12]
and the marginal (αpure = 0) [13–17] have been investigated.

In this paper we study another type of quenched ran-
dom disorder, namely connectivity disorder, a generic prop-
erty of random lattices whose local coordination number
varies randomly from site to site. Specifically, we consider
2D Poissonian random lattices of Voronoi-Delaunay type,
and performed an extensive computer simulation study of a
Blume-Capel model. We concentrated on the close vicinity

of the transition point and applied finite-size scaling (FSS)
techniques to extract the exponents and the “renormalized
charges” U∗

2 and U∗
4 . To achieve the desired accuracy of the

data in reasonable computer time we applied the single-cluster
hybrid algorithm [18] to update the spins and furthermore
made extensively use of the re-weighting technique [19]. Pre-
vious studies of connectivity disorder focusing mainly on 2D
lattices have been realized by Monte Carlo simulations of q-
state Potts models on quenched random lattices of Voronoi-
Delaunay type for q = 2 [20–22], q = 3 [23] and q = 8
[24, 25]. In particular, it has been shown that for q = 2 [20–
22] and q = 3 [23] the critical exponents are the same as those
for the model on a regular 2D lattice. This is indeed a sur-
prising result since the relevance criterion of the Delaunay tri-
angulations reduces to the well known Harris criterion such
that disorder of this type should be relevant for any model
with positive specific heat exponent [26]. This means that for
q = 3, where αpure > 0, one would expect a different univer-
sality class. On the other hand, for the present spin-3/2 model,
where αpure = 0, we show that the exponents indeed change
in the Voronoi-Delaunay lattice type, turning out the situation
still more bizarre . In the next section we present the model
and the simulation background. The results and conclusions
are discussed in the last section.

II. MODEL AND SIMULATION

The Voronoi construction or tessellation for a given set of
points in the plane is defined as follows [27]. Initially, for
each point one determines the polygonal cell consisting of the
region of space nearer to that point than any other point. Then
one considers that the two cells are neighboring when they
possess an extremity in common. From the Voronoi tessel-
lation the dual lattice can be obtained by the following pro-
cedure: (a) when two cells are neighbors, a link is placed
between the two points located in the cells; (b) from the links
one obtains the triangulation of space that is called the De-
launay lattice; (c) the Delaunay lattice is dual to the Voronoi
tessellation in the sense that points corresponding to cells link
to edges, and triangles to the vertices of the Voronoi tessella-
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tion.
We consider now the two-dimensional spin-3/2 Blume-

Capel model on this Poissonian random lattice. The Blume-
Capel Model is a generalization of the standard Ising model
[28] and was originally proposed for spin-1 to account for
first-order phase transition in magnetic systems [29, 30]. The
Hamiltonian can be written as

H =−J ∑
<i, j>

SiS j +∆∑
i

S2
i , (1)

where the first sum runs over all nearest-neighbor pairs of sites
(points in the Voronoi construction) and the spin-3/2 variables
Si assume values ±3/2,±1/2. In eq. (1) J is the exchange
coupling and ∆ is the single ion anisotropy parameter. The
second sum is taken over the N spins on a D-dimensional lat-
tice. The case where S = 1 has been extensively studied by
several approximate techniques in two- and three-dimensions
and its phase diagram is well established [29–35]. The case
S > 1 has also been investigated according to several proce-
dures [36–42].

The simulations have been performed for ∆ = 0, which is
the simplest case, on different lattice sizes comprising a num-
ber N = 1000,2000,4000,8000, 16000 and 32000 of sites.
For simplicity, the length of the system is defined here in terms
of the size of a regular lattice L = N1/2. For each system size
quenched averages over the connectivity disorder are approxi-
mated by averaging over R = 100 (N = 1000 to 4000), R = 50
(N = 8000) and R = 25 (N = 16000 and 32000) independent
realizations. For each simulation we have started with a uni-
form configuration of spins (the results are however indepen-
dent of the initial configuration). We ran 2.52× 106 Monte
Carlo steps (MCS) per spin with 1.2×105 configurations dis-
carded for thermalization using the “perfect” random-number
generator [43]. We have employed the hybrid algorithm [18]
where we included n Wolff clusters (here n = 5) intercalated
by one Metropolis single-spin flip sweep. This algorithm has
been shown to be quite effective for spin-3/2 models [18]. For
every 12th MCS, the energy per spin, e = E/N, and magneti-
zation per spin, m = ∑i Si/N, were measured and recorded in
a time series file.

From the series of the energy measurements we can com-
pute, by re-weighting over a controllable temperature interval
∆T , the average energy and specific heat

e(K) = [< E >]av/N, (2)

C(K) = K2N[< e2 >−< e >2]av, (3)

where K = J/kBT , with J = 1, and kB is the Boltzmann con-
stant. In the above equations < ... > stands for thermody-
namic averages and [...]av for averages over the different re-
alizations. Similarly, we can derive from the magnetization
measurements the average magnetization, the susceptibility,
and the magnetic cumulants,

m(K) = [< |m|>]av, (4)

χ(K) = KN[< m2 >−< |m|>2]av, (5)

U2(K) = [1− < m2 >

3 < |m|>2 ]av, (6)

U4(K) = [1− < m4 >

3 < |m|>2 ]av. (7)

Further useful quantities involving both the energy and mag-
netization are their derivatives

d[< |m|>]av

dK
= [< |m|E >−< |m|>< E >]av, (8)

d ln[< |m|>]av

dK
= [

< |m|E >

< |m|> −< E >]av, (9)

d ln[< |m2|>]av

dK
= [

< |m2|E >

< |m2|> −< E >]av. (10)

In the infinite-volume limit these quantities exhibit singulari-
ties at the transition point. In finite systems the singularities
are smeared out and scale in the critical region according to

C = Creg +Lα/ν fC(x)[1+ ...], (11)

[< |m|>]av = L−β/ν fm(x)[1+ ...], (12)

χ = Lγ/ν fχ(x)[1+ ...], (13)

d ln[< |m|p >]av

dK
= L1/ν fp(x)[1+ ...], (14)

where Creg is a regular background term, ν, α, β, and γ are
the usual critical exponents, and fi(x) are FSS functions with
x = (K−Kc)L1/ν being the scaling variable, and the brackets
[1 + ...] indicate corrections-to-scaling terms. We calculated
the error bars from the fluctuations among the different re-
alizations. Note that these errors contain both, the average
thermodynamic error for a given realization and the theoret-
ical variance for infinitely accurate thermodynamic averages
which are caused by the variation of the quenched, random
geometry of the lattices.

III. RESULTS AND CONCLUSION

By applying standard re-weighting techniques to each of
the R time-series data we first determined the temperature
dependence of Ci(K), χi(K),..., i = 1,...,R, in the neighbor-
hood of the simulation point K0. Once the temperature de-
pendence is known for each realization, we can easily com-
pute the disorder average, e.g., C(K) = ∑R

i=1 Ci(K)/R, and
then determine the maxima of the averaged quantities, e.g.,
Cmax(Kmax) = maxKC(K). The variable R represents the num-
ber of replicas in our simulations.
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FIG. 1: Fourth-order Binder cumulant as a function of K for sev-
eral values of the system size N = 1000,2000,4000,8000,16000 and
32000.
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FIG. 2: Log-log plot of the maxima of the logarithmic derivative
d ln[<|m|p>]

dK versus the lattice size L = N1/2 for p = 1 (circle) and
p = 2 (square). The solid lines are the best linear fits.

In order to estimate the critical temperature we calculate the
second and fourth-order Binder cumulants given by eqs. (7)
and (8), respectively. It is well known that these quantities
are independent of the system size and should intercept at the
critical temperature [44]. In Fig. 1 the fourth-order Binder
cumulant is shown as a function of the K for several values
of N. Taking the largest lattices we have Kc = 0.1844(1).
To estimate U∗

4 we note that it varies little at Kc so we have
U∗

4 = 0.482(6). From the second-order cumulant we similarly
get Kc = 0.1845(1) and U∗

2 = 0.579(8). One can see that the
agreement of the critical temperature is quite good and U∗

4 is
definitely far from the universal value U∗

4 ∼ 0.61 for the same
model on the regular 2D lattice.

The correlation length exponent can be estimated from the
derivatives given by eq. (15). Fig. 2 shows the maxima of
the logarithm derivatives as a function of the logarithm of the
lattice size L for p = 1 and p = 2. From the linear fitting one
gets ν = 0.85(2) (p = 1) and ν = 0.917(8) ( p = 2), which is
again different from the regular lattice exponent ν = 1.

In order to go further in our analysis we also computed
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FIG. 3: Plot of the logarithm of the modulus of the magnetization at
the inflection point as a function of the logarithm of L = N1/2. The
solid line is the best linear fit.
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FIG. 4: Log-log plot of the susceptibility maxima χmax as a function
of the logarithm of L = N1/2. The solid line is the best linear fit.

the modulus of the magnetization at the inflection point and
the maximum of the magnetic susceptibility. The logarithm
of these quantities as a function of the logarithm of L are
presented in Figs. 3 and 4, respectively. A linear fit of
these data gives β/ν = 0.331(9) from the magnetization and
γ/ν = 1.467(9) from the susceptibility which should be com-
pared to β/ν = 0.125 and γ/ν = 1.75 obtained for a regular
2D lattice.

The specific heat can also be analysed in this case but, as
it happens in other models [21, 23], we cannot find a clear
unambiguous support for a definite scaling. Fig. 5 shows
the maximum of the specific heat Cmax as a function of L.
Least-squares fits to a logarithmic Ansatz Cmax = B0 +B1 lnL
give B0 = 0.44(6), B1 = 0.72(1) and is shown by the full line
in Fig. 5. The dashed line in this figure corresponds to a
pure power-law Ansatz, Cmax = cLα/ν with c = 1.475(5) and
α/ν = 0.202(5). From these results one can slightly see a
better agreement with the logarithmic Ansatz.

Thus, from the above results, there is a strong indication
that the spin-3/2 Blume-Capel model on a Voronoi lattice is
in a different universality class than its regular lattice coun-
terpart. This poses, in addition to the q = 3 Potts model in
two dimensions, and taking into account the extensive study
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FIG. 5: Specific heat maxima Cmax as function of L = N1/2. The
solid line is the best fit to an α∼ 0 (Log) Ansatz and the dashed line
to a power law Ansatz.

done Janke and Weigel on the Harris-Luck criterion for ran-
dom lattices [26], another open question to be answered in
more general terms.
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173, 360 (1993).
[37] M. N. Tamashiro and S. R. Salinas, Phys. A 211, 124 (1994).
[38] J. C. Xavier, F. C. Alcaraz, D. Peña Lara, and J. A. Plascak,

Phys. Rev. B 57, 11575 (1998).
[39] D. Peña lara and J. A. Plascak, Int. J. Mod. Phys. B 12, 2045

(1998).
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