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We present results of our numerical study of the critical dynamics of percolation observables for the two-
dimensional Ising model. We consider the (Monte Carlo) short-time evolution of the system with small initial
magnetization and heat-bath dynamics. We find qualitatively different dynamic behaviors for the magnetization
M and for Ω, the so-called strength of the percolating cluster, which is the order parameter of the percolation
transition. More precisely, we obtain a (leading) exponential form for Ω as a function of the Monte Carlo
time t, to be compared with the power-law increase encountered for M at short times. Our results suggest
that, although the descriptions in terms of magnetic or percolation order parameters may be equivalent in the
equilibrium regime, greater care must be taken to interpret percolation observables at short times.
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I. INTRODUCTION

For many physical systems, a suitable definition of clus-
ter provides a mapping of the physical phase transition into
the geometric problem of percolation, allowing a better un-
derstanding of how the transition is induced in the system.
For Ising and n− vector spin models this mapping is well
understood [1], whereas for lattice gauge theories it may be
harder to define, even in the simpler pure-gauge case [2]. In
the case of the Ising model, the physical (droplet) clusters
coincide with the ones used for global spin updates in the
Swendsen-Wang Monte Carlo algorithm (i.e. the ones intro-
duced by Coniglio and Klein, based on the prescription by
Fortuin and Kasteleyn [3]). These are the clusters we con-
sider here, although our Monte Carlo updates are given by a
local heat-bath algorithm.

Given a definition for a cluster on the lattice, the order pa-
rameter in percolation theory is the so-called strength of the
percolating cluster Ω, defined by

Ω≡
{

0 , T > Tc
∆/V , T ≤ Tc

(1)

where ∆ is the volume of the percolating cluster and Tc is the
critical temperature. (Note that a percolating cluster is a set of
spins connected from the first to the last row of the lattice.)

When equilibrium properties are investigated, the descrip-
tions in terms of the magnetic order parameter M or the per-
colation order parameter Ω are indeed equivalent (see, for ex-
ample, [4, 5] and references therein) and one finds the same
critical exponents. Thus one might expect to find equivalence
for dynamic quantities as well, and in particular for the behav-
ior at short times.

In the present work[11] we investigate the dynamic critical
behavior for the two-dimensional (zero-field) Ising model

H = −J ∑
<i, j>

Si S j (2)

at short Monte Carlo time t, using the (local) heat-bath al-
gorithm. The observables measured are the magnetization
M = 1/V ∑i Si and the percolation order parameter Ω defined
above. We compare the behaviors of the two quantities as
functions of t and find that, whereas the magnetic order pa-
rameter shows a power-law increase with t, the data for the
percolation order parameter Ω are well fitted by a sum of ex-
ponentials of the (inverse of the) time t. At the end of Section
III we also comment on the short-time behavior of another
definition for the percolation order parameter, based on the
largest cluster instead of the spanning (percolating) cluster.

II. SHORT-TIME (MONTE CARLO) DYNAMICS

Using renormalization-group theory, it can be shown [7]
that the early time evolution of an order parameter (e.g. the
magnetization M) already displays universal critical behavior,
given by

M(t,ε,m0) = b−β/νM (tb−z,εb1/ν,m0bx0) , (3)

where m0 is the initial magnetization, ε ≡ (T −Tc)/Tc , M is
a universal function and b is a scale factor, which can be taken
equal to t1/z. We thus expect for T = Tc and small m0 a power-
law behavior at early times M(t)ε→0 ∼ m0tθ, with θ = (x0−
β/ν)/z . In principle, we would assume that the percolation
order parameter Ω should have a similar behavior. The time
evolution for the heat-bath algorithm and the evaluation of the
Swendsen-Wang clusters are described below.

The heat-bath dynamics consists in choosing the two pos-
sible directions of each Ising spin according to the exact con-
ditional probability given by its nearest neighbors. Each spin
Si is chosen to point up with probability pi , or down with
probability 1− pi, where

pi =
1

1+ exp(−2βJ ∑ j S j)
. (4)
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Note that β = 1/KT and the sum is over nearest neighbors of
Si. After a certain number of iterations the spin configuration
obeys the Boltzmann distribution. In the heat-bath method,
since the updates are local, this transient time becomes con-
siderably large at criticality.

The Swendsen-Wang (cluster) algorithm is obtained from
the Ising-model Hamiltonian by writing the partition function
as

Z = ∑
{S}

∑
{n}

{
ni j=1

∏
〈i, j〉

pi jδSiS j

}{
ni j=0

∏
〈i, j〉

(1− pi j)

}
, (5)

where pi j = 1− exp(−2βJ) is the probability of having a
link between two nearest-neighbor sites of equal spin value.
This link is represented by ni j and determines the clusters
that will be associated with percolation at the critical temper-
ature. Note that in the Swendsen-Wang algorithm one per-
forms global moves in which the spins in a cluster are flipped
together. Here we only use the clusters just defined to calcu-
late percolation observables, whereas the dynamics is given
by local heat-bath updates, as described above.

III. NUMERICAL RESULTS

In order to study the short-time dynamics we simulate at
T = Tc and force the system to have an initial magnetization
m0. We let the system evolve in time and look for power-law
behavior of the order parameters M and Ω as a function of
the (Monte Carlo) time. Each temporal sequence is generated
from a different random seed, i.e. each sequence has a dif-
ferent initial spin configuration. The time history is then ob-
tained from an average over all the generated sequences. We
have performed Monte Carlo simulations with 50000 seeds
and 5000 sweeps for three initial magnetizations (m0 = 0.02,
0.03, 0.04), for four lattice volumes, using the heat-bath algo-
rithm.

In Fig. 1 we show the comparison between the early-time
behaviors of M and Ω for a 250×250 lattice, starting from an
initial magnetization m0 = 0.02.

We see that although the two curves approach the same
equilibrium value, their early time increase is qualitatively dif-
ferent. We obtain that a power-law fit works very well for M,
yielding the literature value [8] for the exponent θ. Our results
for θ are shown in Table I below.

The data for Ω, on the other hand, are clearly not well de-
scribed by a power law. We have found that a (3-parameter)
fit to the form

Ω = a exp(−τ/t)+b exp(−2τ/t) (6)

works well, yielding the results shown in Table II. The fit is
shown together with the data in Fig. 2, for the case of the
250×250 lattice (with m0 = 0.02).

We thus see that, unlike the magnetization M, the order pa-
rameter Ω is not scale-free at short times, but has a time scale,
given by τ(L). The coefficients a and b seem to be indepen-
dent of L and related only to m0. We have fitted the time scale
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FIG. 1: Plot of the early time evolution of the magnetic (M) and
percolation (Ω) order parameters, for the case L = 250 and m0 =
0.02.

TABLE I: The exponent θ as obtained from power-law fits for the
magnetization M. The fit intervals are roughly [tmic,100], with tmic
between 5 and 10. The values of χ2/d.o. f . are of order 1.

L m0 = 0.04 m0 = 0.03 m0 = 0.02
100 0.1820(5) 0.1897(7) 0.1850(9)
125 0.1831(4) 0.1843(5) 0.1859(7)
200 0.1836(3) 0.1831(3) 0.1842(7)
250 0.1863(6) 0.186(1) 0.186(2)

τ in Eq.(6) to a power law with the lattice side L, obtaining
good agreement and an exponent consistent with the dynamic
critical exponent z for the model, suggesting that the relevant
time scale at short times is given by the relaxation time to
equilibrium. A fit of τ to the form Lz is shown in Fig. 3.

Finally, we have also looked at the observable given by
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FIG. 2: Fit of the early time evolution of Ω to the form in Eq. (6),
for the case L = 250 and m0 = 0.02.
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FIG. 3: Plot of τ(L) for m0 = 0.02. The fit gives τ ∼ Lz with z =
2.15(4).

TABLE II: Results from fits of Ω to the form in Eq. (6). The fit
intervals are roughly given by [tmic,90], with tmic between 5 and 10.

L m0 = 0.02
a τ b χ2

100 0.019(5) 60(4) 0.059(3) 0.36
125 0.013(3) 87(6) 0.061(1) 0.37
150 0.012(2) 124(6) 0.066(1) 0.26
200 0.017(4) 243(12) 0.07(1) 0.43
250 0.017(2) 382(11) 0.082(5) 0.30

the pressure of the largest cluster of the lattice. This ob-
servable too is equivalent to the magnetization in the equi-
librium regime, with the advantage that it is always well de-
fined, whereas a spanning cluster may not occur or may occur
more than once for a given (finite-volume) lattice configura-
tion. (Nevertheless, we have checked that in our runs there

is always at most one spanning cluster.) Similarly to Ω, this
observable does not show a power-law behavior, “lagging” be-
hind the magnetization for early simulation times. The early
dynamic behavior in this case is already reasonably well fitted
by an exponential approach to the equilibrium value (analo-
gous to the one found for cluster numbers in [9]), thus de-
pending on a relaxation time scale.

IV. CONCLUSIONS

We have investigated numerically the critical heat-bath dy-
namics for magnetic and percolation order parameters in the
two-dimensional Ising model at short Monte Carlo times,
starting from a small magnetization m0. From our results we
see that although the equilibrium behaviors of the magneti-
zation M and of the strength of the percolating cluster Ω are
equivalent (see e.g. [4] and references therein), the two order
parameters show qualitatively different dynamic critical be-
havior at short times. Whereas the magnetic order parameter
M shows a power-law behavior with the exponent θ, one finds
that Ω has a time scale, given by τ in Eq. (6), which seems to
be related to the relaxation time of the algorithm. We are cur-
rently investigating the possibility that the observable Ω may
suffer from finite-size effects related to the difficulty in form-
ing a percolating cluster at the early stages of the simulation
[10].
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