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Thermodynamic Properties of Small Magnetic Particles
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We investigate the equilibrium magnetic properties of a simple cubic small ferromagnetic particle under
an external magnetic field. Although the particle is small, it can not be considered as a single-domain unit.
The magnetic moments are represented by unitary spin vectors and we consider ferromagnetic interactions
between nearest-neighbor spins. The coupling between spins is given in terms of the classical Heisenberg
Hamiltonian and we also include a Zeeman contribution and a single-ion uniaxial anisotropy. The size of the
particle changes from one to twelve lattice spacings. We employ in our study mean-filed calculations and
Monte Carlo simulations. The magnetization and susceptibility curves as a function of temperature show that
an uniaxial anisotropy can mimic a ferromagnetic or an antiferromagnetic coupling, depending on the angle
between the external magnetic field and the easy axis.
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I. INTRODUCTION

The development of new techniques that opened the doors
to see the details of the matter at the nanoscale, also launched
the area of nanomagnetism, where we look at the behavior of
small magnetic particles. This field of research has shown to
be fruitfull not only from the fundamental point of view, but
also for the possible technological applications [1–4]. In this
way, many investigations have been developed experimentally
[5, 6], analytically [7–10], and in computer simulations [9–14]
in order to increase our knowledge about these small systems.

In the case of a small magnetic particle, its size can play a
crucial role on its behavior. In particular, sufficiently small
particles become single-domain particles in which all their
atomic moments rotate coherently in the presence of an ex-
ternal magnetic field [8]. On the other hand, when the size of
the particles is increased, the single domain configuration be-
comes unfavorable and the particle assumes a many-domain
configuration [13].

We investigate in this work the equilibrium magnetic prop-
erties of a small ferromagnetic particle that is large enough
to be considered as a multi-domain particle. We assume
three different types of energy contributions for this particle:
the exchange ferromagnetic interactions between the nearest-
neighbor spins, the Zeeman energy, due to presence of an ex-
ternal magnetic field and the single-ion uniaxial anisotropy
energy. To study the magnetic properties of the particle we
employ both mean-field calculations and Monte Carlo sim-
ulations. As we show below, the results obtained from the
analysis of the magnetization and susceptibility curves as a
function of temperature show that the effect of the anisotropy
on the magnetic properties of the particle depends crucially on
the angle between the easy axis and the magnetic field. Par-
ticularly, although the coupling between nearest-neighboring
spins is ferromagnetic, an easy axis perpendicular to the field
can produce an overall antiferromagnetic behavior, as if the
coupling between nearest-neighboring spins was antiferro-
magnetic.

In the following, we present in Section II the model and the
equations for the magnetization in the mean field approxima-
tion. In Section III, we describe the Monte Carlo simulations.
Next, in Section IV, we present our results and conclusions.

II. THE MODEL

The magnetic moments of the particle are distributed on
concentric spherical layers which are inscribed into a sim-
ple cubic structure. Each site of the lattice that belongs to
a given spherical layer represents a magnetic moment of the
particle. The magnetic moments are vectors of unitary magni-
tude, |~Si| = 1. These magnetic moments interact through the
classical Heisenberg Hamiltonian:

H =−J
2

N

∑
i

q

∑
j

~Si · ~S j−
N

∑
i

~H ·~Si−
N

∑
i

k(êk ·~Si)2, (1)

where N is the number of spins in the particle, q is the co-
ordination number of the magnetic moments (q = 6 for the
internal spins), J is the ferromagnetic exchange coupling, ~H
represents the external magnetic field, k is the anisotropy con-
stant and the unitary vector êk fixes the direction of the easy
axis of the particle.

We obtain the equilibrium magnetic properties of the par-
ticle through the mean-field approximation by employing the
Bogoliubov´s Inequality [15]. In this way, the exact free en-
ergy G of the system, which is described by the Hamiltonian
H , satisfies the inequality

G≤ G0 +< H −H0 >0 ≡Φ, (2)

where G0 is a trial free energy, which is calculated through a
Hamiltonian H0. H0 is an approximation to the exact Hamil-
tonian H .
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In the mean-field scheme, we write H0 as a sum of non-
interacting spins, weighted by a set of variational parame-
ters. Therefore, to obtain the free energy of the particle in
the mean-field approximation, GMF , we need to minimize Φ
relative to the variational parameters.

In the following we consider three different cases in the
study of the small ferromagnetic particle: zero anisotropy
case, the easy axis of the particle is parallel to the external
magnetic field, and the easy axis of the particle is perpendic-
ular to the external magnetic field. To simplify, we take the
external magnetic field in the z-direction.

In the first case, where the particle is isotropic (k = 0), we
take the following trial Hamiltonian H0:

H0 =−
N

∑
i

niSi
z, (3)

where the ni are the variational parameters used to minimize
Φ.

After some calculations, we obtain the equation of state of
each magnetic moment of the particle

mi =< Si
z >= coth

[
β
(

H +
J
2

q

∑
j

m j

)]
− 1[

β
(

H + J
2 ∑q

j m j

)] ,

(4)
and < Si

x >=< Si
y >= 0. Therefore, the magnetization of the

particle can be written as

m(T,H) =
1
N

N

∑
i

mi. (5)

In the case in which the easy axis is parallel to the external
magnetic field, we choose the following trial Hamiltonian

H0 =−
N

∑
i

niSi
z−

N

∑
i

piSi
z2. (6)

where ni and pi are the variational parameters of the problem.
Therefore, the equation of state for each spin of the particle

is

mi =< Si
z >=

R 1
−1
R b
−b
R a
−aSi

zeβ[(H+ J
2 ∑q

j m j)Si
z+kSi

z2]dSi
xdSi

ydSi
z

R 1
−1
R b
−b
R a
−aeβ[(H+ J

2 ∑q
j m j)Si

z+kSi
z2]dSi

xdSi
ydSi

z
,

(7)

with < Si
x >=< Si

y >= 0, a =
√

1−Si
y2−Si

z2 and b =√
1−Si

z2.
Finally, when the easy axis of the particle is perpendicular

to the external magnetic field, the trial Hamiltonian H0 is

H0 =−
N

∑
i

niSi
z−

N

∑
i

qiSi
x−

N

∑
i

piSi
x2, (8)

where ni, qi and pi are the variational parameters.
The equation of state for each one of the magnetic moments

of the particle takes the form

mi = mi
z =< Si

z >=
R 1
−1
R b
−b
R a
−aSi

zeβ[(H+ J
2 ∑q

j m j
z)Si

z+( J
2 ∑q

j m j
x)Si

x+kSi
x2]dSi

xdSi
ydSi

z

R 1
−1
R b
−b
R a
−aeβ[(H+ J

2 ∑q
j m j z)Si

z+( J
2 ∑q

j m jx)Si
x+kSi

x2]dSi
xdSi

ydSi
z

, (9)

where

mi
x =< Si

x >=
R 1
−1
R b
−b
R a
−aSi

xeβ[(H+ J
2 ∑q

j m j
z)Si

z+( J
2 ∑q

j m j
x)Si

x+kSi
x2]dSi

xdSi
ydSi

z

R 1
−1
R b
−b
R a
−aeβ[(H+ J

2 ∑q
j m j z)Si

z+( J
2 ∑q

j m jx)Si
x+kSi

x2]dSi
xdSi

ydSi
z

, (10)

with < Si
y >= 0, a =

√
1−Si

y2−Si
z2 and b =

√
1−Si

z2.
The magnetization of the particle is obtained from the equa-
tion

m(T,H) =
1
N

N

∑
i

mi
z. (11)

For each one of the three cases considered, we must solve a
set of coupled equations for the magnetic moments of the par-

ticle, and from these, finding the average magnetization as a
function of temperature and magnitude of the anisotropy. The
number of equations (NE ) is smaller than the number of spins
(NS) in the particle, due to the symmetry conditions. For in-
stance, for a particle with only a single shell, we have NS = 7
and NE = 2; for a particle with six shells, we have NS = 925
and NE = 95, and for a particle with twelve shells, we have
NS = 7133 and NE = 579. To solve the set of coupled equa-
tions, we used one of the routines presented in the Numerical
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Recipes book [16].

III. MONTE CARLO SIMULATIONS

The ferromagnetic particle was simulated by employing the
Metropolis algorithm [17, 18]. In each Monte Carlo step
(MCs), we performed N (N is the number of spins of the par-
ticle) trials to flip randomly one magnetic moment of the par-
ticle. To calculate the average magnetic properties of the par-
ticle we took in general 5× 104 MCs, where the first 2×104

MCs were discarded due to the thermalization process.
In our algorithm we calculate the average magnetization

of the particle, as well as, its components along the x, y
and z directions as a function of temperature and strength of
anisotropy. These mean values are obtained firstly by con-
sidering the mean value among the magnetic moments in the
particle:

mx =
1
N

N

∑
i=1

Si
x, (12)

my =
1
N

N

∑
i=1

Si
y, (13)

mz =
1
N

N

∑
i=1

Si
z, (14)

mtot =
√

mx2 +my2 +mz2, (15)

in each MCs after the thermalization process. In the following,
the averages are taken considering the different Monte Carlo
steps, where we obtain < mx >, < my >, < mz > and < mtot >,
for each value of temperature and external magnetic field.

We also calculate the fluctuation associated with the mag-
netization of the particle

∆m = |< mtot
2 >−< mtot > ·< mtot > |. (16)

The results obtained from the Monte Carlo simulations are
shown in the next section.

IV. RESULTS AND CONCLUSIONS

Let us start our analysis by the case where there is no
anisotropy. In Fig.1 we present the typical curve for the mag-
netization of a small ferromagnetic particle obtained through
the Monte Carlo simulations. In this figure we have a parti-
cle with six shells and we show its magnetization (Fig.1(a))
and the corresponding fluctuations (Fig.1(b)) as a function of
temperature, when the external magnetic field is zero. As
we note, these curves characterize a ferromagnetic behavior

with a critical temperature Tc = (1.29± 0.02)J/kB. As we
can see in Fig.2, the critical temperature (actually the pseudo-
critical temperature [10]) increases with the size of the particle
[10, 19] up to reach the thermodynamic limit. In our case this
limit is easily found for a particle with nine shells, where we
obtain Tc = (1.44±0.02)J/kB, which is very close to the value
obtained for a ferromagnetic system [20]. The same qualita-
tive behavior is also seen in the mean-field approach.
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FIG. 1: Typical magnetization curve obtained by Monte Carlo sim-
ulations for an isotropic particle: (a) average magnetization of the
particle and (b) fluctuation of the magnetization, when the external
magnetic field goes to zero. Particle with six shells, for which we
have Tc = (1.29±0.02)J/kB. Temperature is in units of J/kB.

When the particle has an easy axis parallel to the external
magnetic field, the same typical curves as presented in Fig.1,
which represent a ferromagnetic behavior, appear. In Fig.3
we plot the critical temperature of the particle as function of
its size, obtained from Monte Carlo simulations, for different
values of the anisotropy constant. As could be expected, the
critical temperature increases with the value of the anisotropy
constant, that is, it becomes more difficult to demagnetize the
particle for large values of the anisotropy.
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FIG. 2: Critical temperature as a function of the size of the parti-
cle obtained by Monte Carlo simulations for an isotropic particle.
Temperature is in units of J/kB and n is the number of shells of the
particle.

Finally, when the particle has an easy axis perpendicular
to the external magnetic field, two distinct behaviors are seen
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FIG. 3: Critical temperature as a function of the size of the parti-
cle for different values of the magnitude of the anisotropy obtained
through Monte Carlo simulations. The particle has the easy axis par-
allel to the external magnetic field. From bottom to top: k = 0.1J
(T c = 1.50), k = 0.5J (T c = 1.75), k = 1.0J (T c = 1.87), k = 2.0J
(T c = 1.98), k = 5.0J (T c = 2.46) and k = 10.0J (T c = 3.02). Tc is
the temperature in the thermodynamic limit. Temperature is in units
of J/kB and n is the number of shells of the particle.

both in mean-field calculations and Monte Carlo simulations.
The usual ferromagnetic behavior is seen for low values of the
anisotropy constant. On the other hand, for large values of the
anisotropy, the particle presents an antiferromagnetic behav-
ior. The magnitude of the anisotropy constant, for which the
particle changes its behavior from ferromagnetic to antifer-
romagnetic is k = 3.5J in the mean-field approximation and
k = 3.4J in the Monte Carlo simulations.
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FIG. 4: Typical magnetization curve for the case where the easy axis
of the particle is perpendicular to the external magnetic field in the
mean-field approach. (a) average magnetization of the particle, (b)
susceptibility and (c) inverse of the susceptibility, when the external
magnetic field goes to zero. Particle with six shells, k = 5J, and
TN = 1.02J/kB. Temperature is in units of J/kB.

For values of the anisotropy larger than these quoted above,
the typical magnetization curve and the corresponding fluctua-
tions are displayed in Figs.4 and 5, in the mean-field approach
and Monte Carlo simulations, respectively. In both figures we
considered a particle with six shells and we took k = 5.0J.
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FIG. 5: Typical magnetization curve obtained from Monte Carlo sim-
ulations for a particle with its easy axis perpendicular to the exter-
nal magnetic field. (a) average magnetization of the particle and
(b) fluctuations of the magnetization, when the external magnetic
field goes to zero. We have a particle with six shells, k = 5.0J, and
TN = (2.20±0.02)J/kB. Temperature is in units of J/kB.

In the mean-field case, the magnetization of the particle co-
incides with the component of total magnetization along the
z direction. Therefore, we find a zero magnetization for all
values of temperature, once the magnetization in the z direc-
tion vanishes at zero external field. On the other hand, in the
Monte Carlo calculations, the total magnetization of the parti-
cle is obtained along the x direction. In this way, a broad max-
imum appears in the magnetization curve as a function of tem-
perature. Microscopically, looking at the spin configurations,
we clearly see an antiferromagnetic arrangement of the spins
for a temperature less than that of the maximum. Besides the
magnetization, we verify in both approaches that the suscep-
tibility does not diverge for any value of temperature, but it
also exhibits a maximum at a given temperature. This kind of
behavior is characteristic of antiferromagnetic systems, and
the temperature in which occurs the maximum determines the
Neél temperature. The Neél temperature corresponds to the
temperature where the system changes its behavior from anti-
ferromagnetic to paramagnetic [21].

To summarize, we have studied a small ferromagnetic par-
ticle taking into account the relative orientation of its easy
axis to the external magnetic field. If the easy axis is paral-
lel to the magnetic field the particle behaves as a ferromag-
netic system, and the effect of the anisotropy is to increase the
critical temperature. On the other hand, when the anisotropy
axis is perpendicular to the external magnetic field, the mag-
netic behavior of the particle depends on the magnitude of the
anisotropy. For low values of this parameter, the particle con-
tinues exhibiting a ferromagnetic behavior, but for high values
of anisotropy, the particle presents an overall antiferromag-
netic behavior.
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